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1. Introduction

Gaussian Process (GP) has been widely used to model the complex input and output
relationship of the data due to its expressive power (Rasmussen, 2004). Selecting a kernel
to determine the structure of the covariance is a crucial factor governing the performance
of GP model. Spectral Mixture (SM) kernel devised by Wilson (Wilson and Adams, 2013)
can be one candidate kernel because SM kernel can approximate any stationary kernel. In
spite of its expressive power, training SM kernel takes more time due to many SM kernel
hyperparameters. This drawback would prevent this SM kernel from being widely applied to
practical problems for a large volume of data. Generally, two approaches have been mainly
studied for the scalability of GP model: inducing inputs method (Titsias, 2009; Hensman
et al., 2013; Salimbeni et al., 2018) and sparse spectrum based on Random Fourier Feature
(Lázaro-Gredilla et al., 2010; Gal and Turner, 2015; Hoang et al., 2017).

In this paper, we propose SM kernel approximation method by Reparameterized Ran-
dom Fourier Feature (R-RFF). Also, we develop the regularized sparse spectrum approx-
imation for kernel learning. Specifically, we apply the reparameterization trick (Kingma
and Welling, 2013) to Random Fourier Feature (Rahimi and Recht, 2008) in the sense of
both general parameter and natural parameter. In the process, we develop a robust sam-
pling algorithm to consider the number of spectral points dependent on the ratio of weight
parameters of SM kernel. Based on developed SM kernel approximation, we propose a
training method employing Stochastic Gradient Variational Bayes (SGVB) to regularized
lower bound. This approach allows us to scalably train GP model using SM kernel based
on a stochastic optimization framework.

2. Background

2.1. Spectral Mixture (SM) Kernel

Bochner’s theorem states that stationary kernel k(τ) for target function f can be obtained
as the Fourier transform of spectral density p(S) (Bochner, 1959).

k(τ) =

∫
e2πiSTτp(S)dS (1)

where τ = |x1 − x2| between two inputs x1, x2 ∈ RP . Wilson (Wilson and Adams, 2013)
devises spectral mixture (SM) kernel by considering p(S) as the symmetric weighed sum
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of diagonal Gaussian distribution, i.e, p(S) =
∑Q

q=1wq

(
N(s|µq ,Σq)+N(−s|µq ,Σq)

2

)
with µq =

(µ
(1)
q , .., µ

(P )
q ) and Σq = diag(σ2

q
(1), .., σ2

q
(P )). Then, the SM kernel is obtained as

kSM (τ) =

Q∑
q=1

wqcos
(
2πτTµq

) P∏
p=1

exp
(
−2π2τ2

pσ
(p)
q

)
(2)

where τp is the p th components in the τ .

2.2. Random Fourier Feature (RFF)

Random Fourier Feature method (Rahimi and Recht, 2008) approximates the stationary
covariance function k(x−y) by applying Monte Carlo integration to the Bochner’s theorem.

k(x− y) ≈ 1

M

M∑
i=1

cos(2πsi
Tx) cos(2πsi

T y) + sin(2πsi
Tx) sin(2πsi

T y) (3)

= φ(xs)
Tφ(ys) (4)

where s = {si}Mi=1 is the M sampled spectral points from the spectral density p(S) and
φ(xs) = 1√

M

[
cos 2πsT1 x, .., cos 2πsTMx, sin 2πsT1 x, .., sin 2πsTMx

]
∈ R1×2M .

2.3. Sparse Spectrum Approximation in Gaussian Process

Sparse spectrum GP (Lázaro-Gredilla et al., 2010) is a scalable method of GP regres-
sion with the approximated kernel by RFF. Given the dataset X = {x1, .., xn} and Y =
{y1, .., yn} with the sampled spectral points s and the corresponding feature map Φs(X) =
[φ(xs1); ...;φ(xsn)] ∈ Rn×2M , this method trains the model to maximize the log p(Y |X, s).

log p(Y |X, s) = −1

2
Y T (Φs(X)Φs(X)T + σε

2I)−1Y − 1

2
log|Φs(X)Φs(X)T + σε

2I| − n

2
log 2π

(5)

This method reduces the computation time of computing inversion and determinant of
kernel matrix to O(nM2) from O(n3).

3. Proposed Methodology

3.1. Generalized SM Kernel

Considering the spectral density of SM kernel (Wilson and Adams, 2013) is considered as
the weighted sum of symmetric Gaussian distribution, we generalize SM Kernel by assuming
each component’s spectral density as exponential family distribution pq(S).

pq(S; θq) = h(s) exp (η(θq) · T (S)−A(S)) (6)

where η(θq) natural parameter, T (S) sufficient statistic, and A(S) normalizer. Then, the
generalized SM kernel kGSM(x− y) can be defined as

kGSM(x− y) =

Q∑
q=1

wqkq(x− y) (7)

where kq(x− y) is corresponding kernel generated from (1) and (6).
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3.2. Generalized SM Kernel Approximation

To approximate the generalized SM kernel, we use reparameterized Random Fourier Feature
(R-RFF) for spectral S, i.e. s ∼ p(S) such that s = gq(θq, ε) for genereal parameter θq and
random variable ε. Under the mild condition, this reparametrization can also be applied by
natural parameter ηq because of one-to-one relation between θq and ηq, i.e., θq = θq(ηq) and
gq(θq(ηq), ε) = hq(ηq, ε) for some differentiable function h (Wainwright et al., 2008; Ruiz
et al., 2016).

Using R-RFF, the feature map φ(x) =
[√

w1φg1(θ1,ε)(x), ..,
√
wQφgQ(θQ,ε)(x)

]
can ap-

proximate kGSM(x− y) as

kGSM(x− y) ≈ φ(x)φ(y)T (8)

3.3. SoftMax Sampling for Spectral points

To reduce the variance of the unbiased estimator φ(x)φ(y)T , we consider that each number
of sampled spectral points is proportional to weight parameters of generalized SM kernel.

Theorem 1 (SoftMax sampling for Spectral points)
Given the defined estimator φ(x)φ(y)T above, let mq be the number of sampled spectral points

from pq(S) with m =
∑Q

q=1mq. The optimal ratio p∗q =
m∗
q

m to minimize Var(φ(x)φ(y)T ) sat-
isfies the following condition. Under the mild condition, p∗q is proportional to the normalized
weight parameters.

p∗q =
wq std(cos 2πsTq,1(x− y))∑Q
q=1wq std(cos 2πsTq,1(x− y))

≈ wq∑Q
q=1wq

(9)

= SoftMax([logw1, .., logwQ]) (10)

Proof See Appendix

Example 1 (SM kernel Approximation in sense of General Parameter)

Given the SM kernel parameters {wq, µq, σq}Qq=1, let s = ∪Q
q=1
{sq,i}

mq
i=1 be sampled spectral

points by reparameterization sq,i = µq + σq ◦ εi with εi ∼ N(ε; 0, IP ). The defined feature
map φSM (x) = [

√
w1φ1(x), ..,

√
wQφQ(x)] ∈ R2M can approximate kSM (x− y) as follows

kSM (x− y) ≈ φSM (x)φSM (y)T (11)

Proof See Appendix

Example 2 (SM kernel Approximation in sense of Natural Parameter)
Let η1 and η2 be the natural parameter of Gaussian distribution. Then, η1 and η2 can
represent the general parameter µ and Σ as

Σ = −1

2
(η2)−1 , µ = −1

2
(η2)−1η1 (12)
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Under the assumption of diagonal Σ with diag(Σ) = σ2, we can also sample the sq,i as

sq,i = −1

2
(ηq2)−1 ◦ ηq1 +

√
−1

2
(ηq2)−1 ◦ εi (13)

where ηq1 and ηq2 are the natural parameters of N(S;µq, σ
2
q ) and ηq2 ∈ RP .

3.4. Regularized Sparse Spectrum Approximation by R-RFF and SGVB

Based on R-RFF, SGVB (Kingma and Welling, 2013) facilitates to stochastically train the
kernel hyperparameters of GP model by the following regularized lower bound.

log p(Y |X) = log

∫
p(Y |f)p(f |X,S)p(S)dfdS (14)

≥
∫

log p(Y |X,S)q(S)dS −KL(q(S)||P (S)) = L (15)

≈ 1

K

K∑
k=1

log p(Y |X, s(k))−KL(q(S)||p(S)) = L̂K (16)

where s(k) is the k th sampled spectral points from q(S) by reparametrization trick. The
p(S) is the prior distribution of spectral density, whose parameter can be tuned by using
empirical spectral density. −KL(q(S)||p(S)) prevents each spectral density distribution
from collapsing during training.

4. Experiments

We generate the synthetic data of 10 combination of sinusoidal waveform with different
amplitude by using Dirichlet distribution, i.e, 1∑10

q=1 wq
(w1, .., w10) ∼ Dir10(θ).

y(t) =

10∑
q=1

wq sin (αq2πt) + βqεt (17)

where αq ∼ U(0, 1), βq ∼ U(0, .1) and εt ∼ N(0, 1). We consider three types of θ generated
by Dirichlet distribution;’Almost Equal’, ’Half Equal’, and ’Rarely Equal’.
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Figure 1: (a) shows log power spectral density of synthetic dataset ; ’Almost Equal’, ’Half
Equal’ and ’Rarely Equal’. (b), (c), and (d) reveal the effect on SM kernel approximation
by SoftMax sampling under two cases; ’small’ (2 × 5 × Q) for ’red’ and ’big’ (2 × 25 × Q)
for ’blue’ with Q = 10
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In the first experiment, we validate that our proposed SoftMax sampling for spectral
points could help approximate the SM kernel compared to the naive sampling approach
that does not consider the weight of each mixture component spectral density {wq}Qq=1.

To evaluate our method, we measure F-norm between true SM kernel and the approxi-

mate kernel applied by our SoftMax sampling during training, i.e,
‖Kθt−K̂θt‖F
‖Kθt‖F

for t iteration.

In Figure 1, (a) describes the log power spectral density for each setting; ’Almost Equal’,
’Half Equal’, and ’Rarely Equal’. Figures (b), (c), and (d) shows that applying SoftMax
sampling for SM kernel approximation could reduce the error of approximation in both
small and large number of sampled spectral points.
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Figure 2: Training Comparison with Benchmark Models; GPR for ’red’, VFE for ’yellow’,
proposed General parameter approach for ’lime green’, and Natural parameter approach for
’blue’

In the second experiment, we compare the proposed learning method with GP regres-
sion using SM kernel (GPR) (Rasmussen, 2004; Wilson and Adams, 2013) and Variational
Inducing Inputs (VFE) (Titsias, 2009) to reveal that our approximation could learn SM
kernel faster.

We use ’Half Equal’ dataset defined in the first experiment and conduct the extrapolation
task. For training, 2000 and 400 data points are used for training and test. We measure
the Negative Log marginal Likelihood (nlml) of the training set, Root Mean Square Error
(rmse), and Negative Mean Log Loss (nmll) of the test set in training. For experiment
setting, we use 300 spectral points (2× 15× 10(Q)) for our methods. For VFE, we set 300
inducing points for fair computation comparison. We find the proper learning rate for each
approach and set to 0.001 except for the natural parameter approach as 0.01 because it can
exceptionally learn the dataset with a relatively fast learning rate.

Figure 2 shows that our approaches perform much more iteration during the training
time. Also, the natural parameter approach converges the local optimal faster than other
methods in nlml and rmse.

5. Discussion

We show using R-RFF in the sense of natural parameter is likely to train the SM kernel
faster. We think that geometric information of the natural parameter approach makes the
model learnable at fast learning rates and then leads the fast convergence. In a further
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study, we will focus on explaining why natural parameter approximation could lead the
faster convergence and then validate its strong points in real data experiments.
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Appendix A. Proof of Theorem 1

Proof Let mq be the number of spectral points sampled from p(S;µq, σq). We define the
estimator ψ(m1, ..,mQ) as

ψ(m1, ..,mQ) =

Q∑
q=1

wq
mq

mq∑
i=1

cos
(
2πsTq,i(x− y)

)
so that Eq(S) [ψ(m1, ..,mQ] = kSM(x− y). Our objective is to find the optimal {m∗1, ..,m∗Q}
to minimize the variance ψ(m1, ..,mQ) by solving the following optimization problem:

min
m1,..,mQ

Var (ψ(m1, ..,mQ))

s.t

Q∑
q=1

mq = m ∀mq ∈ Z+

Since this optimization is somewhat tricky integer programming, we take relaxation by
transforming variable as pq =

mq
m which induces the condition

∑Q
q=1 pq = 1 from

∑Q
q=1mq =

m. Then, above optimization problem is modified as

min
m1,..,mQ

Var (ψ(p1, .., pQ))

s.t

Q∑
q=1

pq = 1 ∀pq ∈ [0, 1]

where Var (ψ(p1, .., pQ)) =
∑Q

q=1
w2
q

mp2q
Var

(
cos 2πsTq,1(x− y)

)
because {sq,i} for i = 1, ..,mq

is independently sampled. The optimal solution of this problem can be obtained by ap-
plying Lagrangian method because this optimization is convex optimization problem. Let
L(m1, ..,mQ, λ) be a Lagrangian operator with the multiplier λ.

L(m1, ..,mQ, λ) =

Q∑
q=1

w2
q

mq
Var

(
cos 2πsTq,1(x− y)

)
+ λ

 Q∑
q=1

pi − 1


Solving the following conditions

∂L(m1,..,mQ,λ)
∂λ = 0 and

∂L(m1,..,mQ,λ)
∂pq

= 0 for q = 1, .., Q

leads to the optimal solution {p∗1, .., p∗Q}.
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p∗q =
wq std(cos 2πsTq,1(x− y))∑Q
q=1wq std(cos 2πsTq,1(x− y))

where std
(
cos 2πsTq,1(x− y)

)
is obtained as

√
1
2

(
1 + kq (2(x− y))− 2k2

q (x− y)
)

(Suther-

land and Schneider, 2015).

Appendix B. Proof of Example 1

Pr

(
sup
x,y∈X

∣∣φSM(x)φSM(y)T − kSM(x− y)
∣∣ ≥ ε) ≤ 28

(
σpl

ε

)2

exp

(
− Mε2

8(d+ 2)

)

Proof This proof follows the basic structure of proof (Rahimi and Recht, 2008).
Given the finite dataset M, we define Mτ = {τ | τ = x − y ∀x, y ∈ M}. Since M is
compact set because of M’s finiteness, we can define the finite ε-net {Bτi(r)}Ki=1 with the
center τi and the radius r such that Mτ ⊂

⋃K
i=1Bτi(r) where the number of ε-net K is

bounded by 4(diam(M)
r )d (Cucker and Smale, 2002).

Also, we define the feature map φq(x) induced from N(S;µq,Σq) which

φq(x) =

√
1

mq

[
cos (2πsTq,1x), .., cos (2πsTq,mqx), sin (2πsTq,1x), .., sin (2πsTq,mqx)

]
define the φSM such that E

[
φSM(x)TφSM(y)

]
= kSM(x− y).

φSM(x) = [
√
w1φ1(x),

√
w2φ2(x), ..,

√
wQφQ(x)] ∈ R1×2(

∑Q
q=1mq)

E
[
φSM(x)TφSM(y)

]
= E

[
Q∑
q=1

wq
mq

mq∑
i=1

cos
(
2πsTq,i(x− y)

)]

=

Q∑
q=1

wqE

[
1

mq

mq∑
i=1

cos
(
2πsTq,i(x− y)

)]

=

Q∑
q=1

wqkq(x− y) = kSM(x− y)

Here, what we are going to prove is
∣∣φSM(x)φSM(y)T − kSM(x− y)

∣∣ ≤ ε for ∀x, y ∈ M in

probability convergence sense, as m =
∑Q

q=1mq →∞.

To show this statement, we define the error function f(x−y) = φSM(x)φSM(y)T−k(x−y)
onMτ and denote Lf to be Lipschitz constant of f , i.e, Lf = supτ∈Mτ

‖∇f(τ)‖ because f
is continuously differentiable function with respect to τ . Then, we will verify the following
two conditions in probability:

8



Spectral Mixture Kernel Approximation

1.
∣∣f(τi)

∣∣ ≤ ε
2 for all i = 1, ..,K

2. Lf ≤ ε
2r

After proving these two conditions, intuitively, we can show that for ∀τ ∈ Mτ , there ex-
ists for some τi s.t τ ∈ Bτi(r) and |f(τi)| ≤ ε

2 . Then, |f(τ)| ≤ |f(τ)− f(τi)| + |f(τi)| ≤
Lf‖τ − τi‖+ |f(τi)| ≤ ε

2rr + ε
2 ≤ ε.

Proof for the condition 1
Applying the Chernoff-Hoeffding’s inequality (Schmidt et al., 1995) to the event set

{
|f(τ)| ≥

ε
2

}
for τ ∈ Mτ can bound the probability of the event

{
|f(τ)| ≥ ε

2

}
where each term of

φSM(x)φSM(y)T =
∑Q

q=1
wq
mq

∑mq
i=1 cos

(
2πsTq,i(x− y)

)
is bounded as

∣∣ wq
mq

cos
(

2πsTq,i(x− y)
)∣∣ ≤

wq
mq

for q = 1, .., Q and i = 1, ..,M .

Pr
(∣∣f(τ)

∣∣ ≥ ε

2

)
≤ 2 exp

 −ε2

8
∑Q

q=1
w2
q

mq


Complement event

(⋂T
i=1

{
|f(∆xi,yi)| ≤ ε

2

})c
=
⋃T
i=1

{
|f(∆xi,yi)| ≥ ε

2

}
with the previous

result and the union bound induces the following bound:

Pr

(
K⋃
i=1

{
|f(τi)| ≥

ε

2

})
≤

K∑
i=1

Pr
(∣∣f(τi)

∣∣ ≥ ε

2

)
≤ 2K exp

 −ε2

8
∑Q

q=1
w2
q

mq


This result implies that |f(τi)| ≤ ε

2 for all i = 1, ..,K with the probability 1−2K exp

(
−ε2

8
∑Q
q=1

w2
q

mq

)
.
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Proof for the condition 2
To bound the probability of the event {Lf ≥ ε

2r}, the Markov inequality leads that the
bound of E[L2

f ] can bound the probability of the event {Lf ≥ ε
2r} .

Pr
(
Lf ≥

ε

2r

)
≤ Pr

(
L2
f ≥ (

ε

2r
)2
)
≤ (

ε

2r
)−2E[L2

f ]

Let τ∗ = x∗−y∗ be the optimal elements inMτ to satisfy Lf = ‖∇f(τ∗)‖ and the existence
of τ∗ can be verified by the compactness for Mτ .

E[L2
f ] = E[‖∇f(τ∗)‖2] = E[

∥∥∇φSM(x∗)φSM(y∗)T −∇kSM(x∗ − y∗)
∥∥2

]

= E[
∥∥∇φSM(x∗)φSM(y∗)T

∥∥2
]− E[‖∇k(x∗, y∗)‖]2

≤ E[
∥∥∇φSM(x∗)φSM(y∗)T

∥∥2
]

= E

∥∥∥∥∥∥
Q∑
q=1

wq
mq

mq∑
i=1

− sin
(
2πsTq,i(x

∗ − y∗)
)
◦ 2πsq,i

∥∥∥∥∥∥
2

≤ E

 Q∑
q=1

mq∑
i=1

wq
mq

∥∥− sin
(
2πsTq,i(x

∗ − y∗)
)
◦ 2πsq,i

∥∥2
= E

 Q∑
q=1

(
wq
mq

)2

(mq∑
i=1

∥∥− sin
(
2πsTq,i(x

∗ − y∗)
)
◦ 2πsq,i

∥∥)2


=

Q∑
q=1

(
wq

2

mq
)E
[∥∥− sin

(
2πsTq,1(x∗ − y∗)

)
◦ 2πsq,1

∥∥2
]

≤
Q∑
q=1

(
wq

2

mq
)E
[
‖1 ◦ 2πsq,1‖2

]
=

Q∑
q=1

(
4π2wq

2

mq
)
(
‖µq‖2 + ‖σq‖2

)
Thus, the probability of the event {Lf ≥ ε

2r} is bounded as

Pr (Lf ≥
ε

2r
) ≤

(
2r

ε

)2 Q∑
q=1

(
4π2wq

2

mq
)
(
‖µq‖2 + ‖σq‖2

)
The combination of the result for the condition 1 and condition 2 proves the following
statement with K ≤ 4(diam(M)

r )d

Pr

(
sup
x,y∈M

∣∣φSM(x)φSM(y)T − kSM(x− y)
∣∣ ≤ ε)

≤ 1− 8(
diam(M)

r
)d exp

 −ε2

8
∑Q

q=1
w2
q

mq

− (2r

ε

)2 Q∑
q=1

(
4π2wq

2

mq
)
(
‖µq‖2 + ‖σq‖2

)

10
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The above bound has the form 1−k1r
−d−k2r

2. Setting r = k1
k2

1
d=2 turn this to 1−2k

d
d+2

2 k
2
d+2

1

where k1 = 8diam(M)d exp −ε2

8
∑Q
q=1

w2
q

mq

and k2 = 4
ε2
∑Q

q=1
4π2w2

q

mq

(
‖µq‖2 + ‖σq‖2

)

≤ 1− 26π2


√√√√ Q∑

q=1

(
4π2wq2

mq
)
(
‖µq‖2 + ‖σq‖2

)
diam(M)

2

exp

 −ε2

4(d+ 2)
∑Q

q=1
w2
q

mq



Appendix C. Derivation of Regularized Sparse Spectrum Approximation
by R-RFF and SGVB

Proof We consider the lower bound of log marginal likelihood with the candidate distribu-
tion q(S) where S = (S1,1, .., S1,m1 , .., SQ,1, .., SQ,mQ) is the random sample used in R-RFF
for kernel approximation. Then, we can derive the lower bound L as follows:

log p(Y |X) = log

∫∫
p(Y |f)p(f |X,S)

p(S)

q(S)
q(S)dfdS

= log

∫
p(Y |X,S)

p(S)

q(S)
q(S)dS

≥
∫

log
(
p(Y |X,S)

p(S)

q(S)

)
q(S)dS

=

∫
log p(Y |X,S)q(S) + log

p(S)

q(S)
q(S)dS

=

∫
log p(Y |X,S)q(S)dS −KL(q(S)||P (S)) = L

Applying the Stochastic Gradient Variational Bayes (SGVB) (Kingma and Welling, 2013)
to L with the reparametrizable distribution q(S), leads to the following unbiased estimator
L̂K .

L̂K =
1

K

K∑
i=1

log p(Y |X, s(i))−KL(q(S)||P (S))

where s(i) is i-th sampled spectral points from q(S).
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Appendix D. Algorithm

Algorithm 1: Example 1 learning by SGVB

Input: X,Y, θ = {wq, µq, σq}Qq=1,m, and K

Output: θ∗ = {w∗q , µ∗q , σ∗q}
Q
q=1

for t=1,..,T do
Set the temperature τ = T/t
Sample the spectral points {S(k)}Kk=1

for k = 1,...,K do
for q = 1,...,Q do

Get #mq by SoftMaxτ (logw1, .., logwQ)
Sample #mq spectral points from qq(Sq)

εi ∼ N(ε; 0, I)

sq,i = µq + σq ◦ εi

end

s(k) = ∪Q
q=1
{sq,i}

mq
i=1

end

Get Monte-Carlo estimated gradients of L̂K by
the sampled spectral points {s(k)}Kk=1{

∂L̂K
∂wq

,
∂L̂K
∂µq

,
∂L̂K
∂σq

}Q
q=1

Update {wq, µq, σq}Qq=1 by ADAM method with the estimated
gradients

end
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