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ABSTRACT

New types of compute hardware in development and entering the market hold
the promise of revolutionizing deep learning in a manner as profound as GPUs.
However, existing software frameworks and training algorithms for deep learning
have yet to evolve to fully leverage the capability of the new wave of silicon. In
particular, models that exploit structured input via complex and instance-dependent
control flow are difficult to accelerate using existing algorithms and hardware that
typically rely on minibatching. We present an asynchronous model-parallel (AMP)
training algorithm that is specifically motivated by training on networks of inter-
connected devices. Through an implementation on multi-core CPUs, we show that
AMP training converges to the same accuracy as conventional synchronous training
algorithms in a similar number of epochs, but utilizes the available hardware more
efficiently, even for small minibatch sizes, resulting in shorter overall training times.
Our framework opens the door for scaling up a new class of deep learning models
that cannot be efficiently trained today.

1 INTRODUCTION

An emerging category of neural networks show the common trait of reacting in dynamic and unique
ways to properties of their input. Networks like tree-structured recursive neural networks (Socher
et al., 2013; Tai et al., 2015) and graph neural networks (GNNs) (Scarselli et al., 2009; Li et al., 2015;
Gilmer et al., 2017) take structured data types as input and and execute a computation that depends
on the input structure. This defies the moden GPU-driven paradigm of minibatch-based processing,
and we refer to this new class of models with dynamic control flow as dynamic neural networks.

The development of dynamic neural network frameworks – Chainer (Tokui et al., 2015), DyNet
(Neubig et al., 2017a), and PyTorch (PyTorch core team) – speaks to the importance of this class of
models and highlights the challenge of how to make it easy for users to describe them. Yet there is
another big challenge: how can we train these models efficiently?

Managing minibatches to keep GPUs fully utilized is typically considered a user’s responsibility in
these dynamic frameworks (with the exception of DyNet’s autobatching feature; see Sec. 7). This
means that users have to think about how to change their data feeding pipeline or even the model
itself to run efficiently on GPUs, rather spending time innovating to improve the model accuracy.

What if we had a hypothetical device with low memory overhead that allows perfect scaling without
batching; i.e., processing 1 item is simply 100x faster than processing 100 items? Recent work on
FPGAs and other specialized hardware (Farabet et al., 2011; Caulfield et al., 2016; Jouppi et al.,
2017) for deep learning encourages us to investigate this question. Our premises are

1. No batching is required for efficient processing.

2. Each device may not have enough memory to hold the entire model (this is a realistic
constraint for current memory systems that approach the perfect scaling we require)

Based on these premises, we propose an asynchronous model-parallel (AMP) training algorithm.
Our idea is illustrated in Figure 1. We need model parallelism because each device may be too
small to hold the entire model (premise 2). However, if we perform synchronous parameter updates
following the full forward and backward propagations, the only way to increase device utilization is
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Figure 1: Gantt charts comparing pipelined synchronous model parallelism and asynchronous model
parallelism. Orange, blue, and yellow boxes correspond to forward, backward, and parameter update
operations, respectively. The numbers in the boxes indicate instance IDs.

by pipelining multiple instances into the system (see e.g., Chen et al., 2012). Pipeline parallelism
with synchronous updates is at odds with convergence speed due to a decreased parameter update
frequency; compare Fig. 1 (a) and (b).

To overcome this problem, we propose asynchronous parameter updates that occur without global
synchronization whenever a pre-specified number of gradients have been accumulated; see Fig. 1 (c).
With this design we aim for both high device utilization and update frequency.

In this setting, however, model parameters may be updated between the forward and the backward
computation of an instance, introducing gradient “staleness”. Despite staleness, we show that AMP
training can converge fast with good hardware utilization. Specifically, our contributions are:

• We present the asynchronous model parallel training algorithm for efficient distributed
training of dynamic networks.

• We present an intermediate representation (IR) with explicit constructs for branching and
joining control flow that supports AMP training. Unlike previous work that considers static
computation graphs for static control flow (e.g., Caffe), and dynamic computation graphs for
dynamic control flow (e.g., Chainer), our IR encodes a static computation graph to execute
dynamic control flow1. This makes training easy to distribute and parallelize.

• We show that our IR can readily encode replicas, a form of data parallelism (see Sec. 5). In
addition, our IR includes operators for data aggregation, which recover a form of batching,
enabling our methods to be applied even on hardware where batching is beneficial.

• We implement AMP training on a multi-core CPU and empirically demonstrate that AMP
training converges to similar accuracies as synchronous algorithms on a variety of dynamic
neural network models including Tree RNN and gated graph neural networks (GGNN).

In summary, our work demonstrates the benefits of AMP training and gives a novel way to design and
deploy neural network libraries with dynamic control flow. In addition, we use our implementation
to estimate the performance on a hypothetical device satisfying premises 1 & 2, with 1TFLOPS
compute capability (see Appendix C). Together, these contributions open up new ways to scale up
dynamic networks on interconnected compute devices.

2 NEURAL NETWORKS WITH DYNAMIC CONTROL FLOW

Below we highlight three models with dynamic control flow that will be studied in depth in this paper:

Variable-length RNNs iterate over the tokens of variable-length sequences. Pseudo-code for a simple
vanilla RNN is given in Figure 2. The linear (fully connected) layer and rectified linear unit (ReLU)
can be substituted with a more sophisticated unit such as a gated recurrent unit (Chung et al., 2014).
Though each instance has a different length, it is possible to add padding to enable batching. However
this may lead to significant redundant compute due to variability in sequence lengths.

1Our IR bears similarity to TensorFlow but we discuss differences in Section 7.
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Figure 2: Variable-length RNN in IR and pseudocode (colors denote IR node types)

Algorithm 1 Asynchronous Model-Parallel training
while training not done do

for all workers in parallel do
Wait until a message arrives
msg←the highest priority message from the input queue
op← sink node of the message msg
if msg is forward type then

Compute forward: out msgs← op(msg)
Enqueue the resulting message(s) into the queue(s) of the workers hosting the child nodes.

else if msg is backward type then
Compute backward: out msgs← op∗(msg,fwd msg)
Enqueue the resulting message(s) into the queue(s) of the workers hosting the parent nodes.

else if msg is update type then
Perform parameter updates on op

end if
end for

end while

Tree-structured neural networks are powerful models used for parsing of natural language and images,
semantic representation, and sentiment analysis (Socher et al., 2011; Bowman et al., 2016; Socher
et al., 2013; Tai et al., 2015). They require evaluation of (potentially multiple) trees with shared
parameters but different topology for each instance. Each tree structure is instance-specific and
batching requires nontrivial planning (Looks et al., 2017). A simple form of tree neural network
performs a bottom up traversal of the instance, starting from an embedding of the leaves. At each level
the values from the child nodes are concatenated and sent through a specialized unit (e.g. LSTM).
The result is then propagated further up the tree. Backpropagation over the tree structure is known as
backpropagation through structure (Goller and Kuchler, 1996).

Graph neural networks (Scarselli et al., 2009; Li et al., 2015; Gilmer et al., 2017) combine both the
temporal recurrence and recurrence over the structure. GNNs can be seen as performing aggrega-
tion/distribution operations over a general graph structure with shared parameters.

Apart from the models above, there exist many recently proposed models with flexible control flow
(e.g. hierarchical memory networks (Chandar et al., 2016), neural programmer interpreters (Reed
and De Freitas, 2015), adaptive computation networks (Graves, 2016; Figurnov et al., 2016), and
sparsely-gated mixture of experts (Shazeer et al., 2017), to which our framework can be applied.

3 ASYNCHRONOUS MODEL-PARALLEL TRAINING

In AMP training, each node of a computation graph (including control flow nodes – see next section)
is associated with a worker, which is an abstraction of a compute device. Neural network training
and inference is carried out by message passing among workers following algorithm 1. All workers
run in parallel without synchronization. Each message contains a payload (float or int tensor), as
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well as a state that includes the IDs of the source and sink nodes and a label indicating the type of
message (forward, backward, or update). The state is used to keep track of algorithm and control flow
information. For example, in a variable-length RNN the state also contains the instance identifier,
the current position in the sequence, and the total sequence length for the instance. More generally,
if the neural model use (possibly nested) loops, then the state for the messages that arrive to and
are produced from nodes that logically belong in loop bodies will contain sets of loop counters that
together with the instance id uniquely identify the messages throughout the course of the computation.

When a worker receives a message labeled as forward (or backward) then it performs the operation
of the node indicated by the sink node ID on the supplied payload. This produces one or more
outgoing messages that are then enqueued into the queues of the workers hosting the next sink nodes
in the computation graph. The final loss layer initiates backward propagation. If the message type
is update, the worker will carry out weight updates on the sink node using gradients accumulated
in the appropriate slot in the worker’s local memory. Since both the operation weights and weight
gradients can be stored locally on the worker then workers only need to communicate activations and
activation gradients, which are typically an order of magnitude smaller than the weights. The update
message is typically sent from the sink node to itself as part of the backward process but it can also
be sent from a controller node to simulate synchronous pipelined training.

There are two important details that are not fully spelled out in Algorithm 1. First, since the messages
arrive asynchronously (and possibly out of order), any operation that has more than one parent nodes
need to store the payload into its local cache until all the parents send the corresponding payloads.
Thus output message(s) can only be produced when all the payloads become available. The cache
needs to be able to distinguish payloads received from different parents and payloads with different
instance ID, and different counters (all encoded in the message states). The same is true in the
backward pass for a node with multiple child nodes. Second, op∗ denotes the adjoint operation of
op and takes the backward message msg and potentially the forward message fwd msg stored in
the cache. For a nonlinear activation node (e.g., ReLU), the node will not change the state of the
message in the forward pass. Thus in the backward pass, the adjoint operation will just multiply the
partial derivative of the activation function to the payload of the received backward message keeping
the state unchanged. By contrast, an operation that only changes the state of the message in the
forward pass (e.g., increment the loop counter) will reverse the change in the backward pass leaving
the payload unchanged.

In the experiments we vary two hyper parameters to control the effect of asynchrony:

min update interval: determines the minimum number of gradients that a parameterized
operation needs to accumulate before it can update its parameters (using the update message). The
staleness of a gradient can be measured by the number of updates between the forward and backward
computation that produces the gradient. Small min update interval may increase gradient
staleness. On the other hand, large min update interval can reduce the variance of the gradient
but can result in very infrequent updates and also slow down convergence.

max active keys: controls the maximum number of active instances that are in-flight at any
point in time. By setting max active keys = 1 we restrict to single-instance processing, typically
equivalent to synchronous training. More in-flight messages generally increase hardware utilization,
but may also increase gradient staleness. Section 6 demonstrates the effects of these parameters in a
multi-core CPU runtime.

3.1 WORKER AFFINITY

In our asynchronous execution model, the optimal assignment of N neural network computation graph
nodes to W workers (referred to as affinitization) is in general a non-trivial scheduling problem. We
investigated several heuristics for assigning affinities (for example k-hop coloring (Ichrak et al., 2012)
to ensure subsequent heavy operations were assigned different workers). However, we find that the
following procedure achieves high performance in practice in our multi-core CPU implementation,
and is adopted throughout our experiments for simplicity. We first partition the nodes into H
’heavy’ operations (namely matrix multiplies) and (N − H) ’light’ operations, and then balance
the heavy nodes across the workers by affinitizing the hth with the (h mod W )th worker. Finally,
the light operations are affinitized randomly among the rest of the workers. Note that in scenarios
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Figure 3: Distribution based on dynamic information

where communication is over a physical network affinitization will become more critical for high
performance.

4 A STATIC INTERMEDIATE REPRESENTATION FOR DYNAMIC CONTROL FLOW

Overview Computation graphs are expressed using a static intermediate representation (IR) that
can be a compilation target for high-level libraries (e.g. TensorFlow or our own Python and C++
frontends), and can itself admit multiple backends (e.g. the multi-core CPU runtime in this paper, or a
network of accelerators). Static means that the IR graph is instance-independent. Nevertheless, it can
execute dynamic and instance-dependent control flow decisions, in a forward and backward manner,
by storing instance- and iteration-dependent information as the computation evolves. Each IR node
comes with a forward and a backward semantics. A model is specified by (i) an IR graph, and (ii) a
specialized controller loop that pumps instances and other data (e.g. initial hidden states or labels),
and is responsible for throttling asynchrony. In the rest of this section we discuss the most important
IR nodes along with their operational semantics, and show how they are used in the example models.

Payload transformations Parameterized payload transform (PPT) nodes can be used to encode,
for instance, fully connected layers. They apply a transform in the forward pass, but also record the
activation in order to use it to compute gradients in the backward pass. An activation is recorded by
keying on the state of the message, allowing thus to process forward and backwards messages com-
pletely asynchronously, and – in the extreme case – out of order. A PPT node requires specification
of the forward and the backward transformation. It may decide to independently apply accumulated
gradients to update its parameters. For transformations that do not involve parameters (e.g. ReLUs)
our IR offers a simpler non-parameterized payload transform.

Loops, state, and control flow A condition node (Cond f ) is parameterized by a function f that
queries the state (but not the payload) of the incoming message and, based on the response, routes
the input to one of the successor nodes. A join node (Phi) propagates the messages it receives from
each of its ancestor nodes but records the origin (using the state of the message as the key) so that in
the backward pass it can backpropagate them to the correct origin. An invertible state update node
(Isu f f−1) is parameterized by two functions f and f−1 that operate on the state of a message, and
satisfy f−1(f(x)) = x. Typically these are loop counter update functions.

Figure 2 shows how to encode an RNN. The loop at the heart of the RNN is implemented with
Cond, Phi and Isu nodes. The controller pumps sequences in a lookup table (just another PPT
layer), and our Ungroup node (to be described in the next section) generates a stream of tensors each
corresponding to a single token, tagged with the current time-step (loop counter). For each forward
message, the Isu node increments the time-step, and the conditional node tests whether the end of
the sequence has been reached. Depending on the answer it either propagates the hidden state back
to Phi, or pushes the hidden state to the final linear and loss layers. In backward mode, messages
pass through the Isu (which decrements the time-step), and reach the Phi node. The Phi node will
(based on information from the forward phase) either back-propagate to the Cond node, or to the
controller to terminate. Hence the loop is executed in both the forward and backward direction.
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(a) (b)

Figure 4: IR graphs for (a) Gated Graph Neural Network and (b) RNN-with-replicas. The RNNCell
in (a) denotes a recurrent structure (e.g. GRU, LSTM), the details of which we omit. Cond modId in
(b) implements a round-robin branching to different replicas by computing (instance ID mod 3).

Aggregation and disaggregation Our IR offers several constructs for aggregation and disagreg-
gation; for example RNN requires us to concatenate (Concat) hidden states and embeddings with
matching timesteps and instance ids (states). We offer a construct for broadcasting (Bcast) a message
to multiple successors. We offer an ungrouping construct (Ungroup) that ungroups a matrix and
emits all resulting messages tagged with an extra user-provided increasing loop counter. This allows
us to insert the stream of token embeddings in the middle of the RNN loop in Figure 2. In backward
mode Ungroup groups back all the incoming gradients. A simpler variant of Ungroup is Replicate,
which replicates a message with an extra loop counter in the state. In backwards mode Replicate
sums up all incoming gradients that correspond to the state without the extra loop counter.

Figure 4(a) describes a GNN that combines aggregation on the structure of a graph instance with an
outer loop. The controller pumps data that contain the feature embeddings of all nodes of an input
graph. In addition it pumps in a map specifiying graph topology. The Distribute node uses that
information along with the graph itself to create sub-matrices (here each corresponding to edge types)
and pass them through linear (fully connected) layers. The Collect node collects and re-groups the
results based on graph topology. These nodes correspond to a form of dynamic partition and merging.
Schematically the Distribute behaviour is given in Figure 3. In backward mode, based on the
control information received during the forward pass (gray line) re-groups the gradients and sums
together those that correspond to the same index. The Collect operator is essentially symmetric.

5 DATA PARALLELISM IN MODEL PARALLELISM

Pipelined model parallelism can often be augmented with forms of data parallelism. Consider the
RNN in Fig. 2. The only heavy operation (Linear-1) in the body of the loop will act as a bottleneck for
computation. One solution is to split the linear layer into smaller tiles and compute them in parallel.
This is expressible in our IR but the linear operation needs to be large enough to benefit from tiling in
this way. Another approach is to replicate the linear layer in full. This requires only minimal new
machinery – we can replicate the linear layer and place the replicas inside Cond and Phi nodes as in
Figure 4(b). Different instances or messages from the same instance but with different position in
the sequence can be processed in an (pipeline-)parallel fashion by being sent to one of the replicas
chosen by a random or deterministic function of the message state. To enable parameters to be shared
among the replicas, we use infrequent end-of-epoch replica synchronization (averaging) that incurs
negligible communication cost. We also tried more elaborate message-passing protocols for group
synchronization, but found that infrequent global synchronization was sufficient for fast convergence.

6 EXPERIMENTS

We evaluate AMPNet using the dynamic models introduced in Section 2. For completeness, we
additionally consider a multi-layer perceptron (MLP) as an example of a static, batched network
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that AMPNet is not specifically designed to tackle. Brief details of the models and data sets in the
experiments are presented below, and further details are given in Appendix B.

Model Data set Difficulty Experiment purpose

MLP MNIST toy The standard deep learning bench-
mark (for which AMPNet is not
specifically designed)

RNN List reduction toy The simplest architecture with dy-
namic control flow (a for loop)

Tree-LSTM Stanford Sentiment Treebank real-world The TensorFlow Fold benchmark for
backpropagation through structure

GNN QM9 real-world Complex control flow with loops
over time and structure

Results Our asynchronous runtime is motivated by the promise of emerging hardware (e.g. FPGA
accelerators) that fulfill the premises in section 1 and are well suited to dynamic neural network
execution. Here we are primarily interested in how the performance of our runtime improves as we
increase the degree of asynchrony (by varying max active keys) while keeping other factors
fixed. The aim is to answer the question of whether AMP training is a promising direction for novel
distributed hardware that deviates from the CPU/GPU batching paradigm. To answer this question
using resources available today we run the AMPNet training using a multi-core CPU runtime where
each worker is a hardware thread (see Appendix A). Additionally we forecast the performance on
a hypothetical 1TFLOPS device satisfying our premises by replacing all computation nodes by
configurable sleep nodes. This allows us to estimate the performance on a new hardware keeping the
control flow decisions dynamic. See Appendix C.

It is also interesting to compare how the raw CPU performance of the AMP runtime compares with
existing frameworks (TensorFlow, TensorFlow Fold and DyNet) to see that our implementation is
already competitive with state of the art methods even on CPUs that do not conform to our target
hardware model. We provide additional analysis for each experiment below.

On MNIST, Table 1 shows 3x speedup from synchrony (max active keys = 1) to asynchrony
(max active keys = 4) in terms of throughput. This is almost ideal as the first three linear layers
are the heaviest operations. The number of epochs to reach the target validation accuracy increases
from 3 to 4 but the overall speedup in terms of the wall clock time is 2.2x. We have also compared
AMP training against pipeline parallel training (Fig. 1 (b)). Figure 5(a) shows that while AMP
training achieves 3x throughput gain already with max active keys = 4, pipeline parallelism can
only achieve 2x (in fact from Fig. 1 (b), 3m/(m+ 2) is the best case for max active keys = m)

Table 1: Time to convergence to target validation accuracy. The time to convergence can be broken
down into number of epochs and the throughput (instances/s). The target accuracy is shown inside
parentheses next to each dataset. mak is a short-hand for max active keys defined in Sec. 3;
mak = 1 corresponds to synchronous training for MNIST and minimal asynchrony arising from just
one in-flight instance for other models with recursive structures.

AMP TensorFlow
mak time (s) epochs inst/s time (s) epochs inst/s

MNIST (97%) 1 91.1 3 2076 34.5 3 5880
4 40.4 (2.2x) 4 6268

List reduction (97%) 1 78 10 13k 46 7 18k
4 66 (1.2x) 10.5 16k
16 60 (1.3x) 9.5 16k

(2 replicas) 4 38 (2x) 12 35k
(4 replicas) 8 21 (3.8x) 13 71k
Sentiment (82%) 1 185 2 102 208 5 265

8 82 (2.3x) 2 222
16 104 (1.8x) 3 258

QM9 (4.6) 4 N/A N/A 988 6696 66 1217
16 5227 76.5 1797
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Figure 5: Throughput-convergence trade-off as a function of mode of parallelism and asynchrony
hyper-parameters. Solid gray lines show constant convergence time trajectories; mak and mui stand
for max active keys and min update interval, respectively.

and higher throughput at max active keys = 8 is achieved at the cost of the sharp increase in
the number of epochs to convergence.

The list reduction dataset demonstrates the power of replicas. As there is only one heavy operation
(Linear-1, Figure 2), the speedup from asynchrony is mild (1.3x). However we get 2.5x and 3.5x
speedup for 2 and 4 replicas, respectively, which is nearly ideal. Again, the # of epochs to convergence
is not affected by increasing max active keys. The slowdown in convergence for 4 replicas is
due to the increased effective minibatch size – also commonly observed in data parallel training.

Next the sentiment tree-RNN dataset shows that our runtime is competitive without batching to
TensorFlow Fold (Looks et al., 2017) using dynamic batching of batch size 100. It is worth men-
tioning that our runtime allows us to specify different min update interval parameter for each
parameterized operation. We set this parameter to 1000 for the embedding layer, which is initialized
by Glove vectors, and 50 for all other layers. This reduced gradient staleness in the embedding layer.

The QM9 dataset demonstrates that increasing asynchrony helps on real-world tasks with complex
control flow, and our method outperforms an efficient TensorFlow implementation on CPUs.

Finally, we have implemented the BiLSTM w/ char model in Neubig et al. (2017b) on Wikiner
dataset Nothman et al. (2013). Our preliminary implementation without any batching achieves 130
sentences/s at max active keys = 32 without any noticeable loss in accuracy (around 94 % after
one epoch). This is competitive with DyNet’s performance on the same machine (23 sentences/s
without and 220 with autobatching, respectively); See Sec. B.5 for details.

Asynchrony Finally we provide additional analysis on the effect of asynchrony. The degree of
asynchrony is controlled by hyperparameters min update interval and
max active keys. In Fig. 5(b) we use an 8-replica RNN model on the list reduction dataset to
investigate how these parameters affect the data and time required to converge to 96% validation accu-
racy. We find, in analogy with minibatch size in traditional systems, that min update interval
must neither be too large nor too small. Increasing max active keys (increasing asynchrony)
monotonically increases performance when the number of keys is similar to the number of indi-
vidually affinitized heavy operations in the model 8 in this case). Increasing max active keys
significantly beyond this point produces diminishing returns.

7 RELATED WORK

One approach to the task of training networks with instance dependent control flow is to define
the computation graph dynamically per-instance. This approach is taken in Chainer (Tokui et al.,
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2015), DyNet (Neubig et al., 2017a), and PyTorch (PyTorch core team). There are key challenges in
accelerating this approach: Model parallelism would require the dynamically generated computation
graph to be scheduled on-the-fly, and BLAS level parallelism would require operations to be batched
on-the-fly. Automatic dynamic batching has been implemented in DyNet (Neubig et al., 2017a), and
is an interesting alternative to our asynchronous execution. Similar methods are used in TensorFlow
Fold (Looks et al., 2017). The basic idea is to inspect and merge together (by depth) the unrolled
computation graphs of several instances to create batched BLAS operations. The effectiveness of
automatic batching greatly depends on the model – for example, it would not perform well on random
permutations of a sequence of operations. By contrast, our IR would very succinctly express and
achieve pipeline parallelism using a static computation graph that is easy to distribute and optimize.

Theano (Al-Rfou et al., 2016) and TensorFlow (TF)(Abadi et al., 2016) can syntactically handle
instance dependent control flow with abstractions for conditional execution (ifelse in Theano
and cond in TF) and loops (scan and while loop, respectively); TF also provides higher-order
functions, such as map, foldl, foldr, and scan. The main difference between AMPNet and the
above frameworks is that AMPNet is streaming and asynchronous whereas Theano is non-streaming
and synchronous. Although not designed for streaming, TF can support streaming programmatically
as it exposes first-class queues, as well as data prefetching with so called input pipelines. In our IR,
all the queuing is implicit and stream-based execution is the default. TF additionally does support
static description of dynamic control flow and state update, but we depart from the classic dataflow
architecture that TF follows (Arvind and Culler, 1986): First, instead of having nodes that represent
mutable reference cells, we encapsulate the state with which a message should be processed through
the graph in the message itself. Second, because we encapsulate algorithmic state in the messages,
we do not introduce the notion of control dependencies (which can be used to impose a specific
execution order on TF operations). Our choices complicate algorithmic state management from a
programming point of view and make the task of designing a high-level compiler non-trivial, but
allow every node to run asynchronously and independently without a scheduler and without the need
for control messages: For example, nodes that dynamically take a control flow path or split the data
simply consult the state of the incoming message, instead of having to accept additional control inputs.
For “small” states (e.g. nested loop counters or edge and node ids) this might be preferable than
out-of-band signaling. Our IR can implement loops by simply using state-update, conditional, and
phi nodes, because the state accompanies the payload throughout its lifetime, whereas TF introduces
specialized operators from timely dataflow (Murray et al., 2016) to achieve the same effect.

Asynchronous data parallel training (Recht et al., 2011; Dean et al., 2012; Chilimbi et al., 2014) is
another popular approach to scale out optimization by removing synchronization (orthogonal to and
combinable with model-parallel training). For example, convolutional layers are more amenable to
data-parallel training than fully connected layers, because the weights are smaller than the activations.
Moreover, when control flow differs per data instance, data parallelism is one way to get an effective
minibatch size > 1, which may improve convergence by reducing variance. The impact of staleness
on convergence (Recht et al., 2011) and optimization dynamics (Mitliagkas et al., 2016) have been
studied for data parallelism. It would be interesting to extend those results to our setting.

Jaderberg et al. (2016), like us, aim to to train different parts of a model in a decoupled or asynchronous
manner. More precisely, their goal is to approximate a gradient with a synthetic gradient computed
by a small neural network that is locally attached to each layer. Hence, the local gradient calculation
becomes independent of other layers (except for the training of the gradient predictor network) and
allows asynchronous parameter updates. This would be especially useful if the evaluation of the local
network is cheaper than the computation of the real gradient; for example, if the computation of the
real gradient required significant communication of forward/backward messages between devices.

8 CONCLUSION AND OUTLOOK

We have presented an asynchronous model-parallel SGD algorithm for distributed neural network
training. We have described an IR and multi-core CPU runtime for models with irregular and/or
instance-dependent control flow. Looking forward, we aim to deploy our system on specialized
hardware. Equally importantly, we plan to build a compiler that automatically deduces the information
to be placed in the states and generates state keying functions from a higher-level description of the
models. By unlocking scalable distributed training of dynamic models, we hope to enable exploration
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of this class of models that are currently only on the horizon but may become more mainstream in the
future.
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A AMPNET RUNTIME IMPLEMENTATION

We have implemented an AMPNet runtime for multi-core CPUs. Our runtime spawns multiple
workers each associated with a hardware thread and hosting one or more IR nodes – in a more general
setting each worker corresponds to a compute device. To remain faithful to a distributed environment
communication is only through message passing. Each worker is equipped with a multiple-producer
single-consumer queue that can accept messages for any IR node hosted on that worker.

The main worker loop periodically offloads messages from the concurrent queue to a worker-local
priority queue that assigns higher priority to backward messages. Backward prioritization is designed
for situations when multiple IR nodes with a dependency on the IR graph end up hosted on the same
worker. As a consequence, backpropagation can complete faster and new instances can be pumped
in by the controller. We dequeue the top message and invoke the forward or backward method of
the target IR node. These methods may update internal IR node state (such as cache the state of the
incoming message and wait for more messages) or post new forward or backward messages.

How to update the parameters using the gradients is a configuration option that selects amongst a
range of optimization algorithms. We have implemented runtime configuration options for selecting
several well-known schemes such as (momentum-)SGD and Adam Kingma and Ba (2014), and for
controlling the training hyper-parameters.

B DETAILS OF THE EXPERIMENTAL RESULTS

We provide more details of the experiment and analysis in this section. All experiments were carried
out on machines with 16 cores and 112 GB of RAM. The validation curves were averaged over at
least 20 independent runs. The time/epoch to reach a target accuracy was calculated as median of the
time an algorithm takes to reach the target accuracy over the repetitions. We found this approach to
be more reliable than reporting the time/epoch when the averaged accuracy reaches the target. Table
2 shows both the training and validation throughputs we obtained with AMPNet and our TensorFlow
baselines.

B.1 MNIST

We train a 4-layer perceptron with ReLUs and 784-dimensional hidden units on MNIST (LeCun and
Cortes, 1998). Both the AMP runtime and a TensorFlow baseline use SGD with learning rate 0.1 and
batch size of 100.

Figure 6(a) shows the validation accuracy vs. time, validation accuracy vs. epochs, and throughputs
of synchronous and asynchronous versions of AMPNet as well as TensorFlow. The throughput greatly
increases from synchronous (max active keys = 1) to asynchronous (max active keys = 4)
while the speed of convergence (middle panel) is hardly affected for mild amount of asynchrony.
Taking higher max active keys = 8 increase throughput only very little (because there is no
more work) and seems to rather make the convergence more unstable. This is due to the fact that our
current scheduler is greedy and pumps in a forward message whenever the first layer is unoccupied,
which leads to large gradient staleness. Clearly a better scheduling will remove this sensitivity.

B.2 LIST REDUCTION DATASET

We train a vanilla RNN to perform reduction operations on variable length lists of digits. Each
training instance is a sequence of at most 10 tokens: The first token indicates which of 4 reduction
operations 2 is to be performed, and the remaining tokens represent the list of digits. The output is the
result of the calculation rounded modulo 10. The dataset consists of 105 training and 104 validation
instances.

We present this task as a classification problem to a vanilla RNN with ReLU activation and a hidden
dimension of 128. All parameterized operations are affinitized on individual workers. We bucket
training instances into batches of 100 sequences (in the baseline and in AMPNet).

2The operations considered in our toy dataset act on a list L and are expressed in python syntax as: mean(L),
mean(L[0::2])-mean(L[1::2]), max(L)-min(L) and len(L).
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(a) MNIST dataset

(b) List reduction dataset

(c) Sentiment Tree Bank (min update interval = 50)

Figure 6(b) shows the validation accuracy vs. time and the number of epochs, and throughputs
of the methods we discussed in the main text on the list reduction dataset. We first notice that
increasing the asynchrony from synchronous (max active keys=1) to max active keys = 4
and max active keys = 16 affects the convergence very little at least in average. However, there
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(d) Sentiment Tree Bank (max active keys = 16)

(e) QM9 dataset

is also very little speedup without introducing replicas as we discussed in the main text. Increasing the
number of replicas increases the throughput almost linearly from 13k sequences/s (synchronous) to
35k sequences/s (2 replicas) and over 70k sequences/s (4 replicas). Convergence is almost unaffected
for 2 replicas. This was rather surprising because the parameters of the replicas are only synchronized
after each epoch as we described in Sec. 5. A slight slow-down in convergence can be noticed for
4 replicas. Since even max active keys = 16 has almost no effect on the convergence without
replicas, this is not due to asynchrony. We also tried to synchronize more frequently but this did
not help. Thus we believe that the slow-down is due to the increase in the effective minibatch size
resulting in reduced number of updates per epoch, which is commonly observed in data parallel
training.
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(f) Wikiner dataset

Figure 6: Convergence plots.

Table 2: Training and validation throughputs.

number of instances AMP TensorFlow
train valid mak train inst/s valid inst/s train inst/s valid inst/s

MNIST (97%) 60k 10k 1 2076 6094 5880 8037
4 6268 18973

List reduction (97%) 100k 10k 1 13k 39k 18k 43k
4 16k 55k
16 16k 56k

(2 replicas) 4 35k 100k
(4 replicas) 8 71k 178k
Sentiment (82%) 8511 1101 1 102 280 265 1583

4 188 692
16 258 822

QM9 (4.6) 117k 13k 1 302 710 1217 3218
4 1007 2585
16 1797 4845

Wikiner (94 %) 142k 1.7k 1 41 101 – –
4 86 284
32 130 426

B.3 SENTIMENT TREE BANK DATASET

We consider the sentiment classification dataset from Socher et al. (2013) consisting of binarized
constituency parse trees of English sentences with sentiment labels at each node. Following Tai et al.
Tai et al. (2015), we use 8,544 trees for training, 1,101 trees for validation, and 2,210 trees for testing.

We use a Tree LSTM for this classification task based on the TensorFlow Fold Looks et al. (2017)
benchmark model. Both the AMP and Fold models are trained following Tai et al. (2015) with
the additional architectural modifications proposed by Looks et al. (2017); Semeniuta et al. (2016).
Furthermore, we split our Tree-LSTM cell into Leaf LSTM and Branch LSTM cells. This does not
affect the expressiveness of the model because the LSTM cell receives either zero input (on branch) or
zero hidden states (on leaves); i.e., the two cells do not share weights except for the bias parameters,
which are learned independently in our implementation. We compare the time to reach 82 % fine
grained (5 classes) accuracy (averaged over all the nodes) on the validation set.

Figure 6(c) shows the averaged fine grained validation accuracy for the tree RNN model with
different max active keyson the Stanford Sentiment Tree Bank dataset. Interestingly although
TensorFlow Fold achieves higher throughput, AMPNet converges faster (in terms of the number of
epochs). This speedup is mainly due to the fact that we are not batching and updating whenever we
have accumulated 50 gradients (except for the lookup table node that updates every 1000 gradients);
50 gradients correspond to roughly 2 trees. The reason for the lower throughput compared to
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TensorFlow Fold is that we are only grouping the leaf operations and not the branch operations.
Grouping the branch operations is possible by extending our IR nodes and we are actively working
on it.

Figure 6(d) shows the same information for fixed max active keys = 16 and different
min update interval. We can see that as we increase min update interval from the
originally used 50 to larger values, the peak of the validation accuracy shifts later and lower becom-
ing closer to the curve obtained by TensorFlow Fold. This is consistent with the parallels between
min update interval and minibatch size we drew in Section 6. The min update interval
parameter has marginal influence on the training throughput.

B.4 QM9 DATASET

We study a real-world application for GNNs: prediction of organic molecule properties from structural
formulae in the QM9 dataset Ruddigkeit et al. (2012); Ramakrishnan et al. (2014). GNNs have
previously been applied to this task in Gilmer et al. (2017).

We concentrate on prediction of the norm of a molecule’s dipole moment using a regression layer
build on the propagation model from Li et al. (2015) (corresponding to the simplest setting in Gilmer
et al. (2017)). We use a hidden dimension of 100 and 4 propagation steps, initializing the graph nodes
(atoms) following Gilmer et al. (2017). The molecules contain up to 29 atoms and in a TensorFlow
baseline we bucket molecules into batches of 20 with atom counts differing by at most 1 within
a batch. Following Gilmer et al. (2017), we report regression accuracies in multiples of a target
accuracy from the chemistry community.

Figure 6(e) shows that GGNN can tolerate relatively large max active keys = 16, and increased
the throughput significantly from 300 graphs/s (synchronous) to 1797 graphs/s (see Table 2).

B.5 WIKINER DATASET

We compare the performance of AMP training with DyNet with and without autobatching using
the BiLSTM tagger w/ char model from the DyNet benchmark suite3. This model consists of both
character-level and word-level bidirectional LSTMs. The model uses a learnable word embedding
for frequent words (more than 5 times in the corpus) and character-level bidirectional LSTMs for
infrequent words. We use our Distribute and Collect nodes to dynamically route the messages
depending on the word frequencies.

Wikiner dataset4 is a named entity recognition dataset extracted from Wikipedia by Nothman et al.
(2013). We use the training/validation split provided by the DyNet benchmark suite with 142,153 and
1,696 sentences, respectively.

The result is shown in Fig. 6(f). We achieve more than 3x in throughput from max active keys =
1 to max active keys = 32 without any noticeable loss in the validation accuracy after 2 or 3
epochs. The slight decrease in the validation accuracy after the third epoch is due to overfitting and it
is not related to asynchrony.

C THROUGHPUT ESTIMATION FOR A HYPOTHETICAL 1 TFLOPS DEVICE

In order to estimate the performance of AMPNet on a hypothetical device with 1 TFLOPS compute
capability, we replaced all fully connected layers in the network with a dummy operation that simply
waits for a specified time. The dummy operation waits for 2 · k · din · dout · 10−12 seconds when the
input is k×din and the weight matrix is din×dout for forward, backward, and gradient accumulation
operation. It waits for din · dout · 10−12 seconds for weight update. In this way we can maintain all
the data-dependent control decisions (e.g., sequence length) identical to the original network and also
measure the real time spent for all the other operations. In order to calculate the time to reach target
accuracy, we take the median number of epochs the original network required to reach the target

3https://github.com/neulab/dynet-benchmark/
4http://schwa.org/projects/resources/wiki/Wikiner
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accuracy and calculate the time as

time = epochs ·
(

ntrain

throughputtrain

+
nval

throughputval

)
,

where ntrain and nval are the number of training and validation instances, respectively, and
throughputtrain and throughputval are the throughput for training and validation, respec-
tively.

The results are shown in Table 3. For the 4-way replicated RNN, we estimate roughly 260k instances/s,
which is a 3.7x speedup compared to our CPU runtime. For tree RNN and GGSNN, we estimate
milder 30 –70 % speedups mainly due to the fact that they have more complicated operations like
Distribute and Collect, which we did not attempt to extrapolate the computation time because
the implementation on a new hardware may be drastically different from the current CPU runtime.

Table 3: Estimated time to convergence to target validation accuracy and training throughput with
a hypothetical 1 TFLOPS device. mak is a short-hand for max active keys defined in Sec. 3;
mak = 1 corresponds to synchronous training for MNIST and minimal asynchrony arising from just
one in-flight instance for other models with recursive structures.

AMP 1 TFLOPS (estimated)
target accuracy mak time (s) epochs inst/s time (s) inst/s

List reduction 97% 1 78 10 13k
(4 replicas) 8 21 13 71k 5.15 268k
Sentiment 82% 1 185 2 102

16 104 3 258 60.6 440
QM9 4.6 16 5227 76.5 1797 3827 2455
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