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ABSTRACT

In most current formulations of adversarial training, the discriminators can be
expressed as single-input operators, that is, the mapping they define is separable
over observations. In this work, we argue that this property might help explain the
infamous mode collapse phenomenon in adversarially-trained generative models.
Inspired by discrepancy measures and two-sample tests between probability dis-
tributions, we propose distributional adversaries that operate on samples, i.e., on
sets of multiple points drawn from a distribution, rather than on single observa-
tions. We show how they can be easily implemented on top of existing models.
Various experimental results show that generators trained in combination with our
distributional adversaries are much more stable and are remarkably less prone to
mode collapse than traditional models trained with observation-wise prediction
discriminators. In addition, the application of our framework to domain adaptation
results in strong improvement over baselines.

1 INTRODUCTION

Adversarial training of neural networks, especially Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014), has proven to be a powerful tool for learning rich models, leading to outstanding
results in various tasks such as realistic image generation, text to image synthesis, 3D object gen-
eration, and video prediction (Reed et al., 2016; Wu et al., 2016; Vondrick et al., 2016). Despite
their success, GANs are known to be difficult to train. The generator and discriminator can oscillate
significantly from iteration to iteration, and slight imbalances in their capacities frequently cause the
training objective to diverge. Another common problem suffered by GANs is mode collapse, where
the distribution learned by the generator concentrates on a few modes of the true data distribution,
ignoring the rest of the space. In the case of images, this failure results in generated images that albeit
realistic, lack diversity and reduce to a handful of prototypes.

A flurry of recent research seeks to understand and address the causes of instability and mode collapse
in adversarially-trained models. The first insights come from Goodfellow et al. (2014), who note that
one of the main causes of training instability is saturation of the discriminator. Arjovsky & Bottou
(2017) formalize this idea by showing that if the two distributions have supports that are disjoint or
concentrated on low-dimensional manifolds that do not perfectly align, then there exists an optimal
discriminator with perfect classification accuracy almost everywhere and the usual divergences
(Kullback-Leibler, Jensen-Shannon) max-out for this discriminator. In follow-up work, Arjovsky
et al. (2017) propose an alternative training scheme (WGAN) based on estimating the Wasserstein
distance instead of the Jensen-Shannon divergence between real and generated distributions.

In this work, we highlight a further view on mode collapse. The discriminator part of GANs and of
variations like WGANs is separable over observations, which, as we will illustrate, can result in serious
problems, even when minibatches are used. The underlying issue is that the stochastic gradients
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are essentially (sums of) functions of single observations (training points). Despite connections to
two-sample tests based on Jensen-Shannon divergence, ultimately the updates based on gradients
from different single observations are completely independent of each other. We show how this lack
of sharing information between observations may explain mode collapses in GANs.

Motivated by these insights, we take a different perspective on adversarial training and propose
a framework that brings the discriminator closer to a truly distributional adversary, i.e., one that
considers a sample1 (a set of observations) in its entirety, retaining and sharing global information
between gradients. The key insight is that a carefully placed nonlinearity in the form of specific
population comparisons can enable information-sharing and thereby stabilize training. We develop
and test two such models, and also connect them to other popular ideas in deep learning and statistics.

Contributions. The main contributions of this work are as follows:
• We introduce a new distributional framework for adversarial training of neural networks that
operates on a genuine sample, i.e., a collection of points, rather than an observation. This choice is
orthogonal to modifications of the types of loss (e.g. logistic vs. Wasserstein) in the literature.
• We show how off-the-shelf discriminator networks can be made distribution-aware via simple
modifications to their architecture and how existing models can seamlessly fit into this framework.
• Empirically, our distributional adversarial framework leads to more stable training and signifi-
cantly better mode coverage than common single-observation methods. A direct application of our
framework to domain adaptation results in strong improvements over baselines.

2 FAILURE OF SINGLE-OBSERVATION DISCRIMINATORS

To motivate our distributional approaches, we illustrate with the example of the original GAN how
training with single-observation-based adversaries might lead to an unrecoverable mode collapse in
the generator. The objective function for a GAN with generator G and discriminator D is

min
G

max
D

V (G,D) = min
G

max
D
{Ex∼Px [logD(x)] + Ez∼Pz [log(1−D(G(z)))]} , (2.1)

where D : Rd → [0, 1] maps an observation to the probability that it comes from data distribution Px,
and G : Rl → Rd is a network parametrized by θG that maps a noise vector z ∈ Rl, drawn from a
simple distribution Pz , to the original data space. The aim of G is to make the distribution PG of its
generated outputs indistinguishable from the training distribution.

In practice, G is trained to instead maximize logD(G(z)) to prevent loss saturation early in the
training. Goodfellow et al. (2014) showed that the discriminator converges in the limit to D∗(x) =
Px(x)/(Px(x) + PG(x)) for a fixed G. In this limit, given a sample Z = {z(1), . . . , z(B)} from the
noise distribution Pz , the gradient of G’s loss with respect to its parameters θG is

∇θG loss(Z) =
1

B

∑B

i=1

1

D(G(z(i)))
∇D(G(z(i)))

[ d

dθG
G(z(i))

]
, (2.2)

where we slightly abuse the notation d
dθG

G to denote G’s Jacobian matrix. Thus, the gradient with

respect to each observation is weighted by terms of the form ∇D(x
(i)
G )/D(x

(i)
G ), where x(i)

G :=

G(z(i)). These terms can be interpreted as relative slopes of the discriminator’s confidence function.
Their magnitude and sign depend on dD

dxG
(the slope of D around xG) and on D(xG), the confidence

that xG is drawn from Px. In at least one notable case this ratio is unambiguously low: values of x
where the discriminator has high confidence of real samples and flat slope. This implies that given
the definition of D∗, the weighting term will vanish in regions of the space where the generator’s
distribution has constant, low probability compared to the real distribution, such as neighborhoods of
the support of Px where PG is missing a mode. Figure 1 exemplifies this situation for a simple case
in 1D where the real distribution is bimodal and the generator’s distribution is currently concentrated
around one of the modes. The cyan dashed line is the weighting term ∇D(xG)/D(xG), confirming
our analysis above that gradients for points around the second mode will vanish.

The effect of this vanishing of mode-seeking gradients during training is that it prevents G from
spreading mass to other modes, particularly to distant ones. Whenever G does generate a point in a

1Throughout this paper we will use the term sample to refer to a set of instances generated from a distribution,
and observation to refer to an element of that sample.
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Figure 1: Intuition behind mode-
collapsing behavior in single-
observation discriminators with
logistic loss. The current generated
distribution (solid green line) covers
only one of the true distribution’s
modes. Gradients with respect to
generated points x are weighted by
the term − 1

D
dD
dx (cyan dashed line),

so gradients corresponding to points
close to the second mode will be
dominated by those coming from
the first mode.

region far away from where most of its mass is concentrated (an event that by definition already occurs
with low probability), this example’s gradient (which would update G’s parameters to move mass to
this region) will be heavily down-weighted and therefore dominated by high-weighted gradients of
other examples in the batch, such as those in spiked high-density regions. The result is a catastrophic
averaging-out. A typical run of a GAN suffering from this phenomenon on a simple distribution is
shown in Figure 2 (top row), where the generator keeps generating points from the same mode across
the training procedure and is unable to recover from mode collapse.

At a high level, this mode-collapsing phenomenon is a consequence of a myopic discriminator that
bases its predictions on a single observation, leading to gradients that are not harmonized by global
information.2 Discriminators that instead predict based on an entire sample are a natural way to
address this issue (Figure 2, bottom two rows), as we will show in the remainder of this work.

3 DISTRIBUTIONAL APPROACHES TO ADVERSARIAL TRAINING

To mitigate the above noted failure, we seek a discriminator that considers a sample (multiple
observations) instead of a single observation when predicting whether the input is drawn from
Px. More concretely, our discriminator is a set function M : 2R

d → R that operates on a sample
{x(1), . . . , x(B)} of potentially varying size. Next, we construct this discriminator step by step.

3.1 DISTRIBUTIONAL ADVERSARIES

Neural Mean Embedding. Despite its simplicity, the mean is a surprisingly useful statistic for
discerning between distributions, and is central to the Maximum Mean Discrepancy (MMD) (Gretton
et al., 2005; Fukumizu et al., 2008; Smola et al., 2007), a powerful discrepancy measure between
distributions that enjoys strong theoretical properties. Instead of designing a kernel explicitly as
in MMD, here we learn it in a fully data-driven fashion. Specifically, we define a neural mean
embedding (NME) η, where φ is learned as a neural network:

η(P) = Ex∼P[φ(x)]. (3.1)

In practice, η only has access to P through samples of finite size {x(i)}Bi=1 ∼ P, thus one effectively
uses the empirical estimate

η̂(X = {x(1), . . . , x(B)}) = 1
B

∑B

i=1
φ(x(i)). (3.2)

This distributional encoder forms one pillar of our adversarial learning framework. We propose two
alternative adversary models that build on this NME to discriminate between samples and produce a
rich training signal for the generator.

2Note that even if training with minibatches, the aggregation happens after D’s computation, preventing
harmonization. This is not the case for the adversaries proposed in Section 3.
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Sample Classifier. First, we combine the NME with a classifier to build a discriminator for adver-
sarial training. That is, given an empirical estimate η̂(X) from a sample X (drawn from the real data
Px or the generated distribution PG), the classifier ψS outputs 1 to indicate the sample was drawn
from Px and 0 otherwise. Scoring the discriminator’s predictions via the logistic loss leads to the
following value function for the adversarial game:

VS(G,DS) = log(DS(X)) + log(1−DS(G(Z))), (3.3)

where X and Z are samples from Px and Pz respectively, and DS(·) = ψS ◦ η̂(·) is the full
discriminator (NME and classifier), which we refer to as the sample classifier. Eq. (3.3) is similar
to the original GAN objective (2.1), but differs in a crucial aspect: here, the expectation is inside
ψS , and the classifier is only predicting one label for the entire sample instead of one label for each
observation. In other words, while in a GAND operates on single observations and then aggregates its
predictions, here DS first aggregates the sample and then operates on this aggregated representation.

Two-sample Discriminator. Inspired by two-sample tests, we alternatively propose to shift from a
classification to a discrepancy objective, that is, given two samples X,Z drawn independently, the
discriminator predicts whether they are drawn from the same or different distributions. Concretely,
given two NMEs η(P1) and η(P2), the two-sample discriminator ψ2S uses their absolute difference
to output ψ2S(|η(P1) − η(P2)|) ∈ [0, 1], interpreted as the confidence that the two samples were
indeed drawn from different distributions. Again with the logistic loss, we arrive at the objective
function

V2S(G,D2S) = log(D2S(G(Z), X))+

1

2
(log(1−D2S(G(Z1), G(Z2))) + log(1−D2S(X1, X2))) ,

(3.4)

where we split each of the two samples X and Z into halves (X1, X2 from X and Z1, Z2 from Z),
and the second line evaluates the discrepancy between the two parts of the same sample, respectively.
As before, we use D2S(·, ·) = ψ2S ◦ |η̂(·) − η̂(·)| to denote the full model and refer to it as a
two-sample discriminator.

Choice of Objective Function. Despite many existing adversarial objective functions in the lit-
erature (Mao et al., 2016; Arjovsky et al., 2017; Mroueh & Sercu, 2017; Bellemare et al., 2017;
Li et al., 2017; Mroueh et al., 2017), here we use the logistic loss to keep the presentation simple,
to control for varying factors and to extract the effect of just our main contribution: namely, that
the adversary is distribution-based and returns only one label per sample, a crucial departure from
existing, single-observation adversary models such as the well-understood vanilla GAN. This choice
is orthogonal to modifications of the types of loss (e.g., logistic vs. Wasserstein). It can, indeed, be
seamlessly combined with most existing models to enhance their ability to match distributions.

3.2 DISTRIBUTIONAL ADVERSARIAL NETWORKS

We use the novel distributional adversaries proposed above in a new training framework that we
name Distributional Adversarial Network (DAN). This framework can easily be combined with
existing adversarial training algorithms by a simple modification of their adversaries. In this section,
we examine in detail an example application of DAN to the generative adversarial setting. In the
experiments section we provide an additional application to adversarial domain adaptation.

Using distributional adversaries within the context of GANs yields a saddle-point problem analogous
to the original GAN (2.1):

min
G

max
Dξ

Vξ(G,Dξ), (3.5)

where ξ ∈ {S, 2S} and the objective function Vξ is either (3.3) or (3.4); we refer to these as DAN-ξ.
As with GAN, we can optimize (3.5) via alternating updates on G and Dξ.

Although optimizing (3.5) directly yields generators with remarkable performance in simple settings
(see empirical results in Section 5.1), when the data distribution is complex, the distributional
adversaries proposed here can easily overpower G, particularly early in the training when PG and Px
differ substantially. Thus, we propose to optimize instead a regularized version of (3.5):

min
G

max
D,Dξ

Vξ(G,Dξ) + λV (G,D), (3.6)
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where D is a weaker single-observation discriminator (such as the one in the original GAN), and λ is
a parameter that trades off the strength of this regularization. Note that for λ→∞ we recover the
original GAN objective, while λ = 0 yields the purely distributional loss (3.5). In between these two
extremes, the generator receives both local and global training signals for every generated sample.
We show empirically that DAN training is stable across a reasonable range of λ (Appendix B).

During training, all expectations with respect to data and noise distributions are approximated
via finite sample averages. In each training iteration, we draw samples from the data and noise
distributions. While for DAN-S the training procedure is similar to that of GAN, DAN-2S requires
a modified training scheme. Due to the form of the two-sample discriminator, we want a balanced
exposure to pairs of samples drawn from the same and different distributions. Thus, every time
we update D2S , we draw samples X = {x(1), . . . , x(B)} ∼ Px and Z = {z(1), . . . , z(B)} ∼ Pz
from data and noise distributions. We then split each sample into two parts, X1 := {x(i)}

B
2
i=1, X2 =

{x(i)}B
i=B

2 +1
, Z1 := {z(i)}

B
2
i=1, Z2 = {z(i)}B

i=B
2 +1

and use the discriminator D2S to predict on each
pair of (X1, G(Z2)), (G(Z1), X2), (X1, X2) and (G(Z1), G(Z2)) with target outputs 1, 1, 0 and 0,
respectively. A detailed training procedure and its visualization are shown in Appendix A.

3.3 GRADIENT WEIGHT SHARING IN DISTRIBUTIONAL ADVERSARIES

We close this section discussing why the distributional adversaries proposed above overcome the
vanishing gradients phenomenon described in Section 2. In the case of the sample classifier (ξ = S),
a derivation as in Section 2 shows that for a sample Z of B points from the noise distribution, the
gradient of the loss with respect to G’s parameters is

∇θG loss(Z) =
1

ψS(η̂B)
∇ψS(η̂B)

(
1

B

B∑
i=1

∇ψS(G(z(i)))

[
d

dθG
G(z(i))

])
(3.7)

where we use η̂B := η̂({G(z(1)), . . . , G(x(B))}) for ease of notation. Note that, as opposed to (2.2),
the gradient for each variable z(i) is weighted by the same left-most discriminator confidence term.
This has the effect of sharing information across observations when computing gradients: whether
a sample (encoded as a vector η̂B) can fool the discriminator or not will have an effect on every
observation’s gradient. The benefit is clearly revealed in Figure 2 (bottom two rows), where, in
contrast to the vanilla GAN which remains stuck in mode collapse, DAN is able to recover all modes.

The gradient (3.7) suggests that the true power of this sample-based setting lies in choosing a
discriminator ψS that, through non-linearities, enforces interaction between the points in the sample.
The notion of sharing information across examples occurs also in batch normalization (BN) (Ioffe &
Szegedy, 2015), although the mechanism to achieve this interaction and the underlying motivation
for doing it are very different. While the analysis here is not rigorous, the intuitive justification for
sample-based aggregation is clear, and is confirmed by our experimental results.

4 CONNECTIONS

Distributional Adversaries as Discrepancy Measures. Our sample classifier implicitly defines a
general notion of discrepancy between distributions:

dS(P0,P1) = sup
ψS∈Ψ,η∈Ξ

ρ(ψS(η(P1))) + ρ(c− ψS(η(P0))),

for some function classes Ψ and Ξ, a monotone function ρ : R→ R, and constant c. This generalized
discrepancy includes many existing adversarial objectives as special cases. For example, if ρ and ψS
are identity functions, Ξ the space of 1-Lipschitz functions and η an embedding into R, we obtain the
1-Wasserstein distance used by WGAN (Arjovsky et al., 2017; Gulrajani et al., 2017).

Similarly, our two-sample discriminator implicitly defines the following discrepancy:
d2S(P0,P1) = sup

ψ2S∈Ψ,η∈Ξ
ρ(ψ2S(|η(P0)− η(P1)|)), (4.1)

where ψ,Ξ are as before. This form can be thought of as generalizing other discrepancy measures
like MMD (Gretton et al., 2005; Fukumizu et al., 2008; Smola et al., 2007), defined as:

MMD2(U, V ) =
∥∥ 1
n

∑n

i=1
φ(ui)− 1

m

∑m

j=1
φ(vj)

∥∥2

2
,
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where φ(·) is some feature mapping, and k(u, v) = φ(u)>φ(v) is the corresponding kernel function.
Letting φ be the identity function corresponds to computing the distance between the sample means.
More complex kernels result in distances that use higher-order moments of the two samples. In
adversarial models, MMD and its variants (e.g., central moment discrepancy) have been used either
as a direct objective for the target model or as a form of adversary (Zellinger et al., 2017; Sutherland
et al., 2017; Li et al., 2015; Dziugaite et al., 2015). However, most of them require hand-picking
the kernel. An adaptive feature function, in contrast, may be able to adapt to the given distributions
and thereby discriminate better. Our distributional adversary addresses this drawback and, at the
same time, generalizes MMD, owing to the fact that neural networks are universal approximators.
Since it is trainable, the underlying witness function evolves as training proceeds, taking a simpler
form when the two distributions (generated and true data) are easily distinguishable, and becoming
more complex as they start to resemble. In this sense our distributional adversary bears similarity to
the recent work by Li et al. (2017). However, their learned sample embedding is used as input to a
Gaussian kernel to compute the MMD, inheriting the quadratic time complexity (in sample size) of
kernel MMD. Our model uses a neural network on top of the mean embedding differences to compute
the discrepancy, resulting in linear time complexity and additional flexibility.

A more general family of discrepancy measures of interest in the GAN literature are Integral Proba-
bility Metrics (IPM), defined as

dF (P0,P1) = supf∈F |Ex∼P0
f(x)− Ex∼P1

f(x)|,
where F is a set of measurable and bounded real valued functions. Comparing this to Eq. (4.1) shows
that our two-sample discriminator discrepancy generalizes IPMs too. In this sense, our model is also
connected to GAN frameworks based on IPMs (Mroueh & Sercu, 2017; Mroueh et al., 2017).

Minibatch Discrimination. Initiated by (Salimans et al., 2016) to stabilize training, a line of
work in the GAN literature considers statistics of minibatches to train generative models, known
as minibatch discrimination. Batch normalization (Ioffe & Szegedy, 2015) can be viewed as a
form of minibatch discrimination, and is known to aid GAN training (Radford et al., 2015). Zhao
et al. (2017) proposed a repelling regularizer that operates on a minibatch and orthogonalizes the
pairwise sample representation, keeping the model from concentrating on only a few modes. We
derive our adversaries as acting on full distributions instead of batches, but approximate population
expectations with samples in practice. In this sense, our implementation can be viewed as generalizing
minibatch discrimination: we leverage neural networks for the design of different forms of minibatch
discrimination. Such discrimination does not need hand-crafted objectives as in existing work, and
will be able to adapt to the data distribution and target models.

Permutation Invariant Networks. The NME (3.2) is a permutation invariant operator on (un-
ordered) samples. Recent work has explored neural architectures that operate on sets and are likewise
invariant to permutations on their inputs. Vinyals et al. (2016) propose a content attention mechanism
for unordered inputs of variable length. Later work (Ravanbakhsh et al., 2017; Zaheer et al., 2017)
embeds all samples into a fixed-dimensional latent space, and then sums them to obtain a fixed-
dimensional vector representation, used as input to another network. Liu et al. (2017) use a similar
network for embedding a set of images into a latent space, but aggregate using a (learned) weighted
sum. Although the structure of our NEM resembles these networks in terms of permutation invariance,
it differs in its motivation—discrepancy measures—as well as its usage within discriminators in
adversarial training settings.

Other Related Work. Various other approaches have been proposed to address training instability
and mode collapse in GANs. Many such methods resort to more complex network architectures
or better-behaving objectives (Radford et al., 2015; Huang et al., 2017; Zhang et al., 2016; Che
et al., 2017; Zhao et al., 2017; Arjovsky et al., 2017), while others add more discriminators or
generators (Durugkar et al., 2017; Tolstikhin et al., 2017) in the hope that training signals from
multiple sources lead to more stable training and better mode coverage.

5 EMPIRICAL RESULTS

We demonstrate the effectiveness of DAN training by applying it to generative models and do-
main adaptation.3 In generative models, we observe remarkably better mode recovery than non-

3Please refer to the appendix for all details on datasets, network architecture, training procedures and results.
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Figure 2: Mixture of 4 Gaussians. GAN training leads to unrecoverable mode collapse, with only one
of the true distribution’s modes being recovered. The two distributional training approaches (bottom
2 rows, λ = 0) capture all modes, and are able to recover from a missing mode (second column).

distributional models on both synthetic and real datasets, through both qualitative and quantitative
evaluation of generated samples. In domain adaptation, we leverage distributional adversaries to
align latent spaces of source and target domains, and see strong improvements over baselines.

5.1 SYNTHETIC DATA: MODE RECOVERY IN MULTIMODAL DISTRIBUTIONS

We first test DAN in a simple generative setting, where the true data distribution is a simple two-
dimensional mixture of Gaussians. A similar task was used as a proof of concept for mode recovery
by Metz et al. (2017). We generate a mixture of four Gaussians with means equally spaced on
a circle of radius 6, and variances of 0.02. We compare our distributional adversaries against
various discriminator frameworks, including GAN, WGAN (Arjovsky et al., 2017) and WGAN-GP
(Gulrajani et al., 2017). We use equivalent4 simple feed-forward networks with ReLU activations for
all discriminators. For these synthetic distributions, we use the pure distributional objective for DAN
(i.e., setting λ = 0 in (3.5)). Figure 2 displays the results for GAN and our methods; in the appendix,
we show results for other models, different λ settings and other synthetic distributions. Overall, while
other methods suffer from mode collapse throughout (GAN) or are sensitive to network architectures
and hyperparameters (WGAN, WGAN-GP), our DANs consistently recover all modes of the true
distribution and are stable across a reasonable range of λ’s.

5.2 MNIST GENERATION: RECOVERING MODE FREQUENCIES

Mode recovery entails not only capturing a mode, i.e., generating samples that lie in the corresponding
mode, but also recovering the true probability mass of the mode. Next, we evaluate our model on
this criterion: we train DAN on MNIST and Fashion-MNIST (Xiao et al., 2017), both of which have
10-class balanced distributions. Since the generated samples are unlabeled, we train an external
classifier on (Fashion-)MNIST to label the generated data.

Besides the original GAN, we compare to recently proposed generative models: RegGAN (Che
et al., 2017), EBGAN (Zhao et al., 2017), WGAN (Arjovsky et al., 2017) and its variant WGAN-
GP (Gulrajani et al., 2017), and GMMN (Li et al., 2015). To keep the approaches comparable, we
use a similar neural network architecture in all cases, and did not tailor it to any particular model.
We trained models without Batch Normalization (BN), except for RegGAN and EBGAN, which we
observed to consistently benefit from BN. For DAN, we use the the regularized objective (3.5) with
λ > 0. Both adversaries in this formulation use the same architecture except for the averaging layer
of the distributional adversary, and share weights of the pre-averaging layers.

Figure 3 shows the results. Training with the vanilla GAN, RegGAN or GMMN leads to generators
that place too much mass on some modes and ignore others, resulting in larger TV distances between
the generated label distribution and the uniform one. EBGAN and WGAN perform slightly worse than

4The DAN discriminator architecture is identical to the others’, differing only in the aggregation layer.
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Figure 3: Total variation distances (in log-scale) between generated and true (uniform) label distribu-
tions over 5 repetitions. DAN achieves the best and most stable mode frequency recovery.

WGAN-GP and DAN on MNIST, and significantly worse on the (harder) Fashion-MNIST dataset.
WGAN-GP performs on par with DAN on MNIST, and slightly worse than DAN on Fashion-MNIST.
Moreover, WGAN-GP is in general more sensitive to hyperparameter selection (Appendix B).

5.3 IMAGE GENERATION: SAMPLE DIVERSITY AS EVIDENCE OF MODE COVERAGE

We also test DAN on a harder task, generating faces, and compare against the samples generated
by DCGAN. The generated examples in Figure 4 show that DCGAN+BN exhibits an obvious

(a) DCGAN, with BN (b) DCGAN, without BN (c) DAN-S, without BN (d) DAN-2S, without BN

Figure 4: Samples generated by DCGAN, DAN-S and DAN-2S trained on the CelebA dataset.

mode-collapse, with most faces falling into a few clusters. DCGAN without BN generates better
images, but they still lack feature diversity (e.g., backgrounds, hairstyle). The images generated by
DAN, in contrast, exhibit a much richer variety of features, indicating a better coverage of the data
distribution’s modes.

5.4 DOMAIN ADAPTATION

In the last set of experiments, we test DAN in the context of domain adaptation. We compare against
DANN (Ganin et al., 2016), an adversarial training algorithm for domain adaptation that uses a
domain-classifier adversary to enforce similar source and target representations, thus allowing for the

8
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Table 1: Results of domain adaptation on Amazon dataset. We report mean prediction accuracy (plus
standard deviation) over 5 different runs of each method.

Source Target DANN DAN-S DAN-2S

books dvd 77.1 (1.4) 77.8 (0.5) 78.2 (0.8)
books electronics 74.4 (1.1) 75.7 (0.4) 74.8 (1.1)
books kitchen 77.2 (1.1) 79.0 (0.4) 76.9 (0.6)
dvd books 75.0 (0.8) 75.4 (0.9) 74.4 (2.2)
dvd electronics 75.6 (0.9) 76.0 (0.9) 76.3 (1.4)
dvd kitchen 79.4 (1.0) 80.4 (0.9) 78.0 (0.9)
electronics books 70.3 (1.0) 72.4 (0.8) 72.0 (1.9)
electronics dvd 69.4 (2.6) 72.4 (2.0) 72.3 (1.7)
electronics kitchen 83.6 (0.5) 85.0 (0.4) 84.7 (0.7)
kitchen books 69.5 (0.9) 70.4 (0.9) 70.5 (1.4)
kitchen dvd 69.4 (2.2) 73.8 (0.8) 71.5 (2.9)
kitchen electronics 82.7 (0.5) 82.5 (0.2) 83.4 (0.3)

avg. imp (over DANN) — 1.41 0.92

source classifier to be used in combination with the target encoder. We use the DAN framework to
further encourage distributional similarities between representations from different domains.

We first compare the algorithms on the Amazon reviews dataset preprocessed by Chen et al. (2012). It
consists of four domains: books, dvd, electronics and kitchen appliances, each of which contains
reviews encoded in 5,000-dimensional feature vectors and binary labels indicating positive/negative
reviews. Results are shown in Table 1. Our models outperform the GAN-based DANN on most
source-target pairs, with an average improvement in accuracy of 1.41% for DAN-S and 0.92% for
DAN-2S. Note that we directly integrated DAN without any network structure tuning – we simply set
the network structure of the distributional adversary to be the same as that of original discriminator in
DANN (except that it takes an average of latent representations in the middle).

Lastly, we test the effectiveness of DAN on a domain adaptation task for image label prediction.
The task is to adapt from MNIST to MNIST-M (Ganin et al., 2016), which is obtained by blending
digits over patches randomly extracted from color photos from BSDS500 (Arbelaez et al., 2011).
The results are shown in Table 2. DAN-S improves over DANN by ∼ 5%. Again, these results were
obtained by simply plugging in the DAN objective, demonstrating the ease of using DAN.

Table 2: Results of domain adaptation from MNIST to MNIST-M: prediction accuracy averaged over
5 different runs.

Source Only Target Only DANN DAN-S DAN-2S

52.2 (2.0) 95.6 (0.2) 75.5 (0.9) 80.6 (2.8) 79.2 (1.2)

6 DISCUSSION AND FUTURE WORK

In this work, we propose a distributional adversarial framework that, as opposed to common ap-
proaches, does not rely on a sum of observation-wise functions, but considers a sample (collection
of observations) as a whole. We show that when used within generative adversarial networks, this
different approach to distribution discrimination has a stabilizing effect and remedies the well-known
problem of mode collapse. One likely reason for this is its ability to share information across ob-
servations when computing gradients. The experimental results obtained with this new approach
offer a promising glimpse of the advantages of genuine sample-based discriminators over common
alternatives that are separable over observations, while the simplicity and ease of implementation
make this approach an appealing plug-in, easily compatible with most existing models.

9
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The framework proposed here is fairly general and opens the door for various possible extensions.
The two types of discriminators proposed here are by no means the only options. There are many
other approaches in the distributional discrepancy literature to draw inspiration from. One aspect that
warrants additional investigation is the effect of sample size on training stability and mode coverage.
It is sensible to expect that in order to maintain global discrimination power in settings with highly
multimodal distributions, the size of samples fed to the discriminators should grow, at least with the
number of modes. Formalizing this relationship is an interesting avenue for future work.
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A TRAINING FOR DAN

We show the complete training procedure for DAN in Algorithm 1 and a visual illustration in Figure 5.
Note that we set a step number k such that every other k iterations we update the distributional
adversary, otherwise we update the single-observation adversary.

Algorithm 1 Training Procedure for DAN-S/2S.
Input:total number of iterations T , size of minibatch B, step number k, model mode ξ ∈ {S, 2S}
for i = 1 to T do

Draw samples X = {x(1), . . . , x(B)} ∼ Px, Z = {z(1), . . . , z(B)} ∼ Pz
if mod(i, k) = 0 and λ1 > 0 then

if ξ = S then
Update distributional adversary DS = {ψS , η} with one gradient step on loss:

log(ψS(η(X))) + log(1− ψS(η(G(Z))))

else if ξ = 2S then
Divide X and Z evenly into X1, X2 and Z1, Z2 respectively
Update distributional adversary D2S = {ψ2S , η} with one gradient step on loss:

log(ψ2S(|η(X1)− η(X2)|)) + log(ψ2S(|η(G(Z1))− η(G(Z2))|))+
log(1− ψ2S(|η(X1)− η(G(Z2))|)) + log(1− ψ2S(|η(G(Z1))− η(X2)|))

end if
else if λ2 > 0 then

Update discriminator D with one gradient step on loss:

1

B

B∑
i=1

[
log(D(x(i))) + log(1−D(G(z(i))))

]
end if
Draw samples X = {x(1), . . . , x(B)} ∼ Px, Z = {z(1), . . . , z(B)} ∼ Pz
if ξ = S then

Update G with gradient step on loss:

1

B
(λ1

B∑
i=1

log(1−D(G(z(i))))) + λ2 log(1− ψS(η(G(Z)))))

else if ξ = 2S then
Divide X and Z into X1, X2 and Z1, Z2

Update G with gradient step on loss:

1

B
(λ1

B∑
i=1

log(1−D(G(z(i)))))+

λ2/2 log(1− ψ2S(|η(X1)− η(G(Z2))|))+
λ2/2 log(1− ψ2S(|η(G(Z1))− η(X2)|))

end if
end for

B FURTHER RESULTS ON SYNTHETIC DATASET

We first show the full result for mode recovery when the true data distribution is a mixture of 4
Gaussians with variances of 0.02 on a circle of radius 6. The generator consists of a fully connected
network with 3 hidden layers of size 128 with ReLU activations, followed by a linear projection to 2
dimensions. The discriminator consists of a fully connected network with 3 hidden layers of size 32
with ReLU activations, followed by a linear projection to 1 dimension. Latent vectors are sampled
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uniformly from [−1, 1]256. For WGAN, the weight clipping parameter is set to 0.01. For WGAN-GP,
λ the weight for the gradient penalty is set to 0.1. For DAN, the distributional adversaries have two
initial hidden layers of size 32, after which the latent representations are averaged across the batch.
The mean representation is then fed to a fully connected layer of size 32 and a linear projection to 1
dimension. WGAN is optimized using RMSProp (Tieleman & Hinton, 2012) with learning rate of
5× 10−5. All other models are optimized using Adam (Kingma & Ba, 2014) with learning rate of
10−4 and β1 = 0.5. Minibatch size is fixed to 512.

The intuitive argument presented in Sec. 2 suggests that GAN training would result in the same
single mode being recovered throughout, which is also confirmed in the first row of Figure 6: the
generator’s distribution is concentrated around a single mode, from which it cannot due to its inherited
disadvantage of single observation-based discriminator and logistic loss. WGAN does not stuck at a
single mode but the mode collapse still happens. On the other hand, WGAN-GP and DAN is able to
constantly recover all 4 far-apart modes.

Note that the gradient scaling argument in Sec. 2 only says that points far away (i.e. with low
probability under G) from G’s modes will be down weighted. But points close to the boundary of
D’s decision will have a large ∇D(x

(i)
G ) term, and thus up-weighting gradients and can cause the

G’s whole mode to shift towards the boundary. If after this shift, enough of G’s mass falls closer
to another mode, then this can become the attracting point and further concentrate G’s mass. This
suggests that, for distributions with spiked, but close modes, G’s mass should concentrate but possibly
traverse from mode to mode. This effect is indeed commonly observed for the popular 8-gaussians
example shown in Figure 7. All other models follow the same argument as in Figure 6.

Though WGAN-GP is able to recover all modes as DAN, we show that the training for WGAN-GP is
unstable – a slight change in hyperparameter may end up with totally different generator distribution.
We consider the same network architecture as in public available WGAN-GP code5: The generator
consists of a fully connected network with 3 hidden layers of size 512 with ReLU activations,
followed by a linear projection to 2 dimensions. The discriminator consists of a fully connected

5https://github.com/igul222/improved_wgan_training

14

https://github.com/igul222/improved_wgan_training


Workshop track - ICLR 2018

Figure 6: Results for mode recovery on distribution of a mixture of 4 Gaussians on a circle of radius
6. The rightmost plot shows the true data distribution. With GAN training (the 1st row) the generator
is only able to capture the same single one of all modes. WGAN (rows 2) do not get stuck at the same
single mode since they do not use the logistic loss, but the mode collapse still happens. WGAN-GP
and DAN is able to constantly recover all 4 modes.

network with 3 hidden layers of size 512 with ReLU activations, followed by a linear projection to
1 dimension. Latent vectors are sampled uniformly from [−1, 1]2. Distributional adversaries starts
with 2 hidden layers of size 512, then the latent representations are averaged across the batch. The
mean representation is then fed to 1 hidden layer of size 512 and a linear projection to 1 dimension.
Minibatch size is fixed to 256.

For the first set of experiments we optimize using Adam (Kingma & Ba, 2014) with learning rate
of 10−4, β1 = 0.5 and β2 = 0.9, and train the network for 30, 000 iterations, where each iteration
consists of 5 updates for discriminator and 1 for generator for WGAN-GP. The result is shown in
Figure 8. All models successfully capture all modes, despite their separation. However, a slight change
in the optimizer’s parameters to β2 = 0.999 (the default value) causes WGAN-GP to fail sometime
even if we run for 50, 000 iterations, while DAN still constantly recovers the true distribution (cf.
Figure 9). We also experiment with WGAN optimized using RMSProp with learning rate of 5×10−5

under this setting and in contrast to previous experiments where it fails to recover any mode, it is able
to recover all modes using this network architecture. This shows that both WGAN and WGAN-GP
are sensitive to network structure or hyperparameter settings, while DAN is more stable.

Finally, we show that DAN is stable across a reasonable range of λ, the trade-off parameter for single
observation and distributional adversaries. We set λ = {0, 0.2, 0.5, 1, 2, 5, 10} for DAN and the
results are shown in Figure 10 and 11. While both DAN-S and DAN-2S are stable, DAN-2S is stable
in larger range of λ than DAN-S.

To summarize, the trends we observe in these these synthetic experiments are: (i) GAN irremediably
suffers from mode collapse for this simple dataset, (ii) WGAN(+GP) can fail in recovering modes
or are not stable against hyperparameter choices and (iii) DAN constantly recovers all modes and is
stable for all reasonable hyperparameter settings.
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Figure 7: Results for mode recovery on distribution of a mixture of 8 Gaussians on a circle of radius
2. The right-most plot shows the true data distribution. Since modes are closer, the generator in GAN
may not get stuck at generating the same single mode, but oscillate between modes, as confirmed
by the 1st row. WGAN (rows 2) do not get stuck at the same single mode since they do not use the
logistic loss, but the mode collapse still happens. WGAN-GP and DAN is able to constantly recover
all 8 modes.

Figure 8: WGAN (row 1) optimized using RMSProp with learning rate of 5 × 10−5, WGAN-GP
(row 2) and DAN (row 3-4) optimized with Adam with learning rate of 10−4, β1 = 0.5 and β2 = 0.9
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Figure 9: WGAN-GP (rows 1-3) and DAN (rows 4-5) optimized with Adam with learning rate of
10−4, β1 = 0.5 and β2 = 0.999. The first 3 rows show random runs for WGAN-GP – it does not
constantly recover all modes, even if we run it for longer time.

C EXPERIMENT DETAILS ON MNIST

We use the same architecture for the generator across all models: three fully-connected layers of sizes
[256, 512, 1024] with ReLU activations, followed by a fully connected linear layer and a Sigmoid
activation to map it to a 784-dimensional vector. Latent vectors are uniform samples from [−1, 1]256.
For GAN, RegGAN and DAN the single observation discriminators consist of three fully-connected
layers of sizes [1024, 512, 256] with ReLU activations, followed by a fully connected linear layer and
Sigmoid activation to map it to a 1-dimensional value. Both adversaries in DAN’s use the same
architecture except for the averaging layer of the distributional adversary, and share weights of the
pre-averaging layers. This is done to limit the number of additional parameters of the regularizer, so
as to make training more efficient. The architecture for the decoder in EBGAN is the same with the
generator, while the ones for encoders in RegGAN and EBGAN are the same as the discriminator
except for the last layer where it maps to 256-dimensional vectors. For GMMN we use a mixture of
Gaussian kernels with bandwidths in {0.1, 0.5, 1, 5, 10, 50}. Throughout the experiments, we set the
hyperparameters as shown in Table 3.

Model Hypaerparameters

RegGAN λ1 = λ2 = 0.01 ∈ {0.01, 0.1, 1}
EBGAN m = 0.2 ∈ {0.2, 1, 5}
WGAN ncritic = 2, Clip value 0.01

WGAN-GP ncritic = 2, Gradient penalty weight 10
DAN-S k = 5, λ = 2 ∈ {1, 2, 5}
DAN-S k = 5, λ = 5 ∈ {1, 2, 5}

Table 3: Hyperparameter settings, numbers in curly braces are values tried with grid search.

We use Adam with learning rate of 0.0005 and β1 = 0.5, a fixed minibatch size of 256 and 100
epochs of training. For models except WGAN and DAN we train by alternating between generator
and adversary (and potentially encoder and decoder) updates. Generated digits by each model are
shown in Figure 12, where we observe a clear advantage of DAN-S and DAN-2S over all other
baselines in terms of mode coverage and generation quality.
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Figure 10: DAN-S with λ set to {0, 0.2, 0.5, 1, 2, 5} (top-down order).

D EXPERIMENT DETAILS ON FASHION-MNIST

We use the same experimental settings as in Section C. Generated examples by each model are shown
in Figure 13, where we observe a clear advantage of DAN-S and DAN-2S over all other baselines in
terms of mode coverage and generation quality.

D.1 SENSITIVITY TO BATCH-SIZE

We vary the batch-size in DAN’s to see how it affects model performance. Results are shown in
Figure 14. We observe that both methods suffer from too small or too large batch-sizes. However,
there is a clear distinction between the two: while DAN-S outperforms DAN-2S with smaller batch-
sizes, this trend reverses for larger batch-sizes, where DAN-2S achieves better performance and is
more stable across repetitions.

E EXPERIMENT DETAILS ON SVHN

We present here additional experiments on the SVHN dataset. We compare DAN’s against GAN,
WGAN, WGAN-GP and GMMN. We use the same architecture for the generator across all models:
a latent vector first goes through two fully connected layers with number of hidden units 1,024
and 8,192 respectively. Then it is reshaped to sizes [8 × 8 × 128] and goes through 2 transposed
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Figure 11: DAN-2S with λ set to {0, 0.2, 0.5, 1, 2, 5, 10} (top-down order).

convolutional layers with kernel size of 4 and stride 2, followed by a Sigmoid activation to map
it to a [32× 32× 3]-dimensional vector. Latent vectors are uniform samples from [−1, 1]256. For
GAN, WGAN variants and DAN the single observation discriminators consist of 2 convolutional
layers of kernel size 4 and stride 2, followed by 2 fully connected linear layer with number hidden
unites 8,192 and 1,024 respectively, and a Sigmoid activation to map it to a 1-dimensional value.
Both adversaries in DAN use the same architecture except for the averaging layer of the distributional
adversary, and share weights of the pre-averaging layers. For both generators and discriminators we
also add batch-normalization layers for all but DAN models. Other hyperparameters and training
dynamics are the same as in Section C.

We again compute the generated label distribution and compare it against true (uniform) distribution.
TV distances are shown in Figure 15. DAN achieves one of the best and most stable mode frequency
recovery. While GMMN performs slightly better than DAN, it suffers from poor generating quality.
Specifically, we show generated figures in Figure 16, where DAN’s present one of the best mode
coverage and generation quality among all.

F EXPERIMENT DETAILS ON CIFAR10

We use the same experimental settings as in Section E and run all models on CIFAR10. Generated
samples from various models are shown in Figure 17. Again DAN presents one of the best mode
coverage and generation quality.
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(a) GAN (b) WGAN (c) WGAN-GP

(d) GMMN (e) DAN-S (f) DAN-2S

Figure 12: GAN, WGAN, WGAN-GP, DAN-S and DAN-2S on MNIST dataset.

(a) GAN (b) WGAN (c) WGAN-GP

(d) GMMN (e) DAN-S (f) DAN-2S

Figure 13: GAN, WGAN, WGAN-GP, DAN-S and DAN-2S on Fashion MNIST dataset.
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Figure 14: Performances (measured as TV distance between generated and true class distributions)
on fashion-mnist of DAN’s with varying batch-sizes in {16, 32, 64, 128, 256, 512}. DAN-S
is more stable with small batch-sizes while DAN-2S is more stable and achieves better overall
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Figure 15: Total variation distances between generated and true (uniform) label distributions over
5 repetitions. Performances are sorted in increasing order, i.e., better performing models stay on
the right. DAN achieves one of the best and most stable mode frequency recovery. While GMMN
performs slightly better than DAN, it suffers from poor generating quality as seen in Figure 16

G EXPERIMENT DETAILS ON CELEBA

We use a publicly available implementation6 of DCGAN. The network architecture is kept as in
the default configuration. We preprocess the image data by first cropping each image to 160× 160
(instead of 108× 108 in default setting) and then resize them to 64× 64. The generator consists of a
fully connected linear layer mapping from latent space of [−1, 1]100 to dimension 8,192, followed
by 4 deconvolution layers, three with ReLU activations and the last one followed by tanh. The
discriminator is the “reverse” of generator, except that the activation function is Leaky ReLU the
last layer being a linear mapping and a Sigmoid activation to 1D value. Both adversaries in DAN
use the same architecture except for the averaging layer of the distributional adversary, and share
weights of the pre-averaging layers.

6https://github.com/carpedm20/DCGAN-tensorflow
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(a) GAN (b) WGAN (c) WGAN-GP

(d) GMMN (e) DAN-S (f) DAN-2S

Figure 16: GAN, WGAN, WGAN-GP, GMMN, DAN-S and DAN-2S on the SVHN dataset.

(a) GAN (b) WGAN (c) WGAN-GP

(d) GMMN (e) DAN-S (f) DAN-2S

Figure 17: GAN, WGAN, WGAN-GP, GMMN, DAN-S and DAN-2S on the CIFAR10 dataset.
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We use Adam with learning rate of 5× 10−4 and β1 = 0.5 for training. The batch size is fixed to 64
and we train the network for 30 epochs. For DAN-ξ, we set λ = 5 and k = 5. Samples generated by
different models are shown in Figure 18.

(a) DCGAN, trained with BN (b) DCGAN, trained without BN

(c) DAN-S, trained without BN (d) DAN-2S, trained without BN

Figure 18: DCGAN, DAN-S and DAN-2S trained on the CelebA dataset. Both DAN-S and DAN-2S
demonstrate much more diversity in generated samples compared to DCGAN.

H EXPERIMENT DETAILS FOR DOMAIN ADAPTATION

We adapt the publicly available code7 for DANN to train on the Amazon and MNIST-M datasets. For
the former, we let the encoder of source/target domains consists of 3 fully connected layers of sizes
1000, 500, 100 with ReLU activations, followed by a projection to 2 dimensions for both adversaries
and classifier. For the latter dataset we set the model structure to be default in the original code: the
encoder of source/target domains consists of 2 convolutional layers, each followed by ReLU and
MaxPooling layers. The encoded vector is further mapped to 100-dimensional vector followed by
ReLU, and finally 2-dimensional vector for adversaries and 10-dimensional vectors for classifier. We
set the weights for the single observation adversary and distributional adversary to be both 0.1 and
both 1 for Amazon dataset and MNIST-M dataset respectively.

7https://github.com/pumpikano/tf-dann
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