Under review as a conference paper at ICLR 2018

DYNAMICALLY LEARNING THE LEARNING RATES:
ONLINE HYPERPARAMETER OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter tuning is arguably the most important ingredient for obtaining
state of art performance in deep networks. We focus on hyperparameters that are
related to the optimization algorithm, e.g. learning rates, which have a large im-
pact on the training speed and the resulting accuracy. Typically, fixed learning rate
schedules are employed during training. We propose Hyperdyn a dynamic hyper-
parameter optimization method that selects new learning rates on the fly at the end
of each epoch. Our explore-exploit framework combines Bayesian optimization
(BO) with a rejection strategy, based on a simple probabilistic wait and watch
test. We obtain state of art accuracy results on CIFAR and Imagenet datasets, but
with significantly faster training, when compared with the best manually tuned
networks.

1 INTRODUCTION

Hyperparameter tuning is arguably the most important ingredient for obtaining state of art perfor-
mance in deep neural networks. Currently, most networks are manually tuned after extensive trial
and error, and this is derisively referred to as graduate student descent. Hyperparameter optimiza-
tion (HPO), on the other hand, attempts to automate the entire process and remove the need for
human intervention. Previous works on HPO propose various strategies to either adaptively select
good configurations [Snoek et al.|(2012) or to speed up configuration evaluations |Li et al.[(2016).

One drawback behind existing HPO frameworks is that they do not distinguish between different
kinds of hyperparameters and treat them all uniformly. Broadly there are two categories of hyperpa-
rameters: those that are fixed throughout the training process and those that need to be varied during
training. The former class is mostly structural (e.g. network depth and width), while the latter is
mostly related to the optimization algorithm (e.g. learning rates, regularization). The two classes
of hyperparameters have very different behaviors. For structural hyperparameters, online evaluation
is not possible, and we need to wait for the entire training process to be completed, which is very
expensive. On the other hand, for time-varying hyperparameters, it is possible to select parameters
on the fly without waiting for training to finish. In this work we keep the structural hyperparameters
fixed and focus on optimizing the time-varying hyperparameters to improve efficiency, stability, and
accuracy of the training process.

1.1 SUMMARY OF RESULTS

Our main contributions are as follows: (1) We propose Hyperdyn an automated approach for dynam-
ically tuning hyperparameters during the training process, based on the past observations. It selects
new hyperparameters at the end of each epoch by combining Bayesian optimization (BO) machinery
with a simple rejection strategy. It is computationally efficient since it uses Gaussian processes (GP)
and simple probabilistic rejection tests. (2) We show state of art performance on image classification
benchmarks that match the accuracy of manually tuned networks while significantly improving the
training speed. (3) We demonstrate that Hyperdyn is able to automatically decide regions of start,
acceleration and slow down for the training process, and can also adapt to different conditions such
as batch sizes, network architecture, datasets etc.

Although our framework is broadly applicable for any time-varying hyperparameter, we limit our-
selves to selecting learning rates in the experiments. We now describe Hyperdyn in this context. A
set of learning-rate proposals is randomly initialized along with the weights of the neural network.
We choose the best learning rate based on the validation accuracy at the end of the first epoch. For

Under review as a conference paper at ICLR 2018

Dataset Method | 85% | 90% | 95%
CIFAR 10 SGD 1.5x | 2x 2x
ADAM 1x 1x 2x
Imagenet SGD 1.5x | 4x 4x

Table 1: Speed up in training (in terms of no. of iterations) over manually tuned to reach x% of the
best reported top-1 validation accuracy

subsequent epochs, we employ standard Bayesian optimization (BO) to obtain new proposals based
on the Gaussian process framework [Shahriari et al.|(2016). However, we do not always accept the
outcomes of BO. We design a simple probabilistic wait and watch test to decide whether to accept
the BO outcome or to stick to the previously chosen learning rate, based on the improvement of the
validation accuracy over the past few epochs. This rejection test is very crucial for obtaining good
performance. Our experiments show that if we naively switch the learning rate to the BO output
at the end of each epoch, we have training instability and bad generalization performance. This
rejection framework is philosophically similar to the hyperband framework |Li et al.| (2016)) where
more time is spent exploring the more promising choices. Here we require a more sophisticated
framework that utilizes the temporal history to assess whether the current choice of learning rate is
promising or if one should switch to a new learning rate, as proposed by BO.

We investigate performance of Hyperdyn for tuning the learning rates of two most popular opti-
mization algorithms, viz., stochastic gradient descent (SGD) and Adam Kingma & Ba (2014), on
CIFAR-10 and Imagenet datasets. The results are summarized in Table[I] Our method uniformly
trains faster and can quickly reach to a significant % of the best validation accuracy, which was
previously obtained (He et al.| (2015))) after extensive manual tuning. In Section E], we also show
that Hyperdyn outperforms other strong baselines such as epoch-based BO (i.e. no rejection) and
random 5%, i.e., at every epoch we invest 5x resources more in random search than Hyperdyn . Fur-
thermore, we find that our method is stable and trains quickly even under larger batch sizes. We used
a batch size of 1000 for our Imagenet experiments, while the manually tuned baseline was on a much
smaller batch size of 256. Larger batches are preferred for distributed training since they reduce the
relative communication overhead. However, training on larger batches is generally challenging, and
can suffer from poor generalization [Li (2017). The adaptivity of Hyperdyn allows it to overcome
this challenge.

We conduct detailed empirical analysis of Hyperdyn under a variety of conditions. We find that the
learning rates suggested by Hyperdyn for SGD eventually decay, but are not always monotonic in
the beginning. This agrees with the previous results that using more adaptive algorithms such as
Adam is more beneficial in the beginning than at a later stage Wilson et al.| (2017). We find that
learning rates chosen by Hyperdyn generally increase with the batch size, and this rule of thumb
has been used for manual tuning Li (2017). We also verify that the learning rates suggested by
Hyperdyn for Adam eventually converge to values that guarantee theoretical convergence. Further,
we observe that SGD tuned with Hyperdyn outperforms more sophisticated algorithms (e.g. ones
with momentum) that are manually tuned. This suggests the importance of tuning for good learning
rates, compared to having more sophisticated optimization algorithms.

1.2 RELATED WORK

Bayesian Optimization has been widely used to optimize blackbox functions. The most common
frameworks use Gaussian processes (GP) for efficiently selecting good configurations|Shahriari et al.
(2016). Recently,|Li et al.| (2016) introduced Hyperband, which instead focused on speeding up con-
figuration evaluations based on a simple random search strategy. A key feature of Hyperband is that
it adaptively allocates resources using a principled early stopping mechanism. In the context of tun-
ing for learning rates, these methods have been previously employed to tune the schedule of learning
rate decay, while keeping the initial learning rate fixed (L1 et al.|(2016)), |Snoek et al.| (2012)). How-
ever, this does not provide full flexibility in finding the best learning rates in each epoch. Moreover,
these frameworks require for training to be completed in order to carry out their evaluations, which
makes them expensive. On the other hand, Hyperdyn selects new configurations at the end of each
epoch, without requiring for training to finish. Also, most previous works only compare results
across different HPO frameworks, but not with the state of art manually tuned networks. Previous
works report around 80% validation accuracy for the hyperband algorithm on CIFAR-10 and worse

Under review as a conference paper at ICLR 2018

results for other methods such as SMAC and TPE (tree-based BO) and Spearmint (Gaussian pro-
cess)|Li et al.[(2016). None of these previous works report results on Imagenet-like large datasets.

For the task of finding good learning rates, other methods have been proposed that do not rely on
hyperparameter optimization. One strategy is to incorporate more adaptivity into the optimization
algorithm, as seen in Adam Kingma & Ba (2014)), which has better performance in certain cases
over SGD, but requires even more hyperparameters to be tuned. Another algorithm that automati-
cally controls the learning rate of SGD, known as SALERA, was introduced in [Schoenauer-Sebag
et al. (2017). SALERA updates the learning rate by using an exponential moving average and deals
with catastrophic events that occur in SGD (that lead to poor training accuracy) by allowing for
backtracking. However, the learning rate update rule is fixed unless there is a catastrophic event, so
the extent of adaptivity is limited. Additionally, the experiments were only conducted on smaller
datasets such as MNIST and CIFARI1O0, so it is not clear how the algorithm behaves with larger
datasets and larger batch sizes. An RL-based approach to learning on the fly was introduced in|Li &
Malik! (2016). However, the RL framework in general requires a large amount of training data and
the experiments in that work were not conducted on standard benchmark datasets such as CIFAR10
or MNIST. Recently, Goyal et al.|(2017), You et al.|(2017)) proposed methods for large batch training
on Imagenet dataset that achieve state of art Top-1% accuracy. The work there, however, was re-
stricted to designing a learning rate scheduler for SGD for large batch sizes. Hyperdyn on the other
hand is a general framework which can be applied to a wide range of hyperparameter optimization
problems and different kinds of training methods.

The idea of using information learned in one task to improve on a future task, or meta—learning
(Thrun & Pratt (2012)), is also related to the framework of using past information to improve hy-
perparameter choice, considered here. LSTMs were employed to learn the gradient descent updates
in |Andrychowicz et al.| (2016)); [Lv et al.| (2017). However, LSTMs require a large amount training
data and it is not clear if the methods can scale to standard benchmark datasets. Currently, these
techniques have been shown to work for only small scale problems.

The rest of paper is structured as follows — in section [2] we give a brief review of the bayesian
optimization algorithm and gaussian processes that are at the center of Hyperdyn . In section [3| we
describe its in detail. In section] we present the details of the experiments.

2 MATHEMATICAL OVERVIEW

Bayesian optimization has been widely used to find the minimize a black box function. In general,
the black box functions are unknown or difficult to compute and the bayesian optimization algorithm
suggests query points based on the optimization of an “easier” acquisition function. So if the black-
box function was f(-) and we had to minimize f(-). Then we would use the bayesian algorithm as
described in Algorithm[I} This version of Bayesian Optimization in Algorithm I]is a one-step sim-

Algorithm 1 One_Step_-BO

1: input Search Space: S, Mean Function: p(-), Variance Function: o(-)
2: select new 79 by optimizing acquistion function «(-; -)

no = argmax a(n; iu(n), o(n))
nes

3: Query objective function to obtain g
4: return 7)o

plification of the one described in Shahriari et al.| (2016). We next describe the acquisition function
a(+;-) and other statistical details of Algorithm I}

2.1 GAUSSIAN PROCESSES

A Gaussian Process is a nonparamteric statistical model that is characterized by g, og, K(-,-) —
initial mean, initial variance and kernel function respectively. Consider the sequence of points, 7;.y,
(inputs) and y1.,, (noisy observations). We introduce auxillary variables f1.,,, such that f1.,|91., ~
N(m, K) where m; = po(n;), Ki; = K(n;,m;). Then we have that y1.,| f1.n, 05 ~ N (f1.n,081).
Given this GP, we “update” j,,(+), 0, (+) given some observation {(;, y;)}7;, by Algorithm[2]

Under review as a conference paper at ICLR 2018

Algorithm 2 Update_Statistical_ Model
I: input Kernel Function: K, Data: {(n;, y;)}? ;, Initial Kernel Parameters: yi0(-), o2
2: k(n)i = K(n,m:),m; = po(n:), Kij = K(ni,m;5)
pn (1) = po(n) + k() (K + og) ™ (y:n —m)
on(n) = K(n,n) + k()" (K + o)~ (y1.0 — m)

3: return pi, (), 0, (+)

2.2 ACQUISITION FUNCTIONS

A plethora of acquisition functions are discussed in [Shahriari et al.| (2016)), we specifically use
the expected improvement function that we describe now. Consider the improvement function
I(n,v,0) = (v —7)I(v > 7); this captures the amount of improvement over a given threshold
7. Then expected improvement is just E[I(n, v,)] assuming that v is normally distributed with
some mean and variance parametrized by 7. Then we have

agi(1; pin (0), o0 (1)) = E[L(n,v,0)] = (un(n) — 1)@ (%)

+ on<n)¢<""<")n>7> (1)

Un(

Typically 7 = min,, ¥y, i.e., the minimum of noisy observations.

It is not necessary that the kernel function in Algorithm [I]be stationary. In fact there is vast literature
on non-stationary kernels for Bayesian Optimization (See|Gramacy & Lee| (2008))). These methods
are, in general, very complicated. In the following section we propose a simple compositional non-
stationary kernel that works well in practice.

2.3 THE NEED FOR TIME-VARYING KERNEL

The simplicity of Bayesian optimization makes it amenable to blackbox optimizations. However,
there are a few severe limitations of Bayesian optimization that prevent it from being applied directly
to neural network training. First, as stated before, the framework of Bayesian optimization is such
that only one setting of learning rate parameter can be used for the entire duration of training.
Second, even if we were somehow able to use multiple learning rate parameter suggestions while
training, there is no stationarity, i.e., the same learning rates may produce very different results at
different points of training.

In Hyperdyn we use different temporal estimates of the loss function change and use non stationary
kernels to alleviate the two problems mentioned above. By using a simple compositional kernel we
avoid the computational burden associated with general non stationary kernels.

Any training algorithm can be roughly summarized as follows
wyy1 = T (wy, B, Hyperparameters)

where B is a batch of data, 7 denotes the training algorithm and w; are the parameters of some
neural network at epoch ¢ of the algorithm. 7 is run for some predefined number of iterations over
the data. For Hyperdyn we define a new set of hyperparameters that includes the epoch number of
the algorithm

New Hyperparameters = (True Hyperparameters, ¢)
Considering epoch number of the training process as a hyperparameter allows to build a composite
kernel over t and the true hyperparameters; we now get kernels that are non-stationary without too
much overhead from existing stationary ones. Let (11,t1), (12,%2) be the new hyperparameters
where t; is the epoch number, then our kernel is of the form

K((m,t1), (n2,t2)) = Ki1(n1,m2) x Ka(t1,t2) (2)
Now, the K (-, -) kernel can be one of RBF kernel or Matern-x kernels over the true hyperparam-
eters, as in standard literature, we will describe K5 (-,), now referred to as the time kernel, in the
following section. Unlike the true hyperparameters, we do not need to optimize over the epoch num-
ber, i.e., t;s behave in a specific way {1, 2, ..., } upto end of training process. Such a formulation

Under review as a conference paper at ICLR 2018

only helps in introducing non—stationarity in the kernels we use for Bayesian optimization. This is
realized by changing the search space for epoch number in the Bayesian optimization to [¢,¢] for
every epoch number ¢.

2.4 OUR CHOICE OF TIME KERNEL

We use a similar approach to|Swersky et al.[(2014)) Section 3 for training curves. The kernel K-, -)
is of the form
[ee] Ba

Kaltnt) = [exp (Al — () = gt

where the last equality is obtained by choosing (\) = %)\O‘*l exp (—AQB). This construction is
motivated from the observation that SGD decays as O(1/N'/?) in N iterations, which in our case
reduced to « = 1, 8 = 1/2, and from work in|Swersky et al. (2014).

3 PROPOSED HPO ALGORITHM

Hyperdyn is comprised of some crucial moving parts. At the beginning we have no information
and employ a purely exploratory approach as described in Algorithm [3] The function Valida-

Algorithm 3 Random_Start

NN weights: w
Input: Hyperparameter Search Space: .S, Number of Initial Search Points: k
Initialization D = {}, w ~ Normal(0, 1)
fori=1,2,...,kdo
Generate p; € S uniformly at random
D = DU {((p;,0), Validation_Accuracy(w, p;)) }
end for
k* = arg maxy <;<y, Validation_Accuracy(w, p;))
w* = Update_Weights(w, pj~)
return w*, py~, D, Validation_Accuracy(w*, 0)

—

A A A A S

—

tion_Accuracy(-, -) takes in as input weights (first argument) and hyperparameter values (second
argument) and updates weights. The output is top-1 accuracy on the validation set for the updated
weights. Function Random_Start gives our main algorithm, which we describe in Algorithm[d] some
initial information for a more exploitive approach. In Algorithm [Update_Weights simply updates

Algorithm 4 Hyperdyn

1: NN weights: w;, Hyperparameters: 7

2: Input: Hyperparameter Search Space: S, Number of Initial Search Points: k£, Window: A
Kernel parameters: jio(+), o2, Kernel Function: K

3: Imitialization: wy, 19, Dy, acc +— Random_Start(S, k)

4: fort=1,2,...,T do

5 p(+),0¢(-) = Update_Statistical Model(KC, D;_1, o (), 03)

6: (Sta t) = One*Step‘BO(S X [ta t]a ,U't(')a Ut('))

7: acc_diffy « Validation_Accuracy(w;_1,m:—1) — acc

acc_diff; «+ Validation_Accuracy(w;_1, s;) — acc
8: Dy =Di_1 U{((nt—1,1),accdiffy), ((s¢,t), acc_diffy) }
9: if Check_Accuracy_Trend(w;.;—1,A) then

10: wy = Update_Weights(ws—1,mt—1), 0 = Mt—1
11: else

12: w; = Update_Weights(ws_1, 8¢), Nt = St

13: endif

14: acc = Validation_Accuracy(wy, 0)

15: end for

the old weights using the chosen hyperparameter setting. For example, if we are doing SGD then

Under review as a conference paper at ICLR 2018

Update_Weights is
W1 € W — N Z Vf(z)

zeB
The function Update_Statistical Model has been described in Section We might be tempted to
switch to the best performing hyperparameter value at every epoch (Lines 9 — 14). As we will show,
that such a myopic switching (between hyperparameters) strategy is a hindrance when it comes to
good generalization performance. The function Check_Accuracy_Trend, described in Algorithm [5]
prevents us from changing our hyperparameters unnecessarily. The idea is that if a hyperparameter
choice has been improving on the validation accuracy, then there is no incentive to change.

Algorithm 5 Check_Accuracy_Trend
1: Input: {wy,ws,...,w;}, Window = A, Temperature = T', offset = b

2: Generate u ~ U0, 1]

3: y; = Validation_Accuracy(w;,0) VI € {1,2,...,7}
4: ifexp (T~ (y; — yr—a) — b) > u then

5: return True

6: else

7: return False

8: end if

An initial offset is provided so that there is a small probability of changing hyperparameter values
even when current values are performing well.

4 EXPERIMENTS

The experiments were conducted on Amazon AWS p2x16 EC2 machines. We only use data paral-
lelism for gradient computation in SGD across different GPUs, i.e., if there are kK GPUs and a batch
size of « then each GPU calculates the gradient on a batch size of «/k and this is summed across
GPUs before weight update. The datasets used were CIFAR10 and Imagenet 1K. We employed sim-
ple augmentations as described in |He et al.|(2015). We also consider their results as the state of art
since the structural setting (neural network architecture, augmentation settings etc.) there is closest
to the one here. Further for batch sizes not included there we use scaling rules described in |Goyal
et al.[(2017). The number of initial search points for Random _Start was 5. In our experiments on
Hyperdyn we only use learning rate and momentum for hyperparameter optimization. The window
size used is 4, temperature is 1 and offset is 0.01. The window size should not be too small ~ 1 as
it leads to very high variance while training, and for the experiments that we run older observations
become obsolete fast and a large window size is unnecessary.

4.1 EXPERIMENTS ON CIFAR10

Comparison to Manually Tuned Networks: In this section we presents results when the weight up-
date mechanism is momentum-SGD. We compare the performance of Hyperdyn -tuned momentum-
SGD versus the manually tuned momentum-SGD as described in |He et al.| (2015) on a ResNet-20.
Each epoch indicates (num_points/batch_size) number of iterations. As shown in Fig. 1(c)
Hyperdyn tuning is always faster (at reaching superior generalization performance) than the man-
ually tuned one. Table [I| shows the number of iterations after which a certain top-1 accuracy is
reached for a ResNet-20 with batch size 128. Hyperdyn tuned SGD is substantially faster than the
fixed schedule manually tuned SGD. There is no additional tuning required for Hyperdyn and as a
result we circumvent hours of trial and error to get the hyperparameters right.

Dynamics of Hyperdyn : For any stable recursive stochastic algorithm (for details see |Gelfand &
Mitter| (1991)) it must be true that n, — 0 as K — oo, where 7, is the learning rate at iteration
k. In Fig. we observe that Hyperdyn tuning automatically tends to O as the learning process
progresses. Empirically it has been found that larger learning rates are needed for larger batches in
the manual setting L1 (2017) and Hyperdyn is automatically able to achieve this. As can be seen in
Fig. 2(a)| the average learning rate increases as we increase the batch size from 128 to 2k. However,
the same trend does not translate, when the batch size is doubled further. A possible explanation to
this maybe that we are already in a very large batch regime ~ 10% of dataset size and the learning
rate dynamics behave very differently. Further, we study Hyperdyn in Figure for tuning SGD

Under review as a conference paper at ICLR 2018

0.9 0.9
Y N v A g M
508 SR g W s G N
I A& e V- - = i
307 /‘- gos N '
< [<05 L
06 04 ¥
" 03
05 ‘ 0 5 10 15 20 25
0 5 10 15 20 25
Epoch Epoch
——Hyperdyn -*Manual ——Hyperdyn -*Manual
(a) Hyperdyn vs Manual (batch size=128) (b) Hyperdyn vs Manual (batch size=1k)
0.8 0.9 —*-Random 5x Hyperdyn Bayesian Optimization
0.7 ~a
- 0.8 e
0.6 - - > =
gos ~ 5 07 :
3 ol g
g 0.4 Ve 3 06
03 <
0.2 05
01 0.4
0 5 10 15 20 25
Epoch 03
0 5 10 15 20 25
=—Hyperdyn -*Manual Epoch
(¢) Hyperdyn vs Manual (batch size=4k) (d) Hyperdyn vs Other Algorithms

Figure 1: Hyperdyn Performance

when the momentum term is set to 0. We observe that it outperforms manually tuned SGD with
momentum, which is a more sophisticated algorithm. This suggests that it is more important to
find good learning rates for a simple algorithm, rather than attempt to design a more sophisticated
algorithm. Moreover, the wait and watch strategy of Hyperdyn is incorporating past information for
stability, similar in principle to momentum. This could also explain why SGD tuned with Hyperdyn
can outperform manually tuned SGD with momentum.

0.5
0.95

0.4 0.85
03 — 0.75 /\/J\/\/x/\/‘
t 065 ’
s
0.2 ‘ 0.55)
045

o
B
—
Accuracy

o
=~ = L

0 L=d]4‘*_ ! j L5 S 035

0 100 Epoch 200 025

0 10 20 30 40 50
Epoch
~=Batch Size 128 Batch Size 2000 Batch Size 4000 —-Manual-With Mom -*-Manual-No Mom Hyperdyn-No mom
(a) Learning Rate variation in Hyperdyn (b) No Momentum Hyperdyn

Figure 2: Dynamics of Hyperdyn

Comparison of Hyperdyn with Other Schemes: We compare Hyperdyn to a greedy version
of it, where we switch to the best performing hyperparameter in every epoch. This greedy
method, or epoch based Bayesian optimization, is obtained by setting the offset i.e., b = oo
in Check_Accuracy_Trend sub-routine; which is nothing but the standard Bayesian optimization
method with compositional kernel incorporating the temporal dependence. However, as Fig.
shows, the epoch based BO has poor generalization. We set the batch size of 1000 on ResNet-
20. This observation necessitates the need for a “wait-and-watch” strategy, as realized by the
Check_Accuracy_Trend module. Although the epoch based BO version outperforms in the initial
few epochs, it plateaus quickly and is overtaken by Hyperdyn . The choice of batch size is arbitrary
for Figure[I(d)]as this observation is consistent across different batch sizes. We also compare Hyper-
dyn with a version of random search 5x, i.e., at every epoch we invest 5x resources more in random
search than in Hyperdyn . We find that random search is susceptible to higher variance than Hy-
perdyn , especially at larger batch sizes. Figure shows a typical comparison of random search
5x and Hyperdyn . We employed a variant of Hyperband where we reduced the search space of
learning rate by 0.1 instead of successive halving and did not find any improvement in performance
over random search 5x.

Under review as a conference paper at ICLR 2018

Using Hyperdyn with Adam: In addition to SGD, Adam is commonly used for optimization. It is
adaptive, computationally and memory efficient, but also works for non-stationary objectives and
noisy environments Kingma & Ba (2014)). Typically, Adam is employed for the initial part of the
training process while SGD is used near the end. We use Hyperdyn to optimize the hyperparameters
of Adam, i.e. learning rates 31, 8> in |Kingma & Ba|(2014). Hyperdyn tuned Adam is much faster
than manually tuned Adam (in terms of number of iterations) and also generalizes better on ResNet-
20 with batch size 128. As our HPO algorithm proceeds, we observe convergence of learning rates

0.9 P —— own 06 !
Zos .{’ 0.5 ~ ‘ ‘ (L]} o5
3 H 0.4 (Ll
3 0 7 ; ﬂr ‘ | L | 0.6
0. 0.3 i ‘
¢ | 04
0.6 02 | |
oo 1 e)
0.5 0 Il "“ﬂ.;—-‘w—-___ 0
0 100 Epoch 200 300 0 100 Epoch 200 300
—~Hyperdyn --Adam —betal —beta2
(a) Top-1% Accuracy (®) B1, B2

Figure 3: Hyperdyn tuned Adam
as f1 — 0 and f3 is around 1, i.e. the momentum coefficient 3; becomes very small (Fig. 3(b)).
It turns out that these limits are also needed to establish good theoretical properties for Adam; see
Corollary 4.2 inKingma & Ba|(2014)). This also matches the previous observation in|Sutskever et al.
(2013) that the momentum coefficient needs to be reduced to obtain good convergence.

4.2 EXPERIMENTS ON IMAGENET

For Imagenet we used ResNet-50 and a batch size of 1000. This batch size is considerably larger
than typical Imagenet experiments, where the batch sizes are ~ 256. We compare in Figure 4| a
Hyperdyn tuned Imagenet training process to a manually tuned one. Note that the batch size for the
two are different because a manual Imagenet tuning is hard for a batch size of 1000. As a result
we achieve the same accuracy much faster than a manually tuned training process. Additionally,
results in [You et al.| (2017) suggest that (upto 40 epochs) Hyperdyn gives the best performance.

5 CONCLUSION 08
0.7 o e

In this work we introduced a general framework 0.6 /”fv\/\/
for a certain class of hyperparameter optimiza- 05 /V,,»M'
tion. The algorithm here has the advantage that ¢ 4 /]
it is fast, flexible — can be used on any objec- § %3
tive function and training method, and stable 02

. 0.1
on larger batch sizes. We demonstrated that 0
our proposed optimizer is faster and at least as o 5 10 15 20 25 30 35 40
accurate as SGD (with momentum) or Adam. Epoch

——Hyperdyn (Batch Size 1000) Manual (Batch Size 256)

We also show that Hyperdyn is stable for larger
batch sizes on Imagenet (achieves acceptable i
accuracy with 4x speed). We demonstrate how ~ Figure 4: Top-1% Acc. of Hyperdyn vs Manual
too much exploration can be detrimental to gen-

eralization accuracy of a training process, and propose a probabilistic “wait-and-watch” strategy.

Currently we do not parallelize Hyperdyn ; however, computing Validation_Accuracy on the sug-
gestion from One_Step_BO can be easily parallelized. At each epoch we make only suggestion and
the validation accuracy on this suggestion can be computed independently of the current hyperpa-
rameter setting. In the general case, when we make multiple suggestions we can parallelize in a
similar fashion to [Snoek et al| (2012). We also observe that epoch-based BO in Fig. [I(d)] outper-
forms Hyperdyn in the initial epochs. One future direction maybe to have time varying temperature
in Check_Accuracy_Trend based on epoch. We can also exploit the temporal gains obtained by using
a backtrack algorithm at the later stages of the algorithm — at a stage when accuracy is sufficiently
high but more sophisticated tuning is required to get the best error rates.

Under review as a conference paper at ICLR 2018

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pp. 3981-3989, 2016.

Saul B Gelfand and Sanjoy K Mitter. Recursive stochastic algorithms for global optimization in r"d.
SIAM Journal on Control and Optimization, 29(5):999-1018, 1991.

Priya Goyal, Piotr Dollér, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Robert B Gramacy and Herbert K H Lee. Bayesian treed gaussian process models with an applica-
tion to computer modeling. Journal of the American Statistical Association, 103(483):1119-1130,
2008.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. ArXiv e-prints,
December 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

Mu Li. Scaling Distributed Machine Learning with System and Algorithm Co-design. PhD thesis,
Intel, 2017.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. arXiv preprint arXiv:1703.03633, 2017.

A. Schoenauer-Sebag, M. Schoenauer, and M. Sebag. Stochastic Gradient Descent: Going As Fast
As Possible But Not Faster. ArXiv e-prints, September 2017.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148-175, 2016.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pp. 2951-2959, 2012.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139-1147, 2013.

K. Swersky, J. Snoek, and R. Prescott Adams. Freeze-Thaw Bayesian Optimization. ArXiv e-prints,
June 2014.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The Marginal Value of Adaptive
Gradient Methods in Machine Learning. ArXiv e-prints, May 2017.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer. 100-epoch ImageNet Training with
AlexNet in 24 Minutes. ArXiv e-prints, September 2017.

	Introduction
	Summary of Results
	Related Work

	Mathematical Overview
	Gaussian Processes
	Acquisition Functions
	The need for time-varying kernel
	Our Choice of Time Kernel

	Proposed HPO Algorithm
	Experiments
	Experiments on CIFAR10
	Experiments on Imagenet

	Conclusion

