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Abstract

A data-efficient Deep Learning method is presented to explore outcome prediction
in Ischemic Stroke using full-sized 2D CT images. We show promising results on
3 different prediction tasks with equal or higher performance than conventional
CNNs while reducing model-parameters and overfitting on limited data sets.

1 Introduction

Stroke has remained the second leading cause of death in the last 15 years accounting for 6.24
million deaths yearly [1]]. Ischemic Stroke accounts for 87% of this number. Caused by a blood clot
(thrombus) that blocks an intracranial vessel, it hinders the necessary blood supply to a part of the
brain. Deprived of oxygen, the brain loses as many neurons in 1 hour as it would in 3.6 years of
normal aging [7]], thus early recognition and treatment allocation is crucial.

Ischemic stroke diagnosis and decision making leverages multiple clinical variables and radiological
characteristics primarily. These are determined on two image modalities: Non-Contrast Computed
Tomography (NCCT) and Computed Tomography Angiography (CTA). In favor of standardized
prognosis, CT scans are quantified by various stroke scores, relying on specific, visually observable
phenomena. To date, these complex tasks are performed by physicians and are negatively influenced
by subjectivity, fatigue and inter-rater variability.

Deep learning, in particular Convolutional Neural Networks (CNNs), has the potential to be a key
enabler of efficient and automated stroke imaging. Therefore, we propose an advanced, highly
parameter-efficient CNN-based model for outcome prediction. We evaluate it against conventional
CNN-based model as a baseline and find promising performance. Our models cope typically better
with small medical data sets while retaining equal or higher performance than our baseline.

Related work utilizing Deep Learning in stroke imaging has so far solely focused on predicting
the presence of specific phenomena in small patches of images, without the direct association to
outcome [6]]. To the best of our knowledge, this is the first work employing CNNs for whole image
classification in the domain of stroke, and the first Deep Learning approach, which studies predictors
of outcome of Intra-Arterial Treatment using raw CT images as input.

2 Methods

2.1 DenseNet architecture

The proposed model is based on a DenseNet architecture [3], in which every layer receives the
feature-maps of all preceding layers and transmits its own output to all subsequent ones. We used
a 21 layer deep architecture comprised of 4 dense blocks with bottleneck layers, a growth rate of
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8 and 0.5 reduction in transition layers. 11x11 convolution was employed in the initial and 5x5
convolution in composite layers.

In ischemic stroke, the occlusion of a vessel affects the blood supply only on one hemisphere. To
exploit this prior knowledge and the center-alignment of images, we adapt the last average pooling
layer to generate one set of feature maps per hemispheres.
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Figure 1: MSO-RFNN layer up to 2nd order of derivative. ¢ denote the fixed filters, « the trainable
weights and F the effective filters.

2.2 Multi-Scale and -Orientation Structured Receptive Field Neural Networks

Structured Receptive Neural Networks (RFNNs) are a special type of CNN, where the effective
convolutional filters are replaced by the linear combination of a fixed basis set of Gaussian derivative
filters, shown in Figure [I, Only the combination weights are learned thus reducing the model
parameters of the DenseNet architecture. This technique introduces prior knowledge about spatial
properties of local features into the model, which has been shown to lead to superior results over
conventional CNNs on small data sets.

Additionally to using the multi-scale extension in [4], we introduce multiple orientations of the filters
by making use of the steerability of Gaussian derivatives. We call the proposed model Multi-Scale
and -Orientation Structured Receptive Neural Network (MSO-RFNN), and refer to the degree of
sampling orientations by e.g. MSO-RFNN-45. To steer each effective filter we construct each basis
filter from a minimal set of x-y separable Gaussians of the given order following the guidelines of [2]].
The effective filters used in the proposed convolutional layer emerge as a multi-scale and -orientation
filter bank, illustrated in Figurem Note, that the o weights are shared across scales and orientations.

Moreover, we propose an aggregation method to handle the increased number of filters in a convolu-
tional layer described above. To this end, we feed the output of the convolutions into an additional
1x1 convolution. This enables that an effective selection or combination of scales and orientations is
learned in each layer and MSO-RFNN layers can replace CNN layers in any CNN architecture.

3 Experiments

3.1 Data

We used CTA images of stroke patients registered in [S] between March 2014 and June 2016. We
studied the patients only who received Intra-Arterial Treatment (IAT). 3 data sets were constructed
according to 3 different output labels to predict: 1) functional outcome at 90 days defined by
the modified Rankin Scale (mRS) 2) radiological outcome directly post-procedure defined by the
modified Thrombolysis in Cerebral Infarction (mTICI) score and 3) collateral circulation assessed by
the Collateral Score (CS) all defined by [S]]. The sizes of the data sets were 772, 800 and 970 in the
same order.
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MS0- MS0- MSO- MSO0- MS0- M50-

CNN RFNN RFMNMN-45  RFNN-30 ChN RFNN RFMNMN-45 RFNN-30 ChN RFNN RFNN-45  RFMNN-30

AUC 0.76 0.71 0.74 0.77 0.68 0.61 0.70 0.70 0.69 0.60 0.69 0.68
+ std 0.04 0.04 0.04 0.04 0.05 0.03 0.04 0.05 0.08 0.02 0.03 0.05
# of par. 59.90K 27.40K 21.20K 24,30K 59.90K 27.40K 21.20K 24.30K 59.90K 27.40K 21.20K 24.30K
Train ACC 90.3% 66.7% 69.6% 71.1% 88.5% 50.6% 62.6% 66.0% 93.6% 61.5% 67.0% 65.3%

Figure 2: Results of predicting CS, mTICI and mRS; mean test Area Under Curve (AUC), its standard
deviation (£std), number of parameters to train (# of par.), mean final training accuracy (Train ACC).

3.2 Pre-processing

The skull of the patients was removed, images were resampled to isotropic pixelspacing of
Immx Immx Imm and aligned to centered location and orientation. We cropped/zero-padded
resulting images to have uniform dimensions and computed 2D Maximum Intensity Projections
(MIPs) of size 433x433. Pixel values were thresholded between +50 and +300 Hounsfield Units and
were normalized to zero mean and unit variance with training set statistics.

3.3 Results

Figure 2] shows results of 4-fold cross-validation with 10% of the training set held out for validation
on the 3 mentioned benchmarks. MSO-RFNNs obtain equal or superior performance over all other
models in terms of AUC score on test set and higher generalization according to the lower std of AUC
than conventional CNNs. We also note the significant difference in the number of model parameters
and training accuracy at the final epoch of training.

4 Conclusion

In this paper we presented MSO-RFNNSs, a data-efficient deep learning approach for whole-image
classification on limited data sets. Promising results were achieved in predicting the mRS, mTICI
and Collateral Score that all have important prognostic value for stroke decision support. We found
that MSO-RFNNSs provide a structured, more transparent model than conventional CNNs, while
retaining their effective performance. Our preliminary results suggest for further exploration of
possible improvements.
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