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Abstract

The placenta is a complex organ, playing multiple roles during fetal develop-
ment. Very little is known about the association between placental morphological
abnormalities and fetal physiology. In this work, we present an open sourced, com-
putationally tractable deep learning pipeline to analyse placenta histology at the
level of the cell. By utilising two deep convolutional neural network architectures
and transfer learning, we can robustly localise and classify placental cells within
five classes with an accuracy of 89%. Furthermore, we learn deep embeddings
encoding phenotypic knowledge that is capable of both stratifying five distinct
cell populations and learn intraclass phenotypic variance. We envisage that the
automation of this pipeline to population scale studies of placenta histology has the
potential to improve our understanding of basic cellular placental biology and its
variations, particularly its role in predicting adverse birth outcomes.

1 Introduction

Despite its essential functions, placenta biology remains poorly understood [1]. For instance, we
lack sufficient understanding of the molecular mechanisms linking cell composition and tissue
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morphology to fetal growth and development. Previous research suggests there exists a direct link
between placental disease and adverse effects on fetal physiology, some of which have been found to
be associated with histopathological evidence of abnormality [2, 3, 4]. This supports the idea that
histological phenotyping of placental tissues could fill gaps in our understanding of placental health
and birth outcomes.

In this work we start addressing some of these fundamental issues by developing a deep learning
pipeline to automate the analysis of cell phenotyping in placenta histology. By exploiting convolu-
tional neural networks (CNNs) and transfer learning [5], we implement a two part workflow that can
accurately localise and objectively classify cell populations in placenta imaging. Furthermore, we
learn deep embeddings capable of capturing intercellular morphological variance as well as intraclass
phenotypic heterogeneity. Our approach analyses placenta imaging by solving two distinct computer
vision tasks. For each test image, we firstly detect nuclei by means of the nuclei localisation module;
the classification module then phenotypes and segregates cells within five populations present in the
placenta at term.

2 Related Work

Histology is routinely performed as a diagnostic test, intraoperative guide and tool for staging disease
severity [6]. However, in the era of big data, little automation is in place to enable histological
analysis to scale to thousands of samples, making histology a manual and time intensive task. Over
the last two decades, extensive research has focused on the automatic detection of pathological lesions
in histology samples. Classic computer vision methods, such as difference of Guassians and Gabor
filters for nuclei detection [7], Watershed and Otsu thresholding for segmentation [8], or generic
feature extractors such as CellProfiler [9], have been superseded by deep learning approaches [10,
11]. This methodological shift from handcrafted features to learned representations has led to the
current state of the art performance in multiple cognitive tasks, e.g. nuclei segmentation [12], region
of interest detection [13], and pathological lesion classification [14].

Whilst nuclei detection is well documented, very few studies have focused on the classification of
specific, well annotated cell types curated from histology imaging data [15]. Furthermore, even
though cellular and tissue context are important, classification has been performed at the level of
the nuclei rather than cells [16]. This lack of cellular annotations and classification approaches is
primarily due to the need for expert annotation, an expensive and time consuming process. Several
studies have tried to avoid the need for annotations by learning representations with unsupervised
approaches [17].

In the present study, we provide a data set comprised of thousands of high confidence and manually
curated placenta cells spanning five classes. These examples, obtained from healthy human samples,
were used to demonstrate how fully supervised representations encode biological and morphological
knowledge at the cellular level.

3 Methods

3.1 Data Collection

We curated ten samples of formalin embedded placental sections, collected from healthy women [18]
who gave birth at term to healthy, appropriately grown babies based on the INTERGROWTH-21st
newborn size standards [19]. Each tissue section was embedded in paraffin and microtome sliced to
a thickness of 5µm, before being stained with Haematoxylin and Eosin (H&E) [20]. The samples
were digitised into whole slide images (WSIs) using a Zeiss Axio Scan Z1 system (manufacturer)
at 40× magnification. Each individual WSI was then split into smaller subimages, termed tiles, of
1200× 1600 pixels. Lastly, as a preprocessing step, all tiles containing image artefacts (e.g. tissue
folds and blurred regions) were filtered out. The project was approved by the Oxfordshire Research
Ethics Committee “C” (reference: 08/H0606/139).

3.1.1 Nuclei Localisation Data

We used the VGG image annotator [21] to curate 91 tiles (subimages of 1 200× 1 600 pixels). Across
all images, discernible nuclei were annotated with bounding boxes, for a total of 13 179 examples.
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All data were then split into training (11 184 nuclei), validation (876 nuclei), and test (1 119) sets.
Crucially, training, validation, and test tiles were sampled from different individuals (WSIs).

3.1.2 Cell Classification Data

Cells present in term placentas belong to one of five different types: cytotrophoblast (CYT), fibroblast
(FIB), Hofbauer (HOF), syncytiotrophoblast (SYN), and vascular (VAS). For the classification
problem, data sets were annotated by randomly sampling tiles across individuals. Data were manually
curated with the help of two senior obstetricians (MV, IG) who annotated and provided training for
discriminating cell types within placenta histology images. After nuclei localisation, each tile was
presented to one annotator in order to assign (ground truth) cell type labels to detected nuclei. To
reduce the number of false positives, labels were assigned only for nuclei that could be discriminated,
with high confidence, by annotators. Data were curated using the VGG image annotator.

We annotated 11 666 tiles for a total of 9 529 ground truth labels. For each cell annotated, a 200×200
pixels patch, centred at the location of the nucleus, was generated. Such patches, along with the
corresponding cell type labels, comprised the data sets used for training CNNs.

Data were randomly split into training, validation, and test sets. We annotated balanced
validation and test sets, both comprised of 1 000 images (200 examples per class). All remaining
images were used to generate a training sample of 7 529 instances (1 359 CYTs, 2 577 FIBs, 478
HOFs, 1 576 SYNs, 1 539 VASs). Figure S1 visualises the morphological heterogeneity across cell
types.

3.2 Deep Learning Pipeline

Our framework can analyse placenta histology images by exploiting deep learning modules to solve
two visual tasks. For each test tile, we first localise and store the coordinates of all nuclei identified in
the image. Then, for each coordinate, we create a patch of 200× 200 pixels centered around each
nucleus. This image is then provided as input to the classification module in order to predict the type
of cell present in the patch (Figure 1).

Due to the relatively small size of our training sets, and the complexity of the visual tasks
we are trying to solve, our approach relies heavily on transfer learning and fine tuning. These
approaches utilise visual representations encoded by CNNs trained on massive data sets, like
ImageNet [23] and COCO [24], to solve multiple vision recognition problems, beyond the original
learning task [5].

3.2.1 Nuclei Detection

For the nuclei detection task, we experimented with two different approaches. We trained a fully
convolutional neural network (FCNN), which learns nuclei density maps, and a recent localisation
framework (RetinaNet) published by Facebook [22], which regresses bounding boxes for each target
nucleus.

The fully convolutional neural network we developed, termed FCNN-Unet, was inspired by the
FCNN-A architecture introduced in [25], and is characterised by the addition of skip connections,
dropout, and batch normalisation.

Furthermore, we implemented RetinaNet by using a ResNet50 backbone (pretrained on COCO). The
major innovation introduced by RetinaNet is the use of a focal training loss. Focal losses generalise
the commonly used cross entropy by reducing penalties for well classified examples, thereby allowing
the network to focus on hard to predict instances [22].

For each nucleus, RetinaNet outputs bounding box locations, along with posterior probabilities
quantifying the network’s confidence in the box containing a nucleus. We set an upper bound of 500
for the maximum number of bounding boxes predicted per image. We fine tuned the bounding box
regressor with a small learning rate (10−4) using Adam, an adaptive optimiser [26]. The learning rate
was reduced by 10−1 whenever there was no improvement in validation accuracy for more than four
epochs. Furthermore, we implemented horizontal/vertical flips, scaling and stain transformations.
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Figure 1: Deep learning pipeline. Our framework consists of two deep learning modules. (a)
Nuclei locator. We use RetinaNet [22] with a ResNet-50 backbone as a feature extractor. Learned
representations are fed to subnetworks to perform classification (background vs nucleus) and bounding
box regression (nuclei locations). (b) Cell classifier. Using the nuclei locations predicted by
RetinaNet we obtain cell patches (200×200 pixels) which we feed into three independent CNNs. We
use an ensemble system to segregate placental cells within five populations by taking the maximum
posterior probability from any one of our three base classifiers.

Stain normalisation is a popular data augmentation approach that attempts to minimise H&E stain
varability across different digital scanners and laboratory protocols [27]. Most methods involve
subjective selection of “reference” images and the use of matrix decomposition approaches such as
non-negative matrix factorisation (NMF) [28]. This makes the scaling of such approaches infeasible,
especially for whole slide image analyses.

To mitigate the majority of problems caused by high stain variance, we implemented “stain transfor-
mations”. We converted RGB images into the HED colour scheme, by means of colour deconvolution
[29]. Once in the HED space, we randomly scaled the image by a factor uniformly sampled from
the interval (0.95, 1.05). This scaling has the effect of simulating either under or over staining of the
tissue.

3.2.2 Multicell Classification using Transfer Learning

We used InceptionV3 [30, 31] as our base learner, a convolutional neural network architecture
developed by Google. As the original task used for training InceptionV3 is highly dissimilar from
our target task, we experimented beyond simply using CNNs as feature extractors in order to fine
tune (i.e. retrain) InceptionV3’s layers on our data set.

In order to fine tune InceptionV3, the (original) output layer was removed and InceptionV3’s output
volume was spatially compressed, by means of max pooling, before being fed to the hidden layer
of 128 ReLU neurons. Lastly, the (new) classification layer comprised 5 softmax neurons emitting
posterior probabilities of class membership for each cell type (CYT, FIB, HOF, SYN, and VAS).
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4 Results

4.1 Nuclei Localisation using RetinaNet

For solving the nuclei detection task, we implemented both RetinaNet and FCNN-Unet. Both were
able to predict nuclei location, but FCNN/FCNN-Unet were unable to learn non-spherical nuclei and
erroneously over predicted more than one nucleus for elongated cells (Figure S2 and section 6 for
Jupyter notebooks). Further work could explore the impact of learning Gaussians with unequal σ’s to
account for non-spherical nuclei [32].

During RetinaNet training, we implemented stain transformations to account for differences in H&E
staining across samples (section 3.2.1). To test the effect of our stain transformation approach,
RetinaNet was trained with “standard” data augmentation, as well as with data augmentation supple-
mented by stain transformations (see section 6). The results of our experimentation are outlined in
Table 1. By adding stain transformations to the standard data augmentation protocol, we see a minor
improvement in performance across multiple posterior cut offs, especially boosting validation mAP
at the default threshold value (0.50). The generalisation performance of the best model was estimated
by deploying the network on ten held out test images, achieving an mAP of 0.66. We attribute the
discrepancy between validation and test mAPs to be driven by differences in stain concentration
across individuals, given that training, validation and test folds were generated from unique individual
samples (section 3.1.1), and we did not see any overfitting whilst training with early stopping (Figure
S3). Sample stain differences have been recently interpreted as a domain adaptation problem, where
the domain shift is in the difference in staining and/or experimental variability between histology
slides [33]. Lastly, Figure 2 displays examples of predictions returned by RetinaNet.

Nucleus Posterior mAP (A) mAP (A + S) Test mAP (A + S)

0.05 0.80 0.80 -
0.25 0.78 0.79 -
0.35 0.76 0.77 -
0.50 0.69 0.72 0.66

Table 1: RetinaNet performance. Validation mAP across posterior probability thresholds, with
standard data augmentation (A), and with data augmentation supplemented with stain transformations
(A + S). We also report RetinaNet’s test mAP at the chosen posterior probability cut off.

4.2 Deep Learning can Accurately Classify Placental Cells

Our training set is imbalanced, with the majority class (FIB) being more than five times the size of
the minority cell type (HOF). Consequently, in order not to learn a biased hypothesis, we tested
several methods for generating a balanced training sample from curated data. We experimented with
down sampling all classes to the size of the minority class, as well as bootstrapping all cell types
to the size of the majority class. We also trained our model by penalising misclassification based
on the size of classes, thereby trying to force the network to focus on under represented cell types.
Throughout this work we balanced training sets by bootstrapping, as this over sampling approach
achieved the highest validation accuracy (Table S1).

We fine tuned all layers of our CNN by training for 20 epochs with stochastic gradient de-
scent (batches of 85 images), and using a categorical cross entropy loss. We used dropout (with a rate
of 50%) before each fully connected layer and deployed an aggressive data augmentation protocol (at
run time) by implementing random rotations, horizontal/vertical flips, shear and stain transformations
(also see section 6).

Model selection was implemented by saving the network achieving the highest validation
accuracy at the end of training. Lastly, generalisation performance was estimated by deploying the
CNN on the independent test set. The results of our performance assessment are comprehensively
displayed in Figure 3 (confusion matrix) and Table 2 (classification report).
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Figure 2: RetinaNet predictions. A representative test image, displaying predicted bounding boxes
(blue) versus ground truth annotations (yellow).
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Figure 3: InceptionV3’s confusion matrix. Visualisation of error rates, on the independent test set,
across cell types.

We achieved an overall accuracy of 88%. Most cell types were confidently discriminated, with the
lowest class accuracy recorded for Hofbauer cells (minority class). HOFs are extremely challenging
to annotate in term placentas, as the size of the Hofbauer population peaks early in pregnancy [34].
Despite achieving extremely high precision (96%), our cell classifier could only achieve 73% HOF
accuracy because of the high ratio of false negatives (Table 2), as 18% of test HOFs were confused
and misclassified as CYTs (Figure 3).

4.2.1 Boosting Performance with Ensemble Learning

We developed an ensemble system using InceptionV3, InceptionResNetV2 [35], and Xception [36]
as base classifiers. All ensemble members were trained as described in section 4.2 (also see section
6). First of all, somewhat akin to bagging, base learners were trained on different sets generated
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Cell Type Precision Recall F Measure

CYT 0.748 0.905 0.819
FIB 0.875 0.945 0.909
HOF 0.960 0.725 0.826
SYN 0.965 0.975 0.970
VAS 0.899 0.850 0.874

Average 0.890 0.880 0.880

Table 2: Classification report of InceptionV3. Performance assessment, on test data, estimated by
means of precision, recall, and their harmonic mean (F measure). The report also records averaged
statistics, across classes, weighted by their support.

by bootstrapping our curated data. In addition, more variation was injected by using different
convolutional neural network architectures.

In Table 3, we summarise the results of our experimentation by reporting accuracy scores
achieved by each base learner as well as the ensemble system, which selects the cell type predicted
by the most confident base learner.

Model Validation Accuracy Test Accuracy

InceptionV3 90% 88%
InceptionResNetV2 91% 87%

Xception 91% 87%

Ensemble (Max) 91% 89%

Table 3: Performance metrics across models used to develop our cell classifier. Validation and
test accuracies are reported for each of the base cell type classifiers as well as the ensemble model.

Exploiting ensemble learning we were able to improve performance of each base classifier, achieving
an overall accuracy of 89%. Misclassification error types are comprehensively visualised in Figure
S4. Compared to InceptionV3’s results (Figure 3), our ensemble system was capable of boosting
accuracies across most cell types, crucially reducing the error rate for the minority (HOF) class.

4.3 Deploying the Pipeline on Test Tiles

We validated our framework by deploying the pipeline to detect nuclei and predict cell types across
whole test images (not used during previous training or validations). This procedure, whose output
is displayed in Figure 4, generates visualisations capable of capturing local morphology and cell
distributions (additional tiles with superimposed predictions can be found in Figure S5).

It has been shown that heterogenous aggregates of HOFs can be informative descriptors for diagnosing
placentas affected by preeclampsia [37]. Therefore, our pipeline deployment across whole tiles, has
the potential of being a helpful clinical tool aiding obstetricians in, for instance, estimating local cell
population sizes and discovering anomalous cellular aggregates.

4.4 Deep Embeddings Capture Intraclass Phenotypic Variance

Our analyses have demonstrated that the representation learned by our ensemble system encodes
biological knowledge capable of successfully discriminating cell populations. In this section, we
further investigate whether our deep embedding is capable of uncovering phenotypic heterogeneity
within cell populations.

To perform such analysis, we exploited dimensionality reduction (DR) techniques to visualise our 384
dimensional embedding on a 2D plane. The vast majority of DR approaches (e.g. PCA) implement
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Figure 4: Pipeline deployment on a test tile. By deploying our approach for prediction on whole
images, we are able to visualise local cellular distributions and population sizes. For instance, the
image contains two blood vessels and our pipeline estimated the majority of cells (57.1%) are of
vascular type.

linear algorithms and, consequently, can only capture global characteristics of the original feature
space [38]. Accordingly, linear methods are insensitive to phenotypic variance expected in placental
cell populations. For this reason, we used tSNE [38], a nonlinear DR technique capable of preserving
global as well as local patterns in our deep representation. This nonlinear method has already been
applied to (high dimensional) biological imaging data, and it has been shown to outperform linear
DR techniques [39, 40].

In Figure 5, we visualise the two dimensional tSNE projection of our deep embedding. The learned
representation encodes knowledge which is capable of segregating cell populations as well as
capturing intraclass phenotypic variance. For instance, FIBs are characterised by the presence of
two subpopulations, and representative images drawn from these subclusters are displayed in Figure
6. FIBs exhibit high variance in their morphology since they can appear as either “plump” (active)
or elongated (inactive) cells [41]. This distinction is evident in Figure 5, testifying how our deep
representation is capable of discovering phenotypic signatures amongst cell subpopulations. A similar
phenomenon is observed, to a lesser extent, for the SYN population, and images sampled from these
two subclusters are displayed in Figure S6.

5 Discussion

We developed and presented a computational pipeline to analyse placental histology imaging. We
designed an embarrassingly parallel framework, exploiting deep learning models to solve two inde-
pendent computer vision tasks. Our nuclei locator can account for the high cellular morphological
variance characterising placental tissues, to detect nuclei robustly. We developed a cell classifier capa-
ble of accurately (89%) segregating cells within five populations. Furthermore, our approach learned
a deep embedding encoding phenotypic knowledge enabling the stratification of cell populations into
subclusters of distinct morphological signatures.

There are several avenues for future improvement of our deep learning pipeline. The SYN population
is stratified into subclasses since SYNs can appear as either well defined cells, or densely packed
SYN aggregates known as syncytial knots (Figure S6). SYN knots are of great biological interest:
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Figure 5: tSNE representation of our learned embedding. The tSNE projection of test data. A
clear separation into five cell types is observed, as well as stratification into subpopulations not
explicitly annotated.

(a) Inactive Fibroblasts. (b) Active Fibroblasts.

Figure 6: FIB subpopulations. In panel (a), we have representative examples drawn from the FIB
subcluster on the left of the tSNE plot. In (b) we have images from the subpopulation located at the
top of Figure 5, the FIB cluster closer to CYT data points.

by analysing their morphology it is possible to discriminate healthy placentas from those affected
by anomalous villi maturation [42]. Contrary to individual SYNs, syncytial knots are challenging
to annotate due to H&E stain saturation. Therefore, in its current state, our localisation module is
unable to capture most nuclei located within knots. Additional work could address this limitation by
treating syncytial knots as an additional object for detection with RetinaNet.

Spatial context when annotating histology is important for both trained pathologists and
CNNs when conducting inferences about cell type classification. For example, in Figure 4, a
monocyte that is present in the vasculature and surrounded by red blood cells is misclassified as VAS.
With larger training sets, we expect our model (and any given deep CNN) to become invariant to this,
with learned representations being more specific to precise VAS cellular morphology. Finally, whilst
RetinaNet is trainable end to end it still has two hyperparameters that need to be tuned, the posterior
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probability used for classification and the number of bounding boxes predicted per image. For our
application, nuclei number can vary by an order of magnitude across images. Further work could
explore learning the total number of objects per image as a regression task at test time.

For our ensemble model, the overall error rate could be reduced by boosting HOF accuracy, currently
at 75%. This can be achieved by reducing the confusion between HOF and CYT examples (Figure
S4). Hofbauer cells are macrophages and are often found in close proximity to Cytotrophoblasts [43],
therefore it would be possible to increase our model’s discriminatory power by encoding more spatial
context within training images. Reducing HOF classification error therefore requires further careful
analyses that we leave to future work.

There is mounting evidence supporting associations between cellular morphology and biological
function [44]. Thus, we also plan to examine whether there are correlations between learned
representations and cellular morphometric descriptors, e.g. perimeter and area. This line of research
would help deepen our understanding of placental cell populations, as well as their morphology, and
impact on health. Future work will involve the deployment of the pipeline to thousands of placental
histology samples, obtained from both healthy and compromised pregnancies. Objective, unbiased
measures of cellular variation will help us to understand the molecular basis of fundamental placental
biology, population level variability, and its role and impact on fetal and maternal health.

6 Code and Data Availability

This paper comes with a dedicated GitHub repository (https://github.com/Nellaker-group/
TowardsDeepPhenotyping) where we have deposited the scripts, data, and annotations used to
develop the pipeline. All pretrained models are available and could be useful for solving, by means
of transfer learning, computer vision tasks involving histology data.

The computational pipeline was developed in Python 3 using the machine learning libraries
Scikit Learn [45], Keras [46] and TensorFlow [47].
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Figure S1: Representative examples of images used for training the cell classifier. Each row
corresponds to one cell type, displaying multiple examples to capture morphological variance within
and across cell populations. Each image is a crop of 200× 200 pixels centred at the location of the
nucleus.
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5

Figure S2: FCNN-Unet predictions. Test image showing how FCNN-Unet consistently predicts
multiple nuclei for elongated cells (fibroblasts).

Figure S3: RetinaNet training losses. Convergence of all four metrics. Model weights were saved
for the best validation mAP.
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Figure S4: Ensemble confusion matrix. By aggregating several base classifiers, we were able to
boost test performance across most cell types.

16



Figure S5: Test time predictions across whole tiles. By deploying the pipeline for predicting across
whole images, we can learn about local morphology and cellular distributions. For instance, the
top panel shows a region deep within the tissue and, consequently, it is enriched with (inactive)
fibroblasts.
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(a) (b)

Figure S6: Stratification of the SYN population. Morphological signatures coming from syn-
cytiotrophoblast subpopulations. Panel (a) shows representative images sampled from the SYN
subcluster at the bottom of Figure 5, which represent nuclei aggregates known as syncytial knots.
Panel (b) displays images drawn from the subcluster closer to the middle of the tSNE plot, i.e. SYN
examples closer to the CYT data cluster.
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Method Validation Accuracy

Bootstrap 90.4%
Class Weights 90%

Down Sampling 88%

Table S1: Performance comparison across data balancing techniques. We fine tuned InceptionV3
with balanced training sets generated by resampling methods (bootstrap and down sampling), and by
penalising missclassification based on class sizes (using class weights).
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