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ABSTRACT

Machine learning techniques have enabled researchers to leverage neuroimaging
data to decode speech from brain activity, with some amazing recent successes
achieved by applications built using invasive devices. However, research requiring
surgical implants has a number of practical limitations. Non-invasive neuroimag-
ing techniques provide an alternative but come with their own set of challenges,
the limited scale of individual studies being among them. Without the ability to
pool the recordings from different non-invasive studies, data on the order of mag-
nitude needed to leverage deep learning techniques to their full potential remains
out of reach. In this work, we focus on non-invasive data collected using magne-
toencephalography (MEG). We leverage two different, leading speech decoding
models to investigate how an adversarial domain adaptation framework augments
their ability to generalize across datasets. We successfully improve the perfor-
mance of both models when training across multiple datasets. To the best of our
knowledge, this study is the first ever application of feature-level, deep learning
based harmonization for MEG neuroimaging data. Our analysis additionally of-
fers further evidence of the impact of demographic features on neuroimaging data,
demonstrating that participant age strongly affects how machine learning models
solve speech decoding tasks using MEG data. Lastly, in the course of this study we
produce a new open-source implementation of one of these models to the benefit
of the broader scientific community.

1 INTRODUCTION

Applications leveraging recent advancements to decode representations of speech in the brain stand
to positively impact the lives of individuals across the world who suffer from impaired verbal com-
munication. While surgically invasive modalities provide the most direct access to the brain, they
are practically and ethically prohibitive to conduct at scale. Thus, researchers have increasingly
turned towards non-invasive approaches instead. However, non-invasive modalities also come with
a unique set of challenges, including a difficult signal-to-noise ratio.

We choose to focus on magnetoencephalography (MEG) as our neuroimaging modality of interest
and speech decoding as the principle class of the objectives for the models we train. Specifically,
we look at heard speech (listening to someone else speak) decoding as this field is still in its infancy
and it is easier to decode than imagined speech (thinking intently of what one is saying without
vocalizing it) (Martin et al., 2014). This choice is supported by evidence, albeit contested (Vicente
& Langland-Hassan, 2018), of functional overlap between the neural representations of heard and
imagined speech (Wandelt et al., 2024). We select MEG because it sits at the intersection between
many of the advantages of other non-invasive techniques. While functional magnetic resonance
imaging (fMRI) has a stronger spatial resolution than MEG, it is limited in its temporal resolution.
Both MEG and electroencephalography (EEG), on the other hand, can record activity on the milisec-
ond timescale at which the brain operates (Hall et al., 2014). Yet in comparison to EEG, MEG has
superior spatial resolution, a higher signal-to-noise ratio and a far greater number of scalp-based
sensors on average (Hall et al., 2014). In addition, there is evidence to suggest that the use of MEG
over EEG is directly correlated with increased performance for speech decoding (Défossez et al.,
2023).
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Overall, the decoding performance of applications using non-invasive modalities continues to lag
behind invasive ones - with one reason being the limited scale of the data in most non-invasive stud-
ies. Despite efforts to acquire increasingly large datasets and curate open neural data repositories,
the field has not been able to recreate the the successes that deep learning and “big data” have seen
elsewhere. This is due, in large part, to the fact that non-invasive neuroimaging data is inherently
difficult to generalize from. For one, different studies employ a myriad of scanners and task de-
signs (Jayalath et al., 2024). Pooling data across scanners and sites then leads to an increase in
non-biological variance caused by the differences in the devices and acquisition, including scanner
manufacturer (Han et al., 2006)(Takao et al., 2014), upgrade (Han et al., 2006), drift (Takao et al.,
2011), strength (Han et al., 2006), and gradient nonlinearities (Jovicich et al., 2006). Additionally,
within any given study, participants exhibit anatomical and demographic differences that affect the
signals recorded from their brains (Jayalath et al., 2024). Providing a reliable means of overcoming
this hurdle is an active area of research for both the neuroscience and computer science commu-
nities. While data harmonization is generally the preferred term among neuroimaging researchers,
among computer scientists this problem is most commonly characterized as dataset bias or domain
shift (Gretton et al., 2008). In the literature, these two terms are used interchangeably to refer to the
same phenomenon. In this study, we present the first application of feature-level harmonization to
address domain shift for MEG neuroimaging data. We demonstrate the relevance of this framework
for speech decoding by improving the ability of two different networks to generalize across datasets
during training to increase performance.

2 RELATED WORK

Domain adaptation (DA) is one approach for solving the domain shift problem which comes from
the family of Transfer Learning methods. The bulk of the literature focuses on unsupervised domain
adaptation (UDA) as it is a more challenging task that can be trivially adapted for the supervised case.
In general, techniques for solving UDA can be categorized as either statistic moment matching (e.g.
Long et al. (2018)), domain style transfer (e.g. Sankaranarayanan et al. (2018)), self-training (e.g.
Zou et al. (2020); Liu et al. (2021)), or feature-level adversarial learning (e.g. Ganin et al. (2016);
He et al. (2020a;b); Liu et al. (2018)) (Liu et al., 2022). Domain shift is often measured by the
dissimilarity of the distributions of each domain. A number of metrics have been proposed to this end
(Ben-David et al., 2006; 2010; Mansour et al., 2009; 2012; Germain et al., 2013), but the notion most
relevant to present study is that of H-divergence. Based on the work of Kifer et al. (2004), it was later
used in the formalization of Ben-David et al. (2006; 2010)’s theory on domain adaptation. This same
theoretical framework led to the Domain-Adversarial Neural Networks (DANN) architecture, one of
the first successful deep approaches for DA (Ganin et al., 2016). Inspired by generative adversarial
networks (GANs), Tzeng et al. (2017) extended the idea behind DANNs with their Adversarial
Discriminative Domain Adaptation (ADDA) architecture. An extension of this line of work to N
source dimensions was subsequently demonstrated by (Zhao et al., 2019).

Given the importance of removing dataset bias (particularly scanner-induced variance) for neu-
roimaging studies, it is no surprise that a large number of studies have tasked themselves with
resolving domain shift in this area. Much of the existing work is based on an empirical Bayes
method called ComBat (Johnson et al., 2006). However, ComBat is primarily applied to image-
derived values and associations (which MEG is not). The literature in this area has thus focused
largely on structural, functional, and diffusion MRI. In fact, DA has been explored more for dif-
fusion MRI than any other modality - the drawback being many of the methods produced rely on
spherical harmonics, limiting the ability to apply them to other neuroimaging techniques (Dinsdale
et al., 2021). A few deep approaches have been tried, such as leveraging variational autoencoders
(VAEs) (Moyer et al., 2020) and generative models based on the U-Net (Ronneberger et al., 2015)
or cycleGAN (e.g. Dewey et al. (2019); Zhao et al. (2019)) architectures. However, these methods
are sometimes limited by inherent difficulties validating the harmonized outputs that are generated
(Dinsdale et al., 2021). Very few studies to date have leveraged Ben-David et al.’s theoretical UDA
framework in the context of neuroimaging data and, to our knowledge, none with MEG data.

An exception to this is the work by Dinsdale et al. (2021). Building on the body of work around
H-divergence, they show that an ADDA-style framework (Tzeng et al., 2017) can be successfully
adapted to improve cross-dataset generalization for MRI data. We will refer to this ADDA-style
approach as adversarial harmonization throughout the remainder of this work. Specific to MEG
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data, Jayalath et al. (2024) introduce an alternative approach that also manages to find success lever-
aging data from multiple studies. They propose a pre-training scheme that demonstrates cross-task
and cross-dataset generalization wherein the combinations of data used across pre-training and fine-
tuning encompass different datasets, each employing distinct scanner types and task designs (Jay-
alath et al., 2024). However, this cross-dataset generalizability remains limited in its efficiency for
leveraging aggregated MEG data at the scale required for deep learning. We thus select the architec-
ture proposed by Jayalath et al. (2024) as one of the two base models we investigate for improving
MEG cross-dataset generalization. The second architecture we examine was proposed by Défossez
et al. (2023) and reports strong results training over individuals pooled from a single study. Despite
showing their model’s performance scales with the number of individuals used during training, they
do not report a further attempt to train their architecture over multiple datasets. For the sake of
convenience, we often refer to these two models by the name of their original code repositories:
Brainmagick, for Défossez et al. (2023), and MEGalodon, for Jayalath et al. (2024).

3 METHODS

3.1 DATASETS AND PREPROCESSING

This work focuses on four MEG datasets across the two architectures it extends. The Cambridge
Centre for Ageing and Neuroscience (Cam-CAN) data repository (Shafto et al., 2014; Taylor et al.,
2017) contains 641 subjects covering 160 hours of MEG recordings in total. Armeni et al. (2022)
contains 30 total hours of recordings (three subjects each listening to 10 hours of speech) and
(Gwilliams et al., 2022)’s Manually Annotated Sub-Corpus (MEG-MASC) dataset contains 54 hours
(27 subjects each recorded for 2 hours). Lastly, Schoffelen et al. (2019)’s Mother Of Unification
Studies (MOUS) consists of 204 subjects recorded for a calculated total of 160 hours. Differences
in the devices used during acquisition can carry such a strong signal in the final data that the terms
dataset bias and scanner bias are sometimes used interchangeably. However, because the MEG
scanner types used are not mutually exclusive among the studies we examine, we make a particular
choice to focus on the term dataset bias in a way that is inclusive of, but broader than, acquisi-
tion device and configuration. We refer to these datasets by the names of their primary authors
(i.e. Gwilliams) or their monickers (i.e. MEG-MASC) throughout the rest of this work. Table 1
summarizing the above information is included for the reader’s convenience.

Primary Author Monicker Scanner Brand MEG Hours

Armeni et al. (2022) - CTF 30
Gwilliams et al. (2022) MEG-MASC KIT 54
Shafto et al. (2014), Taylor et al. (2017) Cam-CAN Elekta Neuromag 160
Schoffelen et al. (2019) MOUS CTF 160

Table 1: A reference table of the relevant dataset information. Total data volume of each dataset is
reported in hours.

Noting the impact of different demographic distributions between neuroimaging datasets on harmo-
nization found by Dinsdale et al. (2021), we examine the normalized distributions of both participant
age (see Figure 1) and participant sex (see Figure 5 in the Appendix) for each pair of datasets used
during training. The Brainmagick experiments leverage the Gwilliams and MOUS datasets, while
the MEGalodon experiments use the MOUS and Cam-CAN datasets. We construct a set of subsets
both to ease constraints on computational resources as well as examine demographic effects. The
Gwilliams and MOUS datasets have relatively equivalent age and sex distributions and therefore no
specific measures need to be taken to normalize these features when constructing subsets. While
there is also no significant disparity related to the ratios of participant sex between the MOUS and
Cam-CAN datasets, we do find a large difference when examining the distributions of participant
age. To this end, we construct two different pairs of subsets for these datasets. The first selects indi-
viduals at random only from the area of overlap between the two age distributions. We refer to these
as balanced subsets. The second set of subsets, which we call random subsets, selects individuals
randomly from each dataset such that they approximate the distribution of participant age from the
original studies. An even split of males and females overall is controlled for in both cases. In all
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cases, approximately 15 percent of subjects from each dataset are used in total to ensure the ratio of
total subjects and MEG recording hours between any two datasets is maintained. The demographic
visualizations relating to each class of subset can be found in Section A.3 of the Appendix.

Figure 1: The normalized distributions of the ages of the subjects from the MOUS Schoffelen et al.
(2019), Cam-CAN Shafto et al. (2014); Taylor et al. (2017), and Gwilliams et al. Gwilliams et al.
(2022) datasets. The density plotted along the y-axis represents the proportion (i.e. relative fre-
quency) of each category within its respective dataset. The mean age calculated over the three
datasets is displayed by the dotted line.

We focus on harmonizing the deep representations of speech in the brain at the feature level, and as
a result apply only whatever minimal preprocessing of MEG data the original papers when imple-
menting our chosen architectures. The full scope of the preprocessing steps carried out are detailed
in Section A.2 of the Appendix.

3.2 DECODING TASKS

For the experiments building off of Défossez et al. (2023)’s Brainmagick model, the decoding task
is to predict directly the most probable segment of speech stimulus from the corresponding period of
MEG data. For the experiments using Jayalath et al. (2024)’s MEGalodon model, the pre-text objec-
tives are a set of domain-specific classification tasks proposed in the original paper: band prediction,
phase shift prediction, and amplitude scale prediction. The speech decoding tasks selected for the
fine-tuning phase are speech detection and voicing classification. The goal for speech detection is
to determine whether speech has occurred in the section of continuous auditory stimulus given the
corresponding segment of MEG data. This should not be confused with the more trivial task of
detecting the onset of speech from rest. In voicing classification, phonemes must be classified as
voiced or voiceless from the aligned MEG data.

3.3 ADVERSARIAL HARMONIZATION

An architecture augmented with adversarial harmonization is generally composed of a feature ex-
tractor (which we will refer to as the encoder block), a label predictor (which we will refer to as the
task head), and a domain classifier. All parts of the network are first trained together to convergence
in a ‘warm up’ phase to ensure both that the encoder block is able to produce salient features and
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that the domain classifier is able to distinguish between them accurately. In the harmonization or
‘unlearning’ phase, the network is then trained via an iterative training procedure composed of three
steps: (1) optimizing the encoder and task head for the primary task, (2) optimizing the domain clas-
sifier to identify the remaining dataset bias, and (3) optimizing the encoder to remove the dataset bias
by confusing the domain classifier (Dinsdale et al., 2021). Each of these steps optimizes a unique
loss function and as (2) and (3) are adversarial in nature, they cannot be updated concurrently. Thus,
the result is three iterations for each training batch.

Each of the passes during the adversarial phase of the harmonization framework requires its own
optimizer, including the initial warm-up phase, for a total of four optimizers used. We keep the
original choice of AdamW (Loshchilov & Hutter, 2019) for control epochs (with all parameters
updated by a single optimizer) and at first followed the lead of Dinsdale et al. (2021) in using Adam
(Kingma & Ba, 2017) for the remaining optimizers. However, hyperparameter testing revealed that
the use of a stochastic gradient descent (SGD) optimizer for the adversarial domain classifier led
to smoother training during harmonization for both the domain classifier and encoder. The idea to
examine different optimizers was informed by the work of Rangwani et al. (2022) who formalize the
idea of smoother convergence through the use of SGD when training the adversarial head. This work
further confirms their theory over a new domain. A comparison of the performance during training is
shown in Section A.8 of the Appendix. For the work involving the MEGalodon framework we retain
the learning rate of 0.000066 from the original study for the warm-up phase and follow Dinsdale
et al. (2021) in using a learning rate of 0.00001 during harmonization. Alternative choices for the
second learning rate are explored, but no real effect is found. Similarly, for the work related to
the Brainmagick base model we retain the original paper’s learning rate of 0.0003 for the warm-up
phase and before reducing it to 0.00001 for all optimizers during the adversarial stage.

3.4 BRAINMAGICK EXPERIMENTS

For the experiments using Défossez et al. (2023)’s architecture as a base, we begin by training the
proposed CLIP model first using the original code released alongside the paper and then again with
our own implementation of the base model. Leveraging the existing implementation proved to be
an unanticipated challenge, in part due to the use of the Python libraries Flashy and Dora developed
internally for Facebook Research and relied upon extensively in their code for the Brainmagick pa-
per. These tools have limited available documentation and are not widely used by other research
groups outside of Facebook Research. One major outcome of the present study is therefore sim-
ply the creation of an open-source implementation of the Brainmagick architecture relying on the
standard Pytorch1 and Lightning2 Python libraries. We then look to continue the work of the orig-
inal authors and investigate whether their architecture benefits from dataset pooling with minimal
alterations. We explore a version of “naive” pooling via a pre-training scheme where we train on
each dataset, leveraging the saved weights from a previous training run on the other. For example,
we train the model on the MOUS dataset except loading the best (as determined by validation loss)
saved weights of the baseline run on the Gwilliams dataset. Next, we train the model from random
initialization with the same splits but pooling all of the data. Finally, we look to explore whether
augmenting the network with adversarial harmonization offers a boost to performance. In all cases
we use a 0.7 : 0.1 : 0.2 train/val/test split.

The Brainmagick model is implemented faithfully to the original design, though with steps taken
to streamline and simplify the repository as a whole - including a critical bug fix related to sensor
labeling. The spatial attention layer is used to transform data from both the Gwilliams and MOUS
datasets to a uniform number of output channels (270) allowing for the datasets to be processed
together. This layer was reported by the authors as being originally designed to support a cross-
dataset model, as working with multiple studies requires the ability to generalize over different
numbers and locations of sensors. As in Défossez et al. (2023), we use a value of 0.2 for the
dropout component. The remainder of the brain model remains true to the original design. In the
case of adversarial harmonization, we treat the brain model as the encoder block. The model used
alongside the CLIP loss forms the task head, with the CLIP loss remaining as the task loss for
harmonization. Lastly, we add our domain classifier at the same level as the task head. Following
the iterative training regime established by Tzeng et al. (2015), we use cross entropy loss for the

1https://pytorch.org/
2https://lightning.ai/docs/pytorch/stable/
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domain classifier and employ the confusion loss first proposed by Tzeng et al. (2015) and leveraged
by Dinsdale et al. (2021) in optimizing the encoder block to erase the target bias from our deep
feature representations. We offer further details and formal definitions of spatial attention, the CLIP
loss, and the confusion loss in Section A.4 of the Appendix. The augmented architecture can be
found there in Figure 9 as well. All related code is available in this repository3.

3.5 MEGALODON EXPERIMENTS

The backbone of Jayalath et al. (2024)’s architecture is a dataset-conditional layer (which projects
all MEG recordings into a shared dimensional space) and cortex encoder (which extracts deep rep-
resentations of brain activity). Additionally, we choose to follow the original authors in applying
the optional subject embeddings to the final output of the backbone. When pre-training, these fea-
tures have a projection applied to them before being used to solve a series of ”pre-text” tasks. If
fine-tuning, the output of the encoder is used directly for the speech decoding tasks. In applying
adversarial harmonization, we treat all layers up to and including the optional subject conditioning
as the encoder block. Similarly, the areas responsible for the pre-text and fine-tuning objectives are
grouped as the task head. At the same level as the task head, we then add a domain classifier that
forms the adversarial component of our harmonization scheme. We also keep the task loss from
the original MEGalodon framework for both phases of harmonization (warm-up and adversarial).
As before, we use cross entropy loss and the confusion loss for each backward pass involving the
domain classifier. Further details on the original MEGalodon architecture and an illustration of the
augmented architecture are given in Section A.5 and Figure 10 of the appendix, respectively.

The MEGalodon pre-text tasks, by design, apply some transformation to the input and then pass
this transformed input through the backbone in order to create a set of transformed features to be
used for the actual prediction task. However, because the effect is running the entire encoder and
creating a unique set of features one time for each task, we pass each additional feature vector
through the domain classifier as well. The losses from each of these are aggregated by summation
before performing the backwards pass. As we use three pre-text tasks, every training step handles
four total feature vectors. We set the value of α, the scaler variable applied to the cross-entropy loss
of the domain classifier, to 0.25 to account for this.

In the case where participant age is targeted instead of dataset bias, we again follow the harmoniza-
tion roadmap laid out by Dinsdale et al. (2021). In order to adapt the continuous feature of age to
a categorical one such that it can be predicted by the adversarial classifier, we create 72 single-year
bins spanning from the youngest age across all the datasets (18) to the oldest (89). However, it is
also important to capture the fact that for a true age of 25, a prediction of 24 is more accurate than
a prediction of 63. To account for this, both the true age labels and the predicted ages (produced by
applying a softmax activation to the output of the classifier and then taking the argmax) are converted
to softmax labels normally distributed as a N (µ, σ2) where µ is equal to the discrete age value and
σ is set to 10. Lastly, the cross-entropy loss is swapped out in favor of the Kullback-Leibler (KL)
divergence, where we treat the distance of the softmax distribution of the predicted ages from the
softmax distribution of the true ages as the loss value. All code related to the augmented MEGalodon
architecture is available in this repository4.

4 RESULTS

4.1 BRAINMAGICK RESULTS

The re-implementation of the Brainmagick architecture proposed by Défossez et al. (2023) using
more widely documented libraries is a success. Our version performs comparatively to the results
reported in the paper, albeit with a slight reduction in performance which we attribute to our choice
to train all the runs related to our build on a single GPU. As the original authors note in their
repository5, the number of GPUs used during training can have a large impact when using contrastive
losses and for this reason we use the single GPU results of the control runs of our build as our primary

3https://anonymous.4open.science/r/BMBU-9C3E/README.md
4https://anonymous.4open.science/r/megalodon-harmonizer-22A3/README.md
5https://github.com/facebookresearch/brainmagick

6

https://anonymous.4open.science/r/BMBU-9C3E/README.md
https://anonymous.4open.science/r/megalodon-harmonizer-22A3/README.md
https://github.com/facebookresearch/brainmagick


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Full-Run Results Top-10 Accuracy

Method Training Data Gwilliams MOUS

Control (Official repo) Gwilliams 70.7%, 70.7%* -
Control (Official repo) MOUS - 68.5%, 67.5%*
Control (Our implementation) Gwilliams 69.8% -
Control (Our implementation) MOUS - 68.1%
Pre-trained on MOUS Gwilliams 68.8% -
Pre-trained on Gwilliams MOUS - 67.1%
Control Gwilliams + MOUS 68.8%± 0.5 66.8%± 0.4
Harmonized Gwilliams + MOUS 71.0%± 0.2 68.6%± 0.2

Table 2: Following the convention of Défossez et al. (2023), we report Top-10 segment-level ac-
curacy with confidence intervals calculated over 3 seeds. Results as reported in the original study
are denoted by a single asterisk (*). The best performance recorded over each validation dataset is
marked in bold.

Figure 2: t-SNE plot (van der Maaten & Hinton, 2008) of the activations of the final layer of the
encoder block using the Brainmagick (Défossez et al., 2023) base architecture while training over
subsets. The left plot shows the control and the right after harmonization. The control data is
approximately linearly separable, while the harmonized data is closely mixed.

baseline comparison. We do not find that the base Brainmagick architecture is effective in cross-
dataset generalization, as performance decreases when using both MOUS and Gwilliams during
training. This was true for both the attempt at naively combining the datasets via a pre-training
approach as well as training on the datasets pooled together directly. However, we find that using
adversarial harmonization yields a 2.2% increase in performance evaluating over the Gwilliams test
split and 1.8% increase in performance for the MOUS test split when pooling datasets for training.
We conduct a one-sided independent samples t-test using the results collected across three seeds
and find that our augmentations are statistically significant (p < 0.05) for both the Gwilliams test
split (p = 0.012) and MOUS test split (p = 0.011). In fact, adversarial harmonization allows the
architecture to successfully combine the datasets during training to improve top-10 accuracy even
over the results reported in the original paper. All results from training with the full datasets are
shown in Table 2. These findings are additionally supplemented by analogous results collected over
subsets of the data (see Table 4 in the Appendix). Together, these results demonstrate a scaling effect
as overall data volume is increased.
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Armeni Fine-Tuning Balanced Accuracy

Method Pre-training Data Speech Detection Voicing

Control Balanced (M+CC) 57.29% 52.60%
Control Random (M+CC) 56.53% 52.38%

Warm-up Only Balanced (M+CC) 57.76% 52.35%
Short Warm-up (dataset) Balanced (M+CC) 56.33% 51.99%
Harmonized (dataset) Balanced (M+CC) 55.04% 52.44%
Harmonized (dataset) Random (M+CC) 56.25% 52.42%
Harmonized (age) Random (M+CC) 50.68% 50.82%
Harmonized (both) Random (M+CC) 56.15% 52.65%

Table 3: We report the balanced accuracy results for the speech detection and voicing classification
tasks, fine-tuning and testing on the Armeni dataset. Balanced refers to subsets with no strong bias
related to the age distribution of the participants with respect to either dataset, while for Random
this is not controlled for. The confound being harmonized is denoted in parentheses in the method
column. All runs reported here are trained for 200 epochs. Short Warm-up denotes pre-training
the encoder for 100 epochs without the domain classifier, before training with the classifier for an
additional 10 epochs and beginning harmonization at epoch 110. Warm-up only indicates training
in the warm-up phase for the entire 200 epochs.

We further support our claim of cross-dataset generalization by observing that upon beginning the
harmonization phase, the dataset classifier is reduced from an average 99.9% accuracy to an average
79.7% and 67.9% accuracy in the full and subset cases, respectively. Additionally, we extract the
features produced by the final layer of the encoder block and visualize the change in the separability
of the activations through a t-SNE plot (van der Maaten & Hinton, 2008) shown in Figure 2.

4.2 MEGALODON RESULTS

The results support our hypothesis that the skewed demographic features of the MOUS and Cam-
CAN datasets are a possible cause of the difficulty Jayalath et al. (2024)’s model has attempting
to scale the number of datasets used during pre-training. We show that the performance of the
original model is improved for both decoding tasks when training with the age-balanced subsets
as opposed to the random subsets (see Table 3). We conduct experiments just on the age-balanced
subsets to determine the degree to which dataset of origin exists as a confound independent of age
distribution. Even in this case, a randomly initialized dataset classifier achieves 99.9% accuracy after
only a single epoch of training. The features produced by the pre-training scheme therefore have
dataset-identifiable aspects beyond those related to participant age. Augmenting the model with
adversarial harmonization, we successfully manage to lower the dataset classification accuracy to
51% on average (a reduction of 48.9%). Using the random subsets and targeting age bias, we see in
Figure 4 that the softmax probability distribution of the classifier for participant age is driven closer
to universal chance after training with adversarial harmonization. Fine-tuning results for dataset
harmonization, age harmonization, and jointly harmonizing for both age and dataset bias are also
shown in Table 3.

We find that pre-text task validation loss is a direct proxy for speech decoding performance in the
case of speech detection, but they become uncoupled for voicing classification. Harmonization has
a negative effect on speech detection performance in all cases, yet jointly harmonizing for both
age and dataset bias delivers better voicing classification performance than the control on both the
random and age-balanced subsets - despite having a much worse final pre-text task validation loss at
the end of training. t-SNE (van der Maaten & Hinton, 2008) plots comparing the final encoder block
activations from the end of the warm-up phase to the end of harmonization are shown in Figure 3.

5 DISCUSSION

The increase in fine-tuning performance for the MEGalodon architecture when using the age-
balanced subsets compared to the random subsets (Table 3) demonstrates that the demographic
features of a subject strongly affect the characteristics of the data collected using MEG devices.
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Figure 3: t-SNE plots van der Maaten & Hinton (2008) of the activations of the final layer of the
encoder block of the base MEGalodon Jayalath et al. (2024) architecture when harmonizing jointly
for dataset and age bias. The plot on the left shows the results at the end of the warm-up phase, while
the right shows the results after harmonization. Training was completed on the random subsets.

Figure 4: Softmax values of the true and predicted ages averaged over a single batch and converted
into Gaussian distributions. The dashed line represents the value of setting all softmax values equal.
The plot on the left shows the output of the model at the end of the warm-up phase, while the one
on the right shows the output after an additional 100 epochs of adversarial harmonization. After
harmonization, the distribution is flattened towards an equal distribution across all ages.
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However, the particular direction of this effect is likely due to the fact that the datasets used for eval-
uation (whether that be Armeni or Gwilliams) both have distributions of participant age much more
similar to that of the MOUS dataset. While the Cam-CAN dataset includes individuals ranging from
18 years old to 89 years old, the other three datasets don’t record any participants older than 41,
with most younger than 30. Were the fine-tuning datasets to have more inclusive age-distributions,
as is the case with Cam-CAN, the results of the control comparison might be flipped. This indicates
a broader need within the neuroimaging community to increase efforts to recruit older participants
when conducting these studies. Still, the results found here indicate that harmonization methods
could play a critical role in reducing age-related effects in both present and future studies.

Additionally, we find adversarial harmonization can be extremely unstable, with task loss diverging
sharply when the harmonization phase begins. This effect can be mitigated for dataset bias through
hyperparameter selection. As the models are still able to reduce the task loss after beginning har-
monization, the dataset-identifying features present in the encoder output must not be necessary to
perform speech decoding. We were not able to complete equivalent hyperparameter testing for the
experiments targeting age as a confound. While the harmonized Brainmagick model was able to im-
prove validation loss over the control, the MEGalodon model could not within our training horizon.
We believe one of the differentiating factors between these two architectures is the speed at which
they reach convergence. This is examined in further detail, including related runtime and batch size
experiments, in Section A.9 and A.8 of the Appendix.

Lastly, as we note above, augmenting the MEGalodon architecture with adversarial harmonization
has a negative effect for speech detection and a positive one for voicing classification. This is likely
due to the difference in the fine-tuning protocol established by Jayalath et al. (2024) between the
tasks rather than a significant qualitative difference. ‘Shallow’ fine-tuning the network for speech
detection only updates the task head, but both the encoder and task head are updated when ‘deep’
fine-tuning for voicing classification. The discrepancy in performance between the decoding tasks
could indicate that harmonization drives the features into a more universal brain representation but
at the initial cost of task-specific (in this case task referring broadly to all speech perception) perfor-
mance. This is resolved in the deep fine-tuning case as the encoder is given the chance to re-focus
on the downstream task, but remains salient for shallow fine-tuning as the encoder is kept frozen.

6 IMPACT AND FUTURE WORK

To the best of our knowledge, this study is the first ever application of feature-level, deep learning
based harmonization for MEG neuroimaging data. We demonstrate some of the unique challenges
of harmonizing MEG data when compared to other modalities and demonstrate that age-related
features strongly affect how machine learning models solve speech decoding tasks from MEG data.
Using the Brainmagick and MEGalodon architectures as a base, we achieve success augmenting
the ability of two different, leading speech decoding models to generalize between datasets. We
produced these results even without extensive hyperparameter testing, meaning there were likely
performance gains still left on the table.

A continuation of this work involving an exhaustive hyperparameter search for both models and
unrestricted training time for the augmented MEGalodon model would be well-warranted, as it
could not be completed within the scope of the present study. Future work should also explore
how the effects reported here hold when pooling training data from upwards of three datasets. We
acknowledge the limitations of this study in the Appendix. However, the scope of the work produced
remains significant and we believe this study to be of value to the field. As a whole, the results
reported here are evidence for the potential of adversarial harmonization to aid in solving the scaling
problem for deep learning applications when it comes to MEG data.
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A APPENDIX

A.1 COMPUTE

As all experiments were carried out on a shared resource used by multiple research groups, a single
GPU was used in order to reduce wait times. Additionally, limitations related to specific configura-
tions during the period of this project’s completion meant full-run experiments on the MEGalodon
architecture were not feasible to carry out. As it stands, even relying on subsets approximately 15%
the size of the full datasets for the vast majority of our experiments, we estimate to have used over
1,600 hours of GPU compute in the completion of this study.

A.2 ADDITIONAL PREPROCESSING DETAILS

All work using the MEGalodon framework as a base applied standard procedures using the native
functionality of the MEG dataloaders from the PNPL python library6. A low-pass filter was applied
at 125 Hz and high-pass filter at 0.5 Hz in order to remove artifacts from muscle movements and
slow-drift, respectively. Additionally, a notch filter is applied at multiples of 50 Hz to account for
possible line noise from the electric grid where the original recordings were taken. The signal is
also downsampled to 250 Hz, taking care to avoid aliasing at frequencies up to the threshold set by
the low-pass filter. Bad sensor channels are then detected with a variance threshold and replaced
by interpolation from the nearest sensors (Jayalath et al., 2024). The Brainmagick framework has
unique requirements in the way data is sliced, batched, and tracked and therefore is not able to rely

6https://github.com/neural-processing-lab/pnpl
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on the PNPL library. Specifically, corresponding MEG and speech stimulus data were segmented
into 3 second windows and stimulus segments were tracked to enforce no overlap between train,
validation, and test splits. In addition to applying a scaler (implemented via the scikit-learn python
library (Pedregosa et al., 2012)), the average over the first 5 seconds was taken and subtracted from
each channel as a baseline correction for signal artifacts. Finally, the data was normalized and values
greater than 20 standard deviations were clamped to minimize outliers (Défossez et al., 2023).

A.3 DEMOGRAPHIC VISUALIZATIONS

Figure 5: The normalized distributions of the sex of the subjects from the MOUS (Schoffelen et al.,
2019), Cam-CAN (Shafto et al., 2014; Taylor et al., 2017), and Gwilliams et al. (2022) datasets. The
density plotted along the y-axis represents the proportion (i.e. relative frequency) of each category
within its respective dataset.
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(a) Age-Balanced Subset

(b) Random Subset

Figure 6: The normalized distributions of participant ages from subsets taken over the MOUS
(Schoffelen et al., 2019) and Cam-CAN (Shafto et al., 2014; Taylor et al., 2017) datasets for ex-
periments done with the MEGalodon (Jayalath et al., 2024) base architecture. The density plotted
along the y-axis represents the proportion (i.e. relative frequency) of each category within its re-
spective dataset. The mean age calculated over the two datasets is displayed by the dotted line. The
age-balanced subsets were created by randomly selecting subjects from the overlap of the two whole
dataset age distributions. The random subsets include subjects taken at random from the entire dis-
tributions. In both cases the count of Male and Female participants is balanced with a tolerance of 1
subject in either direction.
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(a) Age-Balanced Subset

(b) Random Subset

Figure 7: The normalized distributions of participant sex from subsets taken over the MOUS (Schof-
felen et al., 2019) and Cam-CAN (Shafto et al., 2014; Taylor et al., 2017) datasets for experiments
done with the MEGalodon (Jayalath et al., 2024) base architecture. The density plotted along the y-
axis represents the proportion (i.e. relative frequency) of each category within its respective dataset.
The age-balanced subsets were created by randomly selecting subjects from the overlap of the two
whole dataset age distributions. The random subsets include subjects taken at random from the entire
distributions. In both cases the count of Male and Female participants is balanced with a tolerance
of 1 subject in either direction.
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(a) Age Distribution

(b) Sex Distribution

Figure 8: The normalized distributions of participant ages and participant sexes from subsets taken
over the MOUS (Schoffelen et al., 2019) and Gwilliams et al. (2022) datasets for experiments done
with the Brainmagick (Défossez et al., 2023) base architecture. The density plotted along the y-axis
represents the proportion (i.e. relative frequency) of each category within its respective dataset. The
mean age calculated over the two datasets is displayed by the dotted line. Subsets were constructed
with the intention of mimicking the characteristics of the full distributions from which they were
sampled.

A.4 ADDITIONAL BRAINMAGICK DETAILS

Défossez et al. (2023)’s architecture is composed generally of a speech module, a brain module, and
a contrastive loss. Wav2Vec 2.0 (Baevski et al., 2020), a self-supervised model trained on audio
alone, is used for the speech module as they find it best represents the latent representations of
speech sounds (Défossez et al., 2023). The brain module is constructed sequentially from a spatial
attention layer over the MEG (or EEG) sensors, a participant (1× 1 convolution) layer, and a set of
convolutional blocks (Défossez et al., 2023).

A.4.1 SPATIAL ATTENTION

The spatial attention layer helps select the most salient sensors from the layouts used by different
studies during collection when remapping the MEG data into a shared channel dimension. The
design works by first projecting the three-dimensional sensor locations (i.e. input channels), i, to a
two-dimensional plane. This is done using a function from the MNE (Gramfort et al., 2013) Python
library that leverages a device-dependent surface meant to preserve channel distances. These two-
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dimensional positions (xi, yi) are then normalized to [0, 1] and for each output channel, j, a function
aj over [0, 1]2 is learnt. This function is parameterized in the Fourier space as zj ∈ CK×K with K
= 32 harmonics along each axis, giving the full function definition as

aj(x, y) =

K∑
k=1

K∑
ℓ=1

Re(z(k,ℓ)j ) cos(2π(kx+ ℓy)) + Im(z
(k,ℓ)
j ) sin(2π(kx+ ℓy)). (1)

The final weights over the input sensors are found by taking the softmax of the function aj evaluated
at the sensor locations (xi, yi):

∀j ∈ {1, . . . , D1}, SA(X)(j) =
1∑C

i=1 e
aj(xi,yi)

(
C∑
i=1

eaj(xi,yi)X(i)

)
(2)

where SA is the spatial attention (Défossez et al., 2023). Because aj is periodic in practice, (x, y)
are scaled down and a spatial dropout is applied by sampling a location and removing each sensor
within a specified distance from the softmax.

A.4.2 CLIP LOSS

Défossez et al. (2023)’s Brainmagick architecture uses a multi-modal CLIP (originally Contrastive
Language-Image Pre-Training) loss (Radford et al., 2021). Commonly, a regression loss is used in
the supervised training of decoders to predict latent representations of speech known to be relevant
to the brain - in many cases the Mel spectrogram due to its similarity to how sound is represented in
the cochlea (Mermelstein, 1976). The problem with regression objectives in this context, however, is
that they rely on the assumption that the dimensions of the Mel spectrogram are all scaled correctly
and equally important. In reality, some (e.g. very low) frequencies are irrelevant to speech and
can be differentiated by irregular orders of magnitude. The CLIP loss importantly does not aim
to maximally distinguish speech segments from one another but acts to relax the constraints of a
regression loss which may be tied too heavily to the above assumptions of relevancy, accuracy,
and scaling with respect to the representations from the speech module (Défossez et al., 2023).
Given a brain recording segment X and the representation of the corresponding speech sound Y ∈
RF×T , N − 1 negative samples Ỹj ∈ {1, . . . , N − 1} are taken over the dataset and a positive
sample is added as ỸN = Y . The training objective therefore becomes predicting the probability
∀j ∈ {1, . . . , N}, pj = P

[
Ỹj = Y

]
such that the model fclip maps X to a latent representation

Z = fclip(X) ∈ RF×T . We can approximate the objective by taking the softmax of the dot product
of Z and the candidate speech representations Yj :

p̂j =
e⟨Z,Ỹj⟩∑N

j′=1 e
⟨Z,Ỹj′ ⟩

, (3)

where ⟨·, ·⟩ is the inner product over both dimensions of Z and Ỹ Défossez et al. (2023). The CLIP
loss is thus the cross-entropy between pj and p̂j , simplifying to:

LCLIP(p, p̂) = − log(p̂N ) = −⟨Z, Y ⟩+ log

 N∑
j′=1

e⟨Z,Ỹj′ ⟩

 (4)

under the assumption of a dataset large enough that the probability of sampling the same segment
twice can be neglected (Défossez et al., 2023).

A.4.3 CONFUSION LOSS

The formal definition of the confusion loss as introduced by Tzeng et al. (2015) and used by Dinsdale
et al. (2021) is given as:

Lconf(Xu, du,Θd; Θrepr) = − 1

Su

Su∑
s=1

N∑
k=1

1

N
log(ps,k) (5)
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where only the parameters in Θrepr are updated depending on the fixed value of Θd as indicated by
Lconf(Xu, du,Θd; Θrepr).
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Figure 9: The Brainmagick architecture (Défossez et al., 2023) as modified for feature-level harmo-
nization. No activation functions are used in the subject block. In the five repeating convolutional
blocks, the first two convolutions use a residual skip connection, increasing dilation, BatchNorm
layer, and GELU activation. The final convolution in these blocks is not residual and halves the
number of channels with a GLU activation. The encoder block then applies two 1× 1 convolutions
with a GELU activation after the first. We use same domain classifier as Dinsdale et al. (2021), and
use the CLIP network for the primary decoding task. The einsum refers to the tensor operation to
calculate the normalized similarity scores between candidate and estimate segments.

A.4.4 DATALOADERS

The original code from Défossez et al. (2023) creates custom classes which track the raw .wav
files of the simulus and MEG recordings in blocks chunked by seconds moving forward in time.
For the purposes of the current study, we adopt the convention from the original paper and use a
6 second minimum block size. Additionally, because a linguistic representation is used directly
in the decoding step, the custom dataclasses also enforce that across all individual subjects the
train, validation, and test segments are mutually exclusive with respect to the sentences presented as
stimulus. This is maintained for the case where the splits are built from more than one dataset. We
further modify this behavior to ensure that data within every batch is tracked with an identifier for
its dataset of origin. This information is then extracted at train time to form the ground truth vectors
for the domain classifier. Support for the selection of specific subjects, enabling study of subsets of
any size and construction, was also added during the completion of the present study.

A.5 ADDITIONAL MEGALODON DETAILS

Jayalath et al. (2024) define three pretext tasks for speech decoding: band prediction, phase shift
prediction, and amplitude scale prediction. The band prediction task randomly selects and applies a
band-stop filter to one of the frequency bands typically associated with brain activity: Delta (0.1-4
Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-30 Hz), Gamma (30-70 Hz), and High Gamma (¿70
Hz) (Giraud & Poeppel, 2012; Piai et al., 2014; Mai et al., 2016). The goal is to then predict the
frequency band which was rejected. The phase shift prediction task is similar in nature: a discrete
uniform random phase shift is applied to a uniform randomly selected proportion of the MEG sen-
sors, with the goal of predicting which phase shift was applied (a discrete number of possible values
are used in order to reduce the difficulty of the task by treating it as a multi-class problem) (Jayalath
et al., 2024). The use of random sensors and uniform random selection is meant to mitigate the
effect of variance in sensor placement between studies by ensuring the differences between any two
regions of the brain are represented. Finally, the amplitude scale prediction task selects a random
proportion of the sensors and applies a discrete random amplitude scaling coefficient to the signal
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with the objective of predicting the scaling factor (Jayalath et al., 2024). The intention behind this
task is to learn representations encoding relative sensor amplitude differences. These pretext tasks
are used to pre-train the backbone, a dataset-conditional layer and encoder block, of the architecture
(see fig 10) before being swapped out for the speech decoding tasks in the fine-tuning stage. Ad-
ditionally, subject conditioning (via subject embeddings, in contrast with Défossez et al. (2023)) is
applied at the bottleneck of the encoder block before the pre-text or fine-tuning task heads.

Linear
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Linear
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Figure 10: The MEGalodon architecture as modified for feature-level harmonization. Layers treated
as part of the encoder block, task head, or domain classifier are respectively shown in yellow, purple,
and green. All weights updated during pre-training are shown in blue. Weights trainable during fine-
tuning are in red, with the addition of those in the encoder block in the case of deep fine-tuning.

A.5.1 DATALOADERS

The MEGalodon architecture is already capable of supporting multiple datasets during a single train-
ing run, and does this by leveraging the MultiDataloader class from the PNPL python library7. Under
the original implementation, one batch from each dataset is returned in alternating fashion during
training. Adversarial harmonization, however, is better served when every dataset is represented by
at least one data-point in each batch. We accomplish this by creating a custom dataloader class,
ComboLoader, able to take a list of other dataloaders and return batches in the form of a tuple
containing a single batch from each of the original loaders. At train time, random slices, the sum
of which is equivalent to the original batch size, are then taken from each batch in this tuple and
processed. Upon aggregating, the effect becomes equivalent to that of a batch with the originally
specified size but having a random mix of the data from every domain. The ground truth targets
for the domain classifier are also calculated at train time using the lengths of the randomly gener-
ated batch slices. This approach allows for the implementation of adversarial harmonization with
minimal changes to the underlying network architecture. The PNPL datasets additionally support
returning metadata alongside each MEG recording, and this feature was used to extract the associ-
ated participant IDs which could then be used to retrieve the correct ages when creating the target
vectors for age-based harmonization.

A.6 SOFTWARE CHALLENGES

While the use of popular deep learning libraries such as Pytorch and Lightning has many advantages,
it can also lead to unexpected roadblocks when attempting to implement behaviors outside the ex-
pected scope of their standard workflows. This was the case for the present work when attempting
to build out the functionality for adversarial harmonization. As a reminder, the adversarial phase of

7https://github.com/neural-processing-lab/pnpl
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the harmonization framework we implement is composed of three steps: (1) optimizing the encoder
block and task head for the task of interest, (2) optimizing the domain classifier to maximize its
ability to identify the target bias, and (3) optimizing the encoder block to erase any signal related
to the target bias from its features. This means that every training step during this phase contains
three backwards passes and three steps by different optimizers. However, the same initial set of
features produced by the encoder block is used across all of these functions. Inevitably, this leads
to clashes in the computational graph as the parameters of the encoder block are updated after the
first optimizer’s step call, but the same feature vector used in the third step is still associated with
the previous version of those parameters. In older versions of Pytorch, setting the retain graph
parameter to True when calling the backward pass successfully navigated this issue. However, this
behavior was not maintained for manual optimization in Lightning. Instead, we were compelled to
implement a work-around which involved re-writing the forward pass for all layers of the encoder
block such that the parameters of that layer are cloned and passed to its respective Pytorch Functional
variant alongside the input. It should be noted that slight differences in the underlying construction
of these layers from their named counterparts does introduce a numerical variance from that of the
original models, however, it is on a order of magnitude small enough that it did not relevantly impact
performance. The versions of all tensors related to one training step were examined to ensure that
optimization continued to perform as expected when applying this procedure.

A.7 ADDITIONAL RESULTS

The subset results for the augmented Brainmagick architecture are shown in Table 4. We conduct a
one-sided independent samples t-test using the subset results collected across three seeds. We find
that the effect of adversarial harmonization on top-10 accuracy is statistically significant (p < 0.05)
when evaluating on both the Gwilliams Gwilliams et al. (2022) test split (p = 0.0021) and the
MOUS Schoffelen et al. (2019) test split (p = 0.0358). This is again demonstrated when training
over the full datasets as seen in Table 2 and we include the Top-1 accuracy results here in Table 5 for
completeness. As in the Top-10 case, the effect is statistically significant (p < 0.05) when evaluating
on both the Gwilliams Gwilliams et al. (2022) test split (p = 0.0163) and the MOUS Schoffelen et al.
(2019) test split (p = 0.0141). These results clearly show the ability of adversarial harmonization
to enhance deep-learning architectures for cross-dataset generalization of MEG speech decoding
where they might otherwise be unable to do so.

Subset Results Top-10 Accuracy

Method Training Data Gwilliams MOUS

Control Gwilliams + MOUS 65.9%± 0.2 57.7%± 0.5
Harmonized Gwilliams + MOUS 67.8% ± 0.2 59.6% ± 0.6

Table 4: As in the full-run case, we report Top-10 segment-level accuracy. The best performance
recorded over the test split of each dataset subset is marked in bold. Confidence intervals are calcu-
lated over 3 seeds.

Full-Run Results Top-1 Accuracy

Method Training Data Gwilliams MOUS

Control (Official repo) Gwilliams 41.2%, 41.3%* -
Control (Official repo) MOUS - 40.4%, 36.8%*
Control (Our implementation) Gwilliams 69.8% -
Control (Our implementation) MOUS - 37.8%
Pre-trained on MOUS Gwilliams 39.4% -
Pre-trained on Gwilliams MOUS - 36.9%
Control Gwilliams + MOUS 39.2%± 0.5 36.6%± 0.5
Harmonized Gwilliams + MOUS 41.4%± 0.3 38.8%± 0.2

Table 5: Top-1 segment-level accuracy with confidence intervals calculated over 3 seeds. Results as
reported in the original study are denoted by a single asterisk (*). The best performance recorded
over each validation dataset is marked in bold.
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Gwilliams Fine-Tuning Balanced Accuracy

Method Pre-training Data Speech Detection Voicing

Control Balanced Subset 51.1% -
Control Random Subset 50.6% -
Warm-up Only Balanced Subset 50.8% -

Table 6: We report the augmented MEGalodon architecture balanced accuracy results for the speech
detection and voicing classification tasks, fine-tuning and testing with CPU on the Gwilliams dataset.
All pre-training conditions are equivalent to those described in Table 3.

A.8 COMPARISON OF ADVERSARIAL OPTIMIZERS

Here we demonstrate the increased stability provided by choosing SGD over Adam as the optimizer
for the domain classifier during adversarial harmonization. In figures 11, 12, and 13, we plot the
task performance of the MEGalodon base architecture training on the age-balanced subset for 200
epochs, with the warm-up phase ending at epoch 100. Besides the choice of optimizer, all other
hyperparameters are held equal.

Figure 11
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Figure 12

Figure 13

A.9 ANALYSIS OF TRAINING DURATIONS

Below in figures 14 and 15 we show that, holding all else equal, beginning the harmonization phase
later into training does not mitigate the tendency of the task loss to diverge. The following plots do,
however, demonstrate that after an initial peak following the start of harmonization, the task loss
once again begins to trend downwards. Note that convergence (as determined by early stopping)
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is not reached by the control even within 400 epochs, which is why we opt for an epoch-based
scheduling of the warm-up phase in the case of MEGalodon.

Figures 16 and 17 demonstrate the case of training on smaller batch sizes. Overall loss is reduced,
but the model still fails to reach convergence within 200 epochs and thus beginning harmonization
during this time still leads to divergence.

Figure 14

Figure 15
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Figure 16

Figure 17
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A.10 HYPERPARAMETERS

Parameter Value Final Validation Loss

Harmonization phase start Epoch 25 7.61
Harmonization phase start Epoch 100 5.76
Alpha 1.0 5.76
Alpha 0.33 7.30
Alpha 0.25 5.65
Optimizer Adam 7.00
Harmonization phase LR 0.000001 5.76
Harmonization phase LR 0.000005 5.88
Harmonization phase LR 0.000066 5.98

Table 7: Hyperparameter testing of the augmented MEGalodon architecture carried out over subsets
of the MOUS and Cam-CAN datasets. Tested parameters are listed, with all other values for that run
held constant. Validation loss is reported at epoch 200. The final configuration of the model used
for running experiments is an alpha of 0.25, beta of 1 (choice of beta value was negligible), harmo-
nization phase start of 100, and harmonization learning rate of 0.00002 for the task and classifier
optimizers and 0.00001 for the adversarial optimizer. The choice to set the adversarial learning rate
to half that of the others came recommended by Dinsdale et al. (2021) to increase training stability.

A.11 LIMITATIONS

The present study was limited by time and resource constraints which ultimately meant results could
not be collected across multiple seeds in all cases. Additionally, testing over the full datasets was not
carried out for the experiments using the MEGalodon Jayalath et al. (2024) base architecture. Given
the flexibility of the chosen harmonization framework, the present study would have benefited from
exploring its capacity to combine more than two datasets at a time. An initial look at pooling three
datasets for pre-training was done but not investigated further within the scope of this work. A sig-
nificant bug in the code was discovered relatively late into the project which forced the experimental
results collected up to that point to have to be discarded and re-collected. This setback meant that
more extensive testing of the kind discussed above was infeasible. While this is regrettable, bugs in
large and complex codebases, particularly those that build on other’s publicly available code, can be
commonplace. It is important to us to have caught the bug and be able to present accurate results,
rather that allow it to remain undiscovered. An extension of the framework to enable harmonization
of datasets with skewed demographic biases, such as the age distributions of MOUS Schoffelen et al.
(2019) and Cam-CAN Shafto et al. (2014); Taylor et al. (2017), is noted in Dinsdale et al. Dinsdale
et al. (2021). In this variant, the datasets are trained on in full, but harmonization is only carried out
using subjects from the overlapping area of the distributions. This extension was implemented but
was not able to be properly tested at the current time.
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