
Under review as a conference paper at ICLR 2020

Minimally distorted Adversarial Examples
with a Fast Adaptive Boundary Attack

Anonymous authors
Paper under double-blind review

Abstract

The evaluation of robustness against adversarial manipulations of neural
networks-based classifiers is mainly tested with empirical attacks as the
methods for the exact computation, even when available, do not scale to
large networks. We propose in this paper a new white-box adversarial
attack wrt the lp-norms for p ∈ {1, 2,∞} aiming at finding the minimal
perturbation necessary to change the class of a given input. It has an intuitive
geometric meaning, yields quickly high quality results, minimizes the size of
the perturbation (so that it returns the robust accuracy at every threshold
with a single run). It performs better or similarly to state-of-the-art attacks
which are partially specialized to one lp-norm.

1 Introduction

The finding of the vulnerability of neural networks-based classifiers to adversarial examples,
that is small perturbations of the input able to modify the decision of the models, started
a fast development of a variety of attack algorithms. The high effectiveness of adversarial
attacks reveals the fragility of these networks which questions their safe and reliable use in
the real world, especially in safety critical applications. Many defenses have been proposed
to fix this issue (Gu & Rigazio, 2015; Zheng et al., 2016; Papernot et al., 2016; Huang
et al., 2016; Bastani et al., 2016; Madry et al., 2018), but with limited success, as new
more powerful attacks showed (Carlini & Wagner, 2017b; Athalye et al., 2018; Mosbach
et al., 2018). In order to trust the decision of a model, it is necessary to evaluate the exact
adversarial robustness. Although this is possible for ReLU networks (Katz et al., 2017; Tjeng
et al., 2019) these techniques do not scale to commonly used large networks. Thus, the
robustness is evaluated approximating the solution of the minimal adversarial perturbation
problem through adversarial attacks.
One can distinguish attacks into black-box (Narodytska & Kasiviswanathan, 2016; Brendel
et al., 2018; Su et al., 2019), where one is only allowed to query the classifier, and white-box
attacks, where one has full control over the network, according to the attack model used
to create adversarial examples (typically some lp-norm, but others have become popular as
well, e.g. Brown et al. (2017); Engstrom et al. (2017); Wong et al.), whether they aim at
the minimal adversarial perturbation (Carlini & Wagner, 2017a; Chen et al., 2018; Croce
et al., 2019) or rather any perturbation below a threshold (Kurakin et al., 2017; Madry et al.,
2018; Zheng et al., 2019), if they have lower (Moosavi-Dezfooli et al., 2016; Modas et al.,
2019) or higher (Carlini & Wagner, 2017a; Croce et al., 2019) computational cost. Moreover,
it is clear that due to the non-convexity of the problem there exists no universally best
attack (apart from the exact methods), since this depends on runtime constraints, networks
architecture, dataset, etc. However, our goal is to have an attack which performs well under
a broad spectrum of conditions with minimal amount of hyperparameter tuning.
In this paper we propose a new white-box attacking scheme which performs comparably
or better than established attacks and has the following features: first, it tries to produce
adversarial samples with minimal distortion compared to the original point, measured wrt
the lp-norms with p ∈ {1, 2,∞}. Respect to the quite popular PGD-attack of Madry et al.
(2018) this has the clear advantage that our method does not need to be restarted for
every threshold ε if one wants to evaluate the success rate of the attack with perturbations
constrained to be in {δ ∈ Rd | ‖δ‖p ≤ ε}. Thus it is particularly suitable to get a complete

1

Under review as a conference paper at ICLR 2020

picture on the robustness of a classifier with low computational cost. Second, it achieves fast
good quality in terms of average distortion or robust accuracy. At the same time we show
that increasing the number of restarts keeps improving the results and makes it competitive
with the strongest available attacks. Third, although it comes with a few parameters, these
mostly generalize across datasets, architectures and norms considered, so that we have an
almost off-the-shelf method. Most importantly, unlike PGD and other methods, there is no
step size parameter which potentially has to be carefully adapted to every new network.

2 FAB: a Fast Adaptive Boundary Attack

We first introduce minimal adversarial perturbations, then we recall the definition and
properties of the projection wrt the lp-norms of a point on the intersection of a hyperplane
and box constraints, as they are an essential part of our attack. Finally, we present our
FAB-attack algorithm to generate minimally distorted adversarial examples.

2.1 Minimal adversarial examples

Let f : Rd → RK be a classifier which assigns every input x ∈ Rd (with d the dimension
of the input space) to one of the K classes according to arg max

r=1,...,K
fr(x). In many scenarios

the input of f has to satisfy a specific set of constraints C, e.g. images are represented as
elements of [0, 1]d. Then, given a point x ∈ Rd with true class c, we define the minimal
adversarial perturbation for x wrt the lp-norm as

δmin,p = arg min
δ∈Rd

‖δ‖p , s.th. max
l 6=c

fl(x+ δ) ≥ fc(x+ δ), x+ δ ∈ C. (1)

The optimization problem (1) is non-convex and NP-hard for non-trivial classifiers (Katz et al.
(2017)) and, although for some classes of networks it can be formulated as a mixed-integer
program (see Tjeng et al. (2019)), the computational cost of solving it is prohibitive for large,
normally trained networks. Thus, δmin,p is usually approximated by an attack algorithm,
which can be seen as a heuristic to solve (1). We will see in the experiments that current
attacks sometimes drastically overestimate ‖δmin,p‖p and thus the robustness of the networks.

2.2 Projection on a hyperplane with box constraints

Let w ∈ Rd and b ∈ R be the normal vector and the offset defining the hyperplane
π : 〈w, x〉+ b = 0. Let x ∈ Rd, we denote by the box-constrained projection wrt the lp-norm
of x on π (projection onto the intersection of the box C = {z ∈ Rd : li ≤ zi ≤ ui} and the
hyperplane π) the following minimization problem:

z∗ = arg min
z∈Rd

‖z − x‖p s.th. 〈w, z〉+ b = 0, li ≤ zi ≤ ui, i = 1, . . . , d, (2)

where li, ui ∈ R are lower and upper bounds on each component of z. For p ≥ 1 the
optimization problem (2) is convex. Hein & Andriushchenko (2017) proved that for p ∈
{1, 2,∞} the solution can be obtained in O(d log d) time, that is the complexity of sorting a
vector of d elements, as well as determining that it has no solution.
Since this projection is part of our iterative scheme, we need to handle specifically the case
of (2) being infeasible. In this case, defining ρ = sign(〈w, x〉+ b), we instead compute

z′ = arg min
z∈Rd

ρ(〈w, z〉+ b) s.th. li ≤ zi ≤ ui, i = 1, . . . , d, (3)

whose solution is given componentwise, for every i = 1, . . . , d, by zi =

li if ρwi > 0,
ui if ρwi < 0,
xi if wi = 0

.

Assuming that the point x satisfies the box constraints (as it will be in our algorithm), this is
equivalent to identifying the corner of the d-dimensional box defined by the componentwise
constraints on z closest to the hyperplane π. Notice that if (2) is infeasible then the objective

2

Under review as a conference paper at ICLR 2020

function of (3) stays positive and the points x and z are strictly contained in the same of
the two halfspaces divided by π. Finally, we define the operator

projp : (x, π, C) 7−→
{
z∗ if Problem (2) is feasible
z′ else (4)

yielding the point which gets as close as possible to π without violating the box constraints.

2.3 FAB Attack

We introduce now our algorithm to produce minimally distorted adversarial examples, wrt
any lp-norm for p ∈ {1, 2,∞}, for a given point xorig initially correctly classified by f as class
c. The high-level idea is that we use the linearization of the classifier at the current iterate
x(i), compute the box-constrained projections of x(i) respectively xorig onto the approximated
decision hyperplane and take a convex combinations of these projections depending on the
distance of x(i) and xorig to the decision hyperplane, followed by some extrapolation step.
We explain below the geometric motivation behind these steps. The attack closest in spirit
is DeepFool (Moosavi-Dezfooli et al. (2016)) which is known to be very fast but suffers from
low quality. DeepFool just tries to find the decision boundary quickly but has no incentive
to provide a solution close to xorig. Our scheme resolves this main problem and, together
with the exact projection we use, leads to a principled way to track the decision boundary
(the surface where the decision of f changes) close to xorig.

If f was a linear classifier then the closest point to x(i) on the decision hyperplane could
be found in closed form. Although neural networks are highly non-linear, ReLU networks
(neural networks which use ReLU as activation function) are piecewise affine functions and
thus locally a linearization of the network is an exact description of the classifier. Let l 6= c,
then the decision boundary between classes l and c can be locally approximated using a first
order Taylor expansion at x(i) by the hyperplane

πl(z) : fl(x(i))− fc(x(i)) +
〈
∇fl(x(i))−∇fc(x(i)), z − x(i)

〉
= 0. (5)

Moreover the lp-distance dp(π, x(i)) of x(i) to πl is given by

dp(πl, x(i)) = |fl(x(i))− fc(x(i))|∥∥∇fl(x(i))−∇fc(x(i))
∥∥
q

, with 1
p

+ 1
q

= 1. (6)

Note that if dp(πl, x(i)) = 0 then x(i) belongs to the true decision boundary. Moreover, if
the local linear approximation of the network is correct then the class s with the decision
hyperplane closest to the point x(i) can be computed as

s = arg min
l 6=c

|fl(x(i))− fc(x(i))|∥∥∇fl(x(i))−∇fc(x(i))
∥∥
q

. (7)

Thus, given that the approximation holds in some large enough neighborhood, the projection
projp(x(i), πs, C) of x(i) onto πs lies on the decision boundary (unless (2) is infeasible).

Biased gradient step: The iterative algorithm x(i+1) = projp(x(i), πs, C) would be similar
to DeepFool except that our projection operator is exact whereas they project onto the
hyperplane and then clip to [0, 1]d. This scheme is not biased towards the original target
point xorig, thus it goes typically further than necessary to find a point on the decision
boundary as basically the algorithm does not aim at the minimal adversarial perturbation.
Thus we consider additionally projp(xorig, πs, C) and use instead the iterative step, with
x(0) = xorig, defined as

x(i+1) = (1− α) · projp(x(i), πs, C) + α · projp(xorig, πs, C), (8)

which biases the step towards xorig (see Figure 1). Note that this is a convex combination of
two points on πs and in C and thus also x(i+1) lies on πs and is contained in C. As we wish

3

Under review as a conference paper at ICLR 2020

Figure 1: Visualization of FAB-attack scheme, with on the left the case η = 1, on the right
η > 1. In blue we represent the next iterate x(i+1) one would get without any bias toward
the original point xorig, in green the effect of the bias we introduce and in red the x(i+1)

obtained with our scheme in (10). We see that our algorithm tends to stay closer to the
original point compared to the one with an unbiased gradient step.

a scheme with minimal amount of parameters, we want to have an automatic selection of α
based on the available geometric quantities. Let

δ(i) = projp(x(i), πs, C)− x(i) and δ
(i)
orig = projp(xorig, πs, C)− xorig.

Note that
∥∥δ(i)

∥∥
p
and

∥∥∥δ(i)
orig

∥∥∥
p
are the distances of x(i) and xorig to πs (inside C). We

propose to use for the parameter α the relative magnitude of these two distances, that is

α = min

∥∥δ(i)

∥∥
p∥∥δ(i)

∥∥
p

+
∥∥∥δ(i)

orig

∥∥∥
p

, αmax

 ∈ [0, 1]. (9)

The motivation for doing so is that if x(i) is close to the decision boundary, then we should
stay close to this point (note that πs is the approximation of f computed at x(i) and thus
it is valid in a small neighborhood of x(i), whereas xorig is farther away). On the other
hand we want to have the bias towards xorig in order not to go too far away from xorig.
This is why α depends on the distances of x(i) and xorig to πs but we limit it from above
with αmax. Finally, we use a small extrapolation step as we noted empirically, similarly to
Moosavi-Dezfooli et al. (2016), that this helps to cross faster the decision boundary and get
an adversarial sample. This leads to the final scheme:

x(i+1) = projC
(

(1− α)(x(i) + ηδ(i)) + α(xorig + ηδ
(i)
orig)

)
, (10)

where α is chosen as in (9), η ≥ 1 and projC is just the projection onto the box which can be
done by clipping. In Figure 1 we visualize the scheme: in black one can see the hyperplane πs
and the vectors δ(i)

orig and δ(i), in blue the step we would make going to the decision boundary
with the DeepFool variant, while in red the actual step we have in our method. The green
vector represents instead the bias towards the original point we introduce. On the left of
Figure 1 we use η = 1, while on the right we use overshooting η > 1.

Interpretation of projp(xorig, πs, C): The projection of the target point onto the inter-
section of πs and C is defined as

arg min
z∈Rd

‖z − xorig‖p s.th. 〈w, z〉+ b = 0, li ≤ zi ≤ ui,

Note that replacing z by x(i) + δ we can rewrite this as

arg min
δ∈Rd

∥∥∥x(i) + δ − xorig

∥∥∥
p

s.th. 〈w, x+ δ〉+ b = 0, li ≤ xi + δi ≤ ui.

This can be interpreted as the minimization of the distance of the next iterate x(i) + δ to
the target point xorig so that x(i) + δ lies on the intersection of the (approximate) decision
hyperplane and the box C. This point of view on the projection projp(xorig, πs, C) again
justifies using a convex combination of the two projections in our iterative scheme in (10).

4

Under review as a conference paper at ICLR 2020

Backward step: The described scheme finds in a few iterations adversarial perturbations.
However, we are interested in minimizing their norms. Thus, once we have a new point
x(i+1), we check whether it is assigned by f to a class different from c. In this case, we apply

x(i+1) = (1− β)xorig + βx(i+1), β ∈ (0, 1), (11)
that is we go back towards xorig on the segment [x(i+1), xorig], effectively starting again the
algorithm at a point which is quite close to the decision boundary. In this way, due to the
bias of the method towards xorig we successively find adversarial perturbations of smaller
norm, meaning that the algorithm tracks the decision boundary while getting closer to xorig.

Final search: Our scheme finds points close to the decision boundary but often they are
slightly off as the linear approximation is not exact and we apply the extrapolation step with
η > 1. Thus, after finishing Niter iterations of our algorithmic scheme, we perform a last,
fast step to further improve the quality of the adversarial examples. Let xout be the closest
point to xorig classified differently from c, say s 6= c, found with the iterative scheme. It
holds that fs(xout)−fc(xout) > 0 and fs(xorig)−fc(xorig) < 0. This means that, assuming f
continuous, there exists a point x∗ on the segment [xout, xorig] such that fs(x∗)− fc(x∗) = 0
and ‖x∗ − xorig‖p < ‖xout − xorig‖p. If f is linear

x∗ = xout −
fs(xout)− fc(xout)

fs(xout)− fc(xout) + fs(xorig)− fc(xorig) (xout − xorig). (12)

Since f is typically non-linear, but close to linear, we compute iteratively for a few steps

xtemp = xout −
fs(xout)− fc(xout)

fs(xout)− fc(xout) + fs(xorig)− fc(xorig) (xout − xorig), (13)

each time replacing in (13) xout with xtemp if fs(xtemp)− fc(xtemp) > 0 or xorig with xtemp
if instead fs(xtemp)− fc(xtemp) < 0. With this kind of modified binary search one can find
a better adversarial sample with the cost of a few forward passes of the network.

Random restarts: So far all the steps are deterministic. To improve the results, we
introduce the option of random restarts, that is x(0) is randomly sampled in proximity of
xorig instead of being xorig itself. Most attacks benefit from random restarts, e.g. Madry
et al. (2018); Zheng et al. (2019), especially dealing with gradient-masking defenses (Mosbach
et al. (2018)), as it allows a wider exploration of the input space. We choose to sample from
the lp-sphere centered in the original point with radius half the lp-norm of the current best
adversarial perturbation (or a given threshold if no adversarial example has been found yet).

Computational cost: Our attack, in Algorithm 1, consists of two main operations: the
computation of f and its gradients and solving the projection (2). We perform, for each
iteration, a forward and a backward pass of the network in the gradient step and a forward
pass in the backward step. The projection can be efficiently implemented to run in batches on
the GPU and its complexity depends only on the input dimension. Thus, except for shallow
models, its cost is much smaller than the passes through the network. We can approximate
the computational cost of our algorithm by the total number of calls of the classifier

Niter ×Nrestarts × (2× forward passes + 1× backward pass). (14)

One has to add the forward passes for the final search, fixed to 3, that happens just once.

2.4 Comparison to DeepFool

The idea of exploiting the first order local approximation of the decision boundary is not
novel but the basis of one of the first white-box adversarial attacks, DeepFool (DF) from
Moosavi-Dezfooli et al. (2016). While DF and our FAB-attack share the strategy of using a
linear approximation of the classifier and projecting on the decision hyperplanes, we want to
point out many key differences: first, DF does not solve the projection (2) but its simpler
version without box constraints, clipping afterwards. Second, their gradient step does not
have any bias towards the original point, that is equivalent to α = 0 in (10). Third, DF does

5

Under review as a conference paper at ICLR 2020

Algorithm 1: FAB-attack
Input : xorig original point, c original class, Nrestarts, Niter, αmax, β, η, ε, p
Output : xout adversarial example

1 u← +∞
2 for j = 1, . . . , Nrestarts do
3 if j = 1 then x(0) ← xorig;
4 else x(0) ← randomly sampled s.th.

∥∥x(0) − xorig
∥∥
p

= min{u,ε}/2;
5 for i = 0, . . . , Niter − 1 do
6 s← arg min

l 6=c

|fl(x(i))−fc(x(i))|
‖∇fl(x(i))−∇fc(x(i))‖

q

7 δ(i) ← projp(x(i), πs, C)
8 δ

(i)
orig ← projp(xorig, πs, C)

9 compute α as in Equation (9)
10 x(i+1) ← projC

(
(1− α)

(
x(i) + ηδ(i))+ α(xorig + ηδ

(i)
orig)

)
11 if x(i+1) is not classified in c then
12 if

∥∥x(i+1) − xorig
∥∥
p
< u then

13 xout ← x(i+1)

14 u←
∥∥x(i+1) − xorig

∥∥
p

15 end
16 x(i+1) ← (1− β)xorig + βx(i+1)

17 end
18 end
19 end
20 perform 3 steps of final search on xout as in (13)

Figure 2: Ablation study to DeepFool for l∞-attacks. The introduction of the convex
combination (αmax = 0.1, no backward step) already improves over DeepFool. Moreover,
if one does our full approach, the case αmax = 0 (can be seen as an improved iterative
DeepFool) is worse than αmax = 0.1 with the same number of restarts. In the plots we show
the robust accuracy as a function of the threshold ε under the different attacks on the l∞-AT
model on MNIST.

not have any backward step, final search or restart, as it stops as soon as a misclassified
point is found (its goal is to provide quickly an adversarial perturbation of average quality).
We perform an ablation study of the differences to DF in Figure 2, where we show the
curves of the robust accuracy as a function of the threshold ε (lower is better). We present
the results of DeepFool (blue) and FAB-attack with the following variations: αmax = 0.1
and no backward step (magenta), αmax = 0 (that is no bias in the gradient step) and no
restarts (light green), αmax = 0.1 and no restarts (orange), αmax = 0 and 100 restarts (dark

6

Under review as a conference paper at ICLR 2020

green) and αmax = 0.1 and 100 restarts, that is FAB-attack, (red). We can see how every
addition we make to the original scheme of DeepFool contributes to the significantly improved
performance of FAB-attack when compared to the original DeepFool.

3 Experiments

Models: We run experiments on MNIST, CIFAR-10 (Krizhevsky et al.) and Restricted
ImageNet (Tsipras et al. (2019)). For each dataset we consider a naturally trained model
(plain) and two adversarially trained ones as in Madry et al. (2018), one to achieve robustness
wrt the l∞-norm (l∞-AT) and the other wrt the l2-norm (l2-AT) (see A.1).

Attacks: We compare the performances of FAB-attack to those of attacks representing
the state-of-the-art in each norm: DeepFool (DF) (Moosavi-Dezfooli et al. (2016)), Carlini-
Wagner l2-attack (CW) (Carlini & Wagner (2017a)), Linear Region l2-Attack (LRA) (Croce
et al. (2019)), Projected Gradient Descent on the cross-entropy function (PGD) (Kurakin
et al., 2017; Madry et al., 2018; Tramèr & Boneh, 2019), Distributionally Adversarial Attack
(DAA) (Zheng et al. (2019)), SparseFool (SF) (Modas et al. (2019)), Elastic-net Attack
(EAD) (Chen et al. (2018)). We use DF from Rauber et al. (2017), CW and EAD as in
Papernot et al. (2017), DAA and LRA with the code from the original papers, while we
reimplemented SF and PGD. For MNIST and CIFAR-10 we used DAA with 50 restarts,
PGD and FAB with 100 restarts. For Restricted ImageNet, we used DAA, PGD and FAB
with 10 restarts (for l1 we used 5 restarts, since both methods benefit from more iterations).
Moreover, we could not use LRA since it hardly scales to such models and CW and EAD for
compatibility issues between the implementations of attacks and models. See A.2 for more
details e.g. regarding number of iterations and other hyperparameters.

Evaluation metrics: The robust accuracy of a model at a threshold ε is defined as the
classification accuracy (in percentage) the model achieves when an attack is allowed to
change every input of the test set with perturbations of lp-norm smaller than ε in order to
change the decision. Thus stronger attacks produce lower robust accuracies. For each model
and dataset we fix five thresholds at which we compute the robust accuracy for each attack
(we choose the thresholds to have values of the robust accuracy that cover the range between
clean accuracy and 0). We evaluate the attacks through the following statistics: i) avg.
rob. accuracy: the mean of all the values of robust accuracy given by the attack over all
models and thresholds, ii) # best: how many times the attack achieves the lowest robust
accuracy (it is the most effective), iii) avg. difference to best: for each model/threshold
we compute the difference between the robust accuracy of the attack and the best one across
all the attacks, then we average over all models/thresholds, iv) max difference to best:
as "avg. difference to best", but with the maximum difference instead of the average one. In
A.4 we report the average lp-norm of the adversarial perturbations given by the attacks.

Results: We report the complete results in Tables 5 to 13 of the Appendix, while we
summarize them in Tables 1 (MNIST and CIFAR-10 aggregated, as we used the same attacks)
and 2 (Restricted ImageNet). Our FAB-attack achieves the best results in all statistics for
every norm (with the only exception of "max diff. to best" in l∞) on MNIST+CIFAR-10,
meaning that it is the most effective attack. In particular, while on l∞ the "avg. robust
accuracy" of PGD is not far from that of FAB, the gap is large when considering l2 and l1.
Interestingly, the second best attack, at least in terms of average robust accuracy, is different
for every norm (PGD for l∞, LRA for l2, EAD for l1), which implies that FAB outperforms
algorithms specialized in the individual norms.
We also report the results of FAB-10, that is our attack with only 10 restarts, to show that
FAB yields high quality results already with a low budget in terms of time/computational
cost. In fact, FAB-10 has "avg. robust accuracy" better than or very close to that of the
strongest versions of the other methods (see below for a runtime analysis, where one observes
that FAB-10 is the fastest attack excluding DF and SF which however give much worse
results). On Restricted ImageNet, FAB-attack gets the best results in all statistics for l1,
while for l∞ and l2, although PGD performs often better, the difference in "avg. robust
accuracy" is small, meaning that FAB performs mostly similarly to PGD.

7

Under review as a conference paper at ICLR 2020

Table 1: Performance summary of all attacks on MNIST and CIFAR-10 (aggregated). We
report, for each norm, "avg. rob. acc.", the mean of the values of robust accuracy across all
the models and datasets, "# best", number of times the attack is the best one, "avg. diff.
to best" and "max diff. to best", the mean and maximum differences between the robust
accuracy of the attack and that of the best attack for each model/threshold (on the first
1000 points for l∞ and l1, 500 for l2, of the test sets). The numbers after the name of the
attacks indicates the number of restarts used. In total we consider 5 thresholds × 6 models
= 30 cases for each of the 3 norms. *Note that for FAB-10 (i.e. with 10 restarts) the "#
best" is computed excluding the results of FAB-100.

statistics on MNIST + CIFAR-10

l∞-norm DF DAA-50 PGD-100 FAB-10 FAB-100
avg. rob. acc. 58.81 60.67 46.07 46.18 45.47
best 0 8 12 13* 17
avg. diff. to best 14.58 16.45 1.85 1.96 1.25
max diff. to best 78.10 49.00 10.70 20.30 17.10

l2-norm CW DF LRA PGD-100 FAB-10 FAB-100
avg. rob. acc. 45.09 56.10 36.97 44.94 36.41 35.57
best 4 1 9 11 19* 23
avg. diff. to best 9.65 20.67 1.54 9.51 0.98 0.13
max diff. to best 65.40 91.40 13.60 64.80 8.40 1.60

l2-norm wo/
Madry’s model

CW DF LRA PGD-100 FAB-10 FAB-100

avg. rob. acc. 40.85 49.18 40.25 42.95 39.98 39.57
best 4 1 8 11 14* 18
avg. diff. to best 1.44 9.78 0.84 3.54 0.57 0.16
max diff. to best 8.80 44.00 4.00 22.00 4.20 1.60

l1-norm SF EAD PGD-100 FAB-10 FAB-100
avg. rob. acc. 64.47 35.79 49.51 33.26 29.46
best 0 13 0 10* 17
avg. diff. to best 35.31 6.63 20.35 4.10 0.30
max diff. to best 95.90 58.40 74.00 21.80 1.60

l1-norm wo/
Madry’s model

SF EAD PGD-100 FAB-10 FAB-100

avg. rob. acc. 58.06 32.56 43.82 33.79 32.06
best 0 13 0 5* 12
avg. diff. to best 26.36 0.87 12.12 2.10 0.36
max diff. to best 53.10 4.80 31.90 3.90 1.60

In general, both average and maximum difference to best of FAB-attack are small for all the
datasets and norms, implying that it does not suffer severe failures, which makes it an efficient,
high quality technique to evaluate the robustness of classifiers for all lp-norms. Finally, we
show in Table 4 that FAB-attack outperforms or matches the competitors in 16 out of 18
cases when comparing the average lp-norms of the generated adversarial perturbations.

Runtime comparison: DF and SF are definitely much faster than the others as their
primary goal is to find as soon as possible adversarial examples, without emphasis on
minimizing their norms, while LRA is rather expensive as noted in the original paper. Below
we report the runtimes (for 1000 points on MNIST and CIFAR-10, 50 on R-ImageNet) for
the attacks as used in the experiments (if not specified otherwise, it includes all the restarts).
For PGD and DAA this is the time for evaluating the robust accuracy at 5 thresholds, while
for the other methods a single run is sufficient to compute all the statistics.
MNIST: DAA-50 11736s, PGD-100 3825s for l∞/l2 and PGD-100 14106s for l1, CW 944s,
EAD 606s, FAB-10 161s, FAB-100 1613s. CIFAR-10: DAA-50 11625s, PGD-100 31900s

8

Under review as a conference paper at ICLR 2020

Table 2: As in Table 1 statistics of the performance of different attacks on Restricted
ImageNet (on the first 500 points of the validation set). In total we consider 5 thresholds ×
3 models = 15 cases for each of the 3 norms.

statistics on Restricted ImageNet

l∞-norm l2-norm l1-norm
DF DAA-

10
PGD-
10

FAB-
10

DF PGD-
10

FAB-
10

EAD PGD-
5

FAB-
5

avg. rob. acc. 35.61 38.44 26.91 27.83 45.69 31.75 33.24 71.31 40.64 38.12
best 0 1 13 3 0 14 1 0 3 12
avg. diff. best 8.75 11.57 0.04 0.96 13.99 0.04 1.53 33.52 2.85 0.33
max diff. best 14.60 37.20 0.40 2.00 25.40 0.60 3.40 59.00 6.20 2.40

for l∞/l2 and 70110s for l1, CW 3691s, EAD 3398s, FAB-10 1209s, FAB-100 12093s. R-
ImageNet: DAA-10 6890s, PGD-10 4738s for l∞/l2 and PGD-5 24158s for l1, FAB-10
2268s for l∞/l2 and FAC-5 3146s for l1 (note that different numbers of restarts/iterations
for l1 are used on R-ImageNet).
PGD needs a forward and a backward pass of the network for each iteration. Thus it is given
1.5 times more iterations than FAB, so that overall they have same budget of passes (we
assume here that forward and backward passes take the same amount of time). In Appendix
B.2 we compare PGD-1 versus FAB-1 as a function of the number of passes (2 passes are
one iteration of PGD, 3 passes are one iteration of FAB - the plots show 300 passes meaning
150 iterations of PGD and 100 iterations of FAB) so that the comparison is fair concerning
runtime in order to compare the performance of PGD-1 and FAB-1 as a function of runtime.
If one considers just the performance up to 20 passes (10 iterations PGD, 7 iterations FAB)
then FAB outperforms PGD in 18 out of 27 cases. However, one also observes that there is
no general superiority of one method. For both PGD-1 and FAB-1 there are cases where the
method requires the full amount of 300 passes to get to a good performance whereas the
other method achieves it with significantly less iterations/passes.

4 Conclusion

In summary, our geometrically motivated FAB-attack outperforms in terms of runtime and
on average in terms of quality all other high quality state-of-the-art attacks and can be used
for all p-norms in p ∈ {1, 2,∞} which is not the case for most other methods.

References
A. Athalye, N. Carlini, and D. A. Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In ICML, 2018.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi. Measuring
neural net robustness with constraints. In NeurIPS, 2016.

W. Brendel, J. Rauber, and M. Bethge. Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In ICLR, 2018.

T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial patch. In NeurIPS
2017 Workshop on Machine Learning and Computer Security, 2017.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy, 2017a.

N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM Workshop on Artificial Intelligence and Security, 2017b.

P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh. Ead: Elastic-net attacks to deep neural
networks via adversarial examples. In AAAI, 2018.

9

Under review as a conference paper at ICLR 2020

F. Croce, J. Rauber, and M. Hein. Scaling up the randomized gradient-free adversarial attack
reveals overestimation of robustness using established attacks. preprint, arXiv:1903.11359,
2019.

L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry. A rotation and a translation
suffice: Fooling CNNs with simple transformations. In NeurIPS 2017 Workshop on Machine
Learning and Computer Security, 2017.

S. Gu and L. Rigazio. Towards deep neural network architectures robust to adversarial
examples. In ICLR Workshop, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, pp. 770–778, 2016.

M. Hein and M. Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In NeurIPS, 2017.

R. Huang, B. Xu, D. Schuurmans, and C. Szepesvari. Learning with a strong adversary. In
ICLR, 2016.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient smt
solver for verifying deep neural networks. In CAV, 2017.

A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/~kriz/cifar.html.

A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial examples in the physical world. In
ICLR Workshop, 2017.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Valdu. Towards deep learning models
resistant to adversarial attacks. In ICLR, 2018.

A. Modas, S. Moosavi-Dezfooli, and P. Frossard. Sparsefool: a few pixels make a big
difference. In CVPR, 2019.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method
to fool deep neural networks. In CVPR, pp. 2574–2582, 2016.

M. Mosbach, M. Andriushchenko, T. Trost, M. Hein, and D. Klakow. Logit pairing methods
can fool gradient-based attacks. In NeurIPS 2018 Workshop on Security in Machine
Learning, 2018.

N. Narodytska and S. P. Kasiviswanathan. Simple black-box adversarial perturbations for
deep networks. In CVPR 2017 Workshops, 2016.

N. Papernot, P. McDonald, X. Wu, S. Jha, and A. Swami. Distillation as a defense to
adversarial perturbations against deep networks. In IEEE Symposium on Security &
Privacy, 2016.

N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri, A. Matyasko, K. Ham-
bardzumyan, Y.-L. Juang, A. Kurakin, R. Sheatsley, A. Garg, and Y.-C. Lin. cleverhans
v2.0.0: an adversarial machine learning library. preprint, arXiv:1610.00768, 2017.

J. Rauber, W. Brendel, and M. Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models. In ICML Reliable Machine Learning in the Wild
Workshop, 2017.

J. Su, D. V. Vargas, and S. Kouichi. One pixel attack for fooling deep neural networks.
preprint, arXiv:1710.08864v5, 2019.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In ICLR, 2019.

F. Tramèr and D. Boneh. Adversarial training and robustness for multiple perturbations.
preprint, arXiv:1904.13000, 2019.

10

http://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2020

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may be at
odds with accuracy. In ICLR, 2019.

E. Wong, F. R. Schmidt, and J. Z. Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations. preprint, arXiv:1902.07906.

S. Zheng, Y. Song, T. Leung, and I. J. Goodfellow. Improving the robustness of deep neural
networks via stability training. In CVPR, 2016.

T. Zheng, C. Chen, and K. Ren. Distributionally adversarial attack. In AAAI, 2019.

11

Under review as a conference paper at ICLR 2020

A Experiments

A.1 Models

The plain and l∞-AT models on MNIST are those available at https://github.com/
MadryLab/mnist_challenge and consist of two convolutional and two fully-connected
layers. The architecture of the CIFAR-10 models has 8 convolutional layers (with number
of filters increasing from 96 to 384) and 2 dense layers, while on Restricted ImageNet we
use the models (ResNet-50 He et al. (2016)) from Tsipras et al. (2019) and available at
https://github.com/MadryLab/robust-features-code.
The models on MNIST achieve the following clean accuracy: plain 98.7%, l∞-AT 98.5%,
l2-AT 98.6%. The models on CIFAR-10 achieve the following clean accuracy: plain 89.2%,
l∞-AT 79.4%, l2-AT 81.2%.

A.2 Attacks

We use CW with 10000 iterations and confidence 0, EAD with 1000 iterations, l1 de-
cision rule and β = 0.05. In both cases we set the parameters to achieve minimally
(wrt l2 for CW and l1 for EAD) distorted adversarial examples. We could not use these
methods on Restricted ImageNet since, to be compatible with the attack from Papernot
et al. (2017), it would be necessary to reimplement from scratch the models of Tsipras
et al. (2019), as done in https://github.com/tensorflow/cleverhans/tree/master/
cleverhans/model_zoo/madry_lab_challenges for a similar situation.
For DAA we use 200 iterations for MNIST, 50 for the other datasets and, given a threshold
ε, a step size of ε/30 for MNIST, ε/10 otherwise.
We perform PGD with 150 iterations, except for the case of l1 on Restricted ImageNet
where we use 450 iterations. For PGD wrt l∞ we use, given a threshold ε, a step size of
ε/10 in the direction of the sign of the gradient of the cross entropy loss, for PGD wrt l2 we
perform at each iteration a step in the direction of the gradient of size ε/4, for PGD wrt l1
we use the gradient step suggested in Tramèr & Boneh (2019) (with sparsity levels of 1% for
MNIST and 10% for CIFAR-10 and Restricted ImageNet), with size ε/2. The above stepsize
parameters ε/4 for l2 and ε/10 for l∞ for PGD were obtained, by doing a grid search for each
norm separately and using the values working best on average on MNIST and CIFAR-10. In
Appendix we discuss the influence of the step-size and show that our chosen values perform
best on average, see Figure 3.
For FAB-attack we set 100 iterations, except for the case of l1 on Restricted ImageNet where
we use 300 iterations. Moreover, we use the following parameters for all the cases on MNIST
and CIFAR-10: αmax = 0.1, η = 1.05, β = 0.9. On Restricted ImageNet we set αmax = 0.05,
η = 1.3, β = 0.9. When using random restarts, FAB-attack needs a value for the parameters
ε. It represents the radius of the lp-ball around the original point inside which we sample the
starting point of the algorithm, at least until a sufficiently small adversarial perturbation is
found (see Algorithm 1). We use the values of ε reported in Table 3. Note however that the
attack usually finds at the first run an adversarial perturbation small enough so that ε in
practice rarely comes into play.

Table 3: We report the values of ε used for sampling in case our FAB-attack uses random
restarts.

values of ε used for random restarts

MNIST CIFAR-10 Restricted ImageNet

plain l∞-AT l2-AT plain l∞-AT l2-AT plain l∞-AT l2-AT
l∞ 0.15 0.3 0.3 0.0 0.02 0.02 0.02 0.08 0.08
l2 2.0 2.0 2.0 0.5 4.0 4.0 5.0 5.0 5.0
l1 40.0 40.0 40.0 10.0 10.0 10.0 100.0 250.0 250.0

12

https://github.com/tensorflow/cleverhans/tree/master/cleverhans/model_zoo/madry_lab_challenges
https://github.com/tensorflow/cleverhans/tree/master/cleverhans/model_zoo/madry_lab_challenges

Under review as a conference paper at ICLR 2020

A.3 Complete results

In Tables 5 to 13 we report the complete values of the robust accuracy, wrt either l∞, l2 or
l1, computed by every attack, for 3 datasets, 3 models for each dataset, 5 thresholds for each
model (135 evaluations overall).

A.4 Further results

In Table 4 we report the average lp-norm of the adversarial perturbations found by the
different attacks, computed on the originally correctly classified points on which the attack
is successful. Note that we cannot show this statistic for the attacks which do not minimize
the distance of the adversarial example to the clean input (PGD and DAA). FAB-attack
produces also in this metric the best results in most of the cases, being the best for every
model when considering l∞ and l2, and the best in 4 out of 6 cases in l1 (lower values mean
a stronger attack).

Table 4: We report mean lp-norm of the adversarial perturbations found by the attacks
(when successful, excluding the already misclassified points) for every model.

average norm of adversarial perturbations

l∞-norm DF FAB

MNIST
plain 0.078 0.066
l∞-at 0.508 0.326
l2-at 0.249 0.170

CIFAR-10
plain 0.008 0.006
l∞-at 0.032 0.024
l2-at 0.026 0.019

l2-norm DF CW LRA FAB

MNIST
plain 1.13 1.01 1.00 1.00
l∞-at 4.95 1.76 1.25 1.12
l2-at 3.10 2.35 2.25 2.24

CIFAR-10
plain 0.28 0.21 0.22 0.21
l∞-at 0.96 0.74 0.74 0.73
l2-at 0.91 0.71 0.72 0.70

l1-norm EAD FAB

MNIST
plain 6.38 6.04
l∞-at 8.26 3.36
l2-at 12.18 12.16

CIFAR-10
plain 3.01 2.87
l∞-at 5.79 6.03
l2-at 7.94 8.05

13

Under review as a conference paper at ICLR 2020

Table 5: Comparison of l∞-, l2- and l1-attacks on a naturally trained model on MNIST. We
report the accuracy in percentage of the classifier on the test set if the attack is allowed to
perturb the test points of ε in lp-distance. The statistics are computed on the first 1000
points on the test set for l∞ and l1, on 500 points for l2.

Robust accuracy of MNIST plain model
metric ε DF DAA-

1
DAA-

50
PGD-

1
PGD-

10
PGD-
100

FAB-
1

FAB-
10

FAB-
100

l∞

0.03 93.2 91.9 91.9 92.0 91.9 91.9 92.0 92.0 92.0
0.05 83.4 78.2 76.7 76.0 74.9 74.6 77.2 76.8 76.1
0.07 61.5 59.8 56.3 43.8 41.8 40.4 44.3 43.1 42.6
0.09 33.2 46.7 41.0 16.5 14.2 12.8 16.2 14.8 14.4
0.11 13.1 34.4 26.2 4.0 2.8 2.4 3.3 3.1 2.4

CW DF LRA PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l2

0.5 92.6 93.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6
1 47.4 58.6 47.4 48.4 47.4 46.2 47.0 46.8 46.2
1.5 8.8 19.8 7.8 9.8 8.8 8.2 7.8 7.2 7.0
2 0.6 1.8 0.2 1.2 0.6 0.6 0.2 0.2 0.2
2.5 0.0 0.0 0.0 0.6 0.2 0.2 0.0 0.0 0.0

SparseFool EAD PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l1

2 95.5 93.6 94.4 93.9 93.7 94.2 93.7 93.5
4 88.9 76.7 79.8 77.5 76.9 80.2 76.6 75.2
6 75.8 48.1 57.4 52.2 49.3 54.5 47.2 43.3
8 60.3 26.6 46.7 36.3 31.6 31.3 25.3 22.4
10 43.8 11.2 40.0 27.4 22.1 15.2 9.8 8.4

Table 6: Comparison of l∞-, l2- and l1-attacks on an l∞-robust model on MNIST. We
report the accuracy on the test set if the attack is allowed to perturb the test points of ε in
lp-distance. The statistics are computed on the first 1000 points on the test set for l∞ and
l1, on 500 points for l2.

Robust accuracy of MNIST l∞-robust model
metric ε DF DAA-

1
DAA-

50
PGD-

1
PGD-

10
PGD-
100

FAB-
1

FAB-
10

FAB-
100

l∞

0.2 95.2 94.6 93.7 95.0 94.2 93.7 94.6 94.4 93.9
0.25 94.7 92.7 91.1 93.1 91.8 91.4 93.3 92.1 91.7
0.3 93.9 89.5 87.2 91.3 88.3 87.6 91.2 89.2 88.5

0.325 92.5 72.1 64.2 74.9 68.4 64.7 86.2 83.1 81.3
0.35 89.8 19.7 11.7 32.1 19.3 13.8 48.7 32.0 23.8

CW DF LRA PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l2

1 88.8 94.6 73.6 92.2 90.8 89.8 84.2 70.6 65.4
1.5 77.6 93.0 25.8 86.0 81.2 77.0 47.0 20.6 12.2
2 64.4 91.6 3.2 77.8 67.0 57.8 15.6 1.8 0.2
2.5 53.8 89.6 0.4 68.2 49.6 36.4 3.8 0.0 0.0
3 46.8 84.6 0.0 59.8 29.6 13.4 1.4 0.0 0.0

SparseFool EAD PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l1

2.5 96.8 92.2 94.1 93.7 93.6 90.1 74.3 56.9
5 96.5 76.0 90.9 88.9 88.2 85.8 39.4 17.6
7.5 96.4 49.5 85.2 81.4 79.0 82.6 19.8 5.0
10 96.4 27.4 80.2 73.5 70.3 78.4 11.9 2.4
12.5 96.4 14.6 74.9 65.6 58.7 74.5 7.7 0.5

14

Under review as a conference paper at ICLR 2020

Table 7: Comparison of l∞-, l2- and l1-attacks on an l2-robust model on MNIST. We report
the accuracy in percentage of the classifier on the test set if the attack is allowed to perturb
the test points of ε in lp-distance. The statistics are computed on the first 1000 points on
the test set for l∞ and l1, on 500 points for l2.

Robust accuracy of MNIST l2-robust model
metric ε DF DAA-

1
DAA-

50
PGD-

1
PGD-

10
PGD-
100

FAB-
1

FAB-
10

FAB-
100

l∞

0.05 96.7 96.4 96.3 96.4 96.3 96.3 96.4 96.3 96.3
0.1 93.4 91.0 90.2 90.7 90.4 90.2 90.8 90.4 90.4
0.15 86.4 74.3 72.3 74.6 73.2 72.4 74.0 72.3 72.0
0.2 73.8 34.5 27.2 36.2 29.8 26.5 34.1 28.2 24.4
0.25 55.1 1.5 0.9 2.6 1.5 1.0 1.9 0.9 0.8

CW DF LRA PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l2

1 92.6 93.8 92.6 93.0 93.0 93.0 92.6 92.6 92.6
1.5 84.8 87.2 83.4 83.8 83.4 83.4 83.8 83.6 83.6
2 70.6 79.0 68.0 68.8 68.0 67.6 69.8 69.0 67.8
2.5 46.4 67.4 41.6 45.6 40.4 37.6 45.6 41.8 39.2
3 17.2 54.2 11.2 17.4 12.4 10.2 18.6 13.4 11.0

SparseFool EAD PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l1

5 94.9 89.8 90.3 90.2 90.2 90.5 90.2 90.0
8.75 89.1 71.2 75.5 74.0 72.7 75.3 73.7 72.2
12.5 81.0 45.9 61.1 57.5 54.9 55.6 49.2 45.7
16.25 72.8 20.6 49.2 42.3 38.4 32.2 24.1 20.8
20 60.8 8.3 41.4 29.6 23.2 15.2 9.4 7.7

Table 8: Comparison of l∞-, l2- and l1-attacks on a naturally trained model on CIFAR-10.
We report the accuracy in percentage of the classifier on the test set if the attack is allowed
to perturb the test points of ε in lp-distance. The statistics are computed on the first 1000
points on the test set for l∞ and l1, on 500 points for l2.

Robust accuracy of CIFAR-10 plain model
metric ε DF DAA-

1
DAA-

50
PGD-

1
PGD-

10
PGD-
100

FAB-
1

FAB-
10

FAB-
100

l∞

1/255 62.6 65.7 64.1 56.1 55.8 55.6 56.5 55.9 55.7
1.5/255 49.3 63.2 60.8 38.9 37.9 37.4 38.5 37.7 37.4
2/255 37.3 62.4 58.5 24.3 23.3 22.9 23.4 21.9 21.2

2.5/255 26.4 61.2 56.3 16.2 14.8 14.0 13.2 12.0 11.8
3/255 19.0 60.2 54.4 10.7 9.2 8.6 7.4 5.8 5.4

CW DF LRA PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l2

0.1 69.4 72.2 69.0 68.4 67.6 67.6 68.4 68.4 68.4
0.15 55.4 62.6 55.0 54.6 53.8 53.8 54.6 54.0 53.8
0.2 43.4 51.2 43.4 43.8 42.8 42.0 42.4 42.0 41.8
0.3 21.6 33.8 22.0 24.8 24.2 23.6 21.6 20.8 20.6
0.4 9.4 20.8 9.8 18.2 16.2 15.4 9.6 8.2 8.0

SparseFool EAD PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l1

2 72.1 54.7 54.9 54.4 53.9 55.5 52.2 50.8
4 58.6 24.1 30.0 29.1 28.9 30.7 25.1 22.4
6 45.6 8.9 18.8 18.6 18.4 17.0 10.5 8.1
8 34.3 3.0 14.2 14.1 14.0 7.8 3.8 2.5
10 27.2 0.7 12.9 12.5 12.3 4.7 1.5 1.0

15

Under review as a conference paper at ICLR 2020

Table 9: Comparison of l∞-, l2- and l1-attacks on an l∞-robust model on CIFAR-10. We
report the accuracy in percentage of the classifier on the test set if the attack is allowed to
perturb the test points of ε in lp-distance. The statistics are computed on the first 1000
points on the test set for l∞ and l1, on 500 points for l2.

Robust accuracy of CIFAR-10 l∞-robust model
metric ε DF DAA-

1
DAA-

50
PGD-

1
PGD-

10
PGD-
100

FAB-
1

FAB-
10

FAB-
100

l∞

2/255 66.8 66.9 66.3 65.5 65.5 65.5 65.8 65.8 65.7
4/255 53.2 63.8 61.4 49.8 49.3 49.0 49.2 49.1 48.9
6/255 42.9 63.1 58.4 38.0 36.9 36.6 35.4 34.7 34.6
8/255 32.9 61.2 56.3 30.5 30.0 29.6 23.8 23.5 23.3

10/255 24.5 59.8 54.1 25.8 23.7 22.4 15.4 14.7 14.4

CW DF LRA PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l2

0.25 64.6 67.0 64.4 64.4 64.4 64.4 64.8 64.6 64.4
0.5 48.4 53.0 48.8 49.0 48.4 48.0 48.4 48.4 48.2
0.75 33.4 41.4 33.4 39.0 38.2 37.4 33.6 33.2 33.0
1 22.8 32.6 22.8 35.0 34.4 33.8 22.2 21.6 21.4

1.25 12.0 24.2 13.0 34.6 34.2 33.2 12.2 11.2 11.2

SparseFool EAD PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l1

5 57.8 36.8 47.3 46.6 46.2 43.1 39.9 37.9
8.75 44.7 19.2 37.4 37.0 36.8 25.7 22.5 20.2
12.5 34.9 7.1 34.0 33.9 33.9 13.7 10.9 8.7
16.25 27.6 3.0 33.3 33.2 33.1 7.1 4.3 3.5
20 20.2 0.9 32.9 32.8 32.8 3.8 1.7 1.3

Table 10: Comparison of l∞-, l2- and l1-attacks on an l2-robust model on CIFAR-10. We
report the accuracy in percentage of the classifier on the test set if the attack is allowed to
perturb the test points of ε in lp-distance. The statistics are computed on the first 1000
points on the test set for l∞ and l1, on 500 points for l2.

Robust accuracy of CIFAR-10 l2-robust model
metric ε DF DAA-

1
DAA-

50
PGD-

1
PGD-

10
PGD-
100

FAB-
1

FAB-
10

FAB-
100

l∞

2/255 64.1 67.2 66.3 62.6 62.5 62.4 62.7 62.6 62.6
4/255 49.0 65.0 62.8 45.3 45.0 44.9 44.4 44.2 44.2
6/255 36.9 64.2 60.8 32.9 31.6 31.1 27.2 26.8 26.7
8/255 25.8 62.3 58.0 25.7 24.9 23.9 14.8 14.1 13.8

10/255 17.6 61.9 54.8 21.9 19.8 18.6 8.6 8.0 7.9

CW DF LRA PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l2

0.25 66.0 67.0 65.6 65.8 65.6 65.6 65.6 65.6 65.6
0.5 48.2 53.8 47.8 49.6 48.8 48.8 48.4 48.2 48.0
0.75 32.6 42.2 32.4 38.4 37.2 36.4 32.8 32.4 32.2
1 21.6 30.0 21.6 35.4 33.6 33.0 21.8 21.4 21.0

1.25 11.4 22.4 12.4 34.2 31.6 31.2 12.2 12.2 11.4

SparseFool EAD PGD-
1

PGD-
10

PGD-
100

FAB-
1

FAB-
10

FAB-
100

l1

3 69.5 62.2 64.5 64.4 64.4 63.4 63.2 63.0
6 61.6 45.5 51.9 51.9 51.8 48.6 47.2 45.6
9 53.1 27.7 42.8 42.5 42.5 33.9 30.6 28.8
12 44.4 17.9 38.5 38.3 38.0 23.8 19.8 17.3
15 37.0 10.4 35.8 35.8 35.4 16.0 12.4 11.2

16

Under review as a conference paper at ICLR 2020

Table 11: Comparison of l∞-, l2- and l1-attacks on a naturally trained model on Restricted
ImageNet. We report the accuracy in percentage of the classifier on the test set if the attack
is allowed to perturb the test points of ε in lp-distance. The statistics are computed on the
first 500 points of the test set.

Robust accuracy of Restricted ImageNet plain model
metric ε DF DAA-

1
DAA-

10
PGD-

1
PGD-

10
FAB-

1
FAB-

10

l∞

0.25/255 76.6 74.8 74.8 74.8 74.6 75.2 75.2
0.5/255 52.0 51.8 48.2 38.2 37.8 39.6 39.6
0.75/255 26.8 46.0 41.0 12.2 12.2 14.2 14.2
1/255 11.2 43.2 39.4 3.8 3.8 3.6 3.6

1.25/255 5.0 41.2 38.2 1.0 1.0 1.2 1.0

DF PGD-
1

PGD-
10

FAB-
1

FAB-
10

l2

0.2 80.2 76.0 76.0 77.0 76.8
0.4 58.4 40.8 40.6 43.0 42.2
0.6 33.8 15.4 14.8 19.0 18.2
0.8 18.8 4.0 4.0 4.6 4.4
1 8.6 1.6 1.6 1.2 1.0

SparseFool PGD-
1

PGD-
5

FAB-
1

FAB-
5

l1

5 88.6 81.8 81.8 79.6 78.0
16 80.0 45.2 45.2 46.8 40.0
27 70.6 17.8 17.4 25.6 19.8
38 65.0 6.2 6.0 13.6 7.0
49 55.4 2.2 2.2 6.8 3.8

Table 12: Comparison of l∞-, l2- and l1-attacks on an l∞-robust model on Restricted
ImageNet. We report the accuracy in percentage of the classifier on the test set if the attack
is allowed to perturb the test points of ε in lp-distance. The statistics are computed on the
first 500 points of the test set.

Robust accuracy of Restricted ImageNet l∞-robust model
metric ε DF DAA-

1
DAA-

10
PGD-

1
PGD-

10
FAB-

1
FAB-

10

l∞

2/255 75.8 75.0 75.0 74.6 74.6 75.2 75.2
4/255 53.0 46.2 46.2 45.4 45.4 47.4 47.4
6/255 32.4 24.6 23.8 19.4 19.4 21.2 21.0
8/255 19.4 17.0 14.6 6.2 6.2 6.8 6.8

10/255 10.8 12.8 11.6 1.0 0.8 1.2 1.2

DF PGD-
1

PGD-
10

FAB-
1

FAB-
10

l2

1 79.4 76.6 76.6 77.0 76.8
2 65.0 46.8 46.2 49.8 49.2
3 46.8 22.4 21.4 24.4 23.8
4 32.8 9.0 8.6 10.8 10.6
5 20.4 3.0 2.8 3.2 3.2

SparseFool PGD-
1

PGD-
5

FAB-
1

FAB-
5

l1

15 81.8 69.8 69.8 69.6 68.2
25 76.4 58.6 58.2 56.2 53.6
40 71.4 41.0 41.0 41.2 37.6
60 63.2 28.8 28.8 28.2 23.8
100 49.2 12.0 11.6 14.6 11.2

17

Under review as a conference paper at ICLR 2020

Table 13: Comparison of l∞-, l2- and l1-attacks on an l2-robust model on Restricted ImageNet.
We report the accuracy in percentage of the classifier on the test set if the attack is allowed
to perturb the test points of ε in lp-distance. The statistics are computed on the first 500
points of the test set.

Robust accuracy of Restricted ImageNet l2-robust model
metric ε DF DAA-

1
DAA-

10
PGD-

1
PGD-

10
FAB-

1
FAB-

10

l∞

2/255 74.4 73.0 73.0 73.0 73.0 73.8 73.8
4/255 49.0 39.6 39.2 37.6 37.6 39.6 39.4
6/255 27.4 22.6 21.0 13.2 13.2 15.0 15.0
8/255 13.8 18.6 16.8 3.6 3.6 3.6 3.2

10/255 6.6 15.6 13.8 0.4 0.4 0.8 0.8

DF PGD-
1

PGD-
50

FAB-
1

FAB-
10

l2

2 74.2 71.8 71.8 72.8 72.8
3 61.6 51.4 51.0 52.4 52.4
4 45.6 31.0 30.8 34.4 33.8
5 34.6 20.4 20.4 22.6 21.8
6 25.2 9.6 9.6 11.8 11.6

SparseFool PGD-
1

PGD-
5

FAB-
1

FAB-
5

l1

50 85.4 81.0 81.0 78.6 78.4
100 79.6 63.8 63.6 60.8 59.0
150 74.4 48.4 48.4 45.2 42.2
200 68.6 32.2 32.2 31.0 29.0
250 60.0 23.0 22.4 22.8 20.2

18

Under review as a conference paper at ICLR 2020

MNIST

CIFAR-10

Figure 3: We plot for different step sizes of PGD robust accuracy over iterations. In red the
step size we used in the experiments of Section 3. We clearly see that our chosen step-size
is on average the best one. The models used are those trained on MNIST (top row) and
CIFAR-10 (bottom row).

19

Under review as a conference paper at ICLR 2020

B Analysis of the attacks

B.1 Choice of the step size of PGD

We here show the performance of PGD wrt l2 on MNIST and CIFAR-10 under different
choices of the step size. In particular we focus here on the largest ε and the middle ε
values chosen in the evaluation where the different stepsize choices have the largest impact.
We report the robust accuracy for at each of the 150 iterations. We test step sizes ε/t
for t ∈ {1, 2, 4, 10, 25, 75}. For each step size we run the attack 10 times with random
initialization and show the run which achieves the lowest robust accuracy after 150 iterations.
Note however that the behaviour of different runs varies minimally. In Figure 3 we show the
results for the three models for MNIST and CIFAR-10 for two different choices of ε used in
Section 3, with step size decreasing the blue becoming darker, while our chosen step size,
that is ε/4, is highlighted in red. We see that it achieves in all the models best or close to
best robust accuracy and is clearly the best on average.

B.2 Evolution across iteration

We here want to compare the evolution of the robust accuracy across the iterations of a
single run of PGD and FAB, that is PGD-1 and FAB-1 from Tables 5 to 13. Since PGD
performs 1 forward and 1 backward pass for each iteration and FAB 2 forward passes and 1
backward pass, we rescale the robust accuracy so to compare the two methods when they
have exploited the same number of passes of the network. Then 300 passes correspond to 150
iterations of PGD and to 100 of FAB. In Figures 4, 5 and 6 we show the evolution of robust
accuracy for the different dataset, models and threat models (l∞, l2 and l1), computed at
the threshold ε median among the five used in Tables 5 to 13.

20

Under review as a conference paper at ICLR 2020

MNIST, l∞

MNIST, l2

MNIST, l1

Figure 4: Evolution of accuracy across iterations on MNIST. We compare the robust accuracy
of PGD-1 (magenta) and FAB-1 (black) as a function of the employed forward/backward
passes in the algorithm (one iteration of PGD corresponds to 2 passes, one iteration of FAB
corresponds to 3 passes). Models: plain in the first column, l∞-at in the second and l2-at
in the third. Threat models: l∞ in the first row, l2 in the second and l1 in the third. The
thresholds ε used can be read above the plots. Note that the result of FAB-1 on l∞-at wrt l1
does not match that in Table 6 due to a typo in the statistics in the table.

21

Under review as a conference paper at ICLR 2020

CIFAR-10, l∞

CIFAR-10, l2

CIFAR-10, l1

Figure 5: Evolution of accuracy across iterations on CIFAR-10. We compare the robust accu-
racy of PGD-1 (magenta) and FAB-1 (black) as a function of the employed forward/backward
passes in the algorithm (one iteration of PGD corresponds to 2 passes, one iteration of FAB
corresponds to 3 passes). Models: plain in the first column, l∞-at in the second and l2-at
in the third. Threat models: l∞ in the first row, l2 in the second and l1 in the third. The
thresholds ε used can be read above the plots.

22

Under review as a conference paper at ICLR 2020

Restricted ImageNet, l∞

Restricted ImageNet, l2

Restricted ImageNet, l1

Figure 6: Evolution of robust accuracy across iterations on Restricted ImageNet. We compare
the robust accuracy of PGD-1 (magenta) and FAB-1 (black) as a function of the employed
forward/backward passes in the algorithm (one iteration of PGD corresponds to 2 passes,
one iteration of FAB corresponds to 3 passes). Models: plain in the first column, l∞-at in
the second and l2-at in the third. Threat models: l∞ in the first row, l2 in the second and l1
in the third. The thresholds ε used can be read above the plots.

23

	Introduction
	FAB: a Fast Adaptive Boundary Attack
	Minimal adversarial examples
	Projection on a hyperplane with box constraints
	FAB Attack
	Comparison to DeepFool

	Experiments
	Conclusion
	Experiments
	Models
	Attacks
	Complete results
	Further results

	Analysis of the attacks
	Choice of the step size of PGD
	Evolution across iteration

