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ABSTRACT

A key challenge in model-based reinforcement learning (RL) is to synthesize
computationally efficient and accurate environment models. We show that care-
fully designed models that learn predictive and compact state representations, also
called state-space models, substantially reduce the computational costs for pre-
dicting outcomes of sequences of actions. Extensive experiments establish that
state-space models accurately capture the dynamics of Atari games from the Ar-
cade Learning Environment (ALE) from raw pixels. Furthermore, RL agents that
use Monte-Carlo rollouts of these models as features for decision making outper-
form strong model-free baselines on the game MS PACMAN, demonstrating the
benefits of planning using learned dynamic state abstractions.

1 INTRODUCTION

Deep reinforcement learning has demonstrated remarkable progress in recent years, achieving high
levels of performance across a wide array of challenging tasks, including Atari games (Mnih et al.,
2015), locomotion (Schulman et al., 2015), and 3D navigation (Mnih et al., 2016). Many of these
advances have relied on combining deep learning methods with model-free RL algorithms. A critical
drawback of this approach is the vast amount of experience required to achieve good performance,
as only weak prior knowledge is encoded in the agents’ networks (e.g., spatial translation invariance
via convolutions).
The promise of model-based reinforcement learning is to improve sample-efficiency by making use
of explicit models of the environment. The idea is that given a model of the environment (which can
possibly be learned in the absence of rewards or from observational data only), an agent can learn
task-specific policies rapidly by leveraging this model e.g., by trajectory optimization (Betts, 1998),
search (Browne et al., 2012; Silver et al., 2016a), dynamic programming (Bertsekas et al., 1995)
or generating synthetic experiences (Sutton, 1991). However, model-based RL algorithms typically
pose strong requirements on the environment models, namely that they make predictions about the
future state of the environment efficiently and accurately.
Recent innovations combining model-free and model-based methods have helped to increase robust-
ness to model imperfections. In the framework of Weber et al. (2017), the Imagination-Augmented
Agent (I2A) queries its internal, pre-trained model via Monte-Carlo rollouts under a rollout policy.
It then uses features computed from these rollouts to anticipate the outcomes of taking different
actions, thereby informing its decision-making. RL is used to learn to interpret the model’s pre-
dictions; this was shown to greatly diminish the susceptibility of planning to model imperfections.
Nevertheless, training of efficient models and integrating them into the I2A architecture remains
difficult. In fact, this challenge prevented the application of I2As to environments with complex
transitions (Weber et al., 2017).
In this paper we address, the I2A framework, the main challenge posed by model-based RL: training
accurate, computationally efficient models on more complex domains and using them with agents.
First, we consider computationally efficient state-space environment models that make predictions at
a higher level of abstraction, both spatially and temporally, than at the level of raw pixel observations.
Such models substantially reduce the amount of computation required to perform rollouts, as future
states can be represented much more compactly. Second, in order to increase model accuracy, we
examine the benefits of explicitly modeling uncertainty in the transitions between these abstract
states. Finally, we explore different strategies of learning rollout policies that define the interface

1



Under review as a conference paper at ICLR 2018

RAR dSSM-DET
at−2 at−1

st−1 st

ot−1 ot

at−2 at−1

st−1 st

ot−1 ot

dSSM-VAE sSSM
at−2 at−1

st−1 st

zt−1 zt

ot−1 ot

at−2 at−1

st−1 st

zt−1 zt

ot−1 ot

Figure 1: The graphical models representing the architectures of different environment models.
Boxes are deterministic nodes, circles are random variables and filled circles represent variables
observed during training.

between agent and environment model: We consider the possibility of learning to query the internal
model, for guiding the Monte-Carlo rollouts of the model towards informative outcomes.
The main contributions of the paper are as follows: 1) we provide a comprehensive comparison of
deterministic and stochastic, pixel-space and state-space models on a number of challenging envi-
ronments from the Arcade Learning Environment (ALE, Bellemare et al., 2013); 2) we demonstrate
state-of-the-art environment modeling accuracy (as measured by log-likelihoods) with stochastic,
state-space models that efficiently produce diverse yet consistent rollouts; 3) using state-space mod-
els, we show model-based RL results on MS PACMAN, and obtain significantly improved perfor-
mance compared to strong model-free baselines, and 4) we show that learning to query the model
further increases policy performance.

2 ENVIRONMENT MODELS

In the following, for any sequence of variables x, we use x<t (or x≤t) to denote all elements of the
sequences up to t, excluding (respectively including) xt. We write subsequences (xt, xt+1, . . . , xs)
as xt:s. We denote the observations and rewards from the environment with ot and rt. We also refer
to the observations ot as pixels or frames, to give the intuition that they are high-dimensional and
highly redundant in many domains of interest. To ease the notation, in the following we will also
write ot for the observations and rewards (ot, rt) unless explicitly stated otherwise.
Given action at, the environment transitions into a new state and returns a sample of the obser-
vation and reward of the next time step with probability p∗(ot+1|o≤t, a≤t). A main challenge in
model-based RL is to learn an accurate and efficient model p of the environment p∗. Given a per-
fect model p ≈ p∗ and unlimited computational resources, an agent could e.g. perform in prin-
ciple a brute-force search for the optimal open-loop policy a∗t:T−1 in any state o≤t by computing
argmaxat:T−1

Ep[
∑T
s=t+1 rs|o≤t, a<T )] (assuming undiscounted reward over a finite horizon up to

T ), where Ep is the expectation under the environment model p.
In practice, however, this optimization is costly and brittle. Given unavoidable imperfections of
p when modelling complex environments, it often leads to catastrophic planning outcomes (Talvi-
tie, 2015). Therefore, we focus here on using models to just predict at time t any future statistics
xt+1:t+τ over a horizon τ that are useful features for decision making. We call xt+1:t+τ imagina-
tions and τ the rollout horizon or depth. Concretely, we will assume that we are interested at every
time step t in generating samples xt+1:t+τ by doing Monte-Carlo rollouts from the model p given
an arbitrary sequence of actions at:t+τ−1 (which will later be sampled from the rollout policy).
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2.1 MODEL TAXONOMY

In the following, we present different choices for the model p and for which imagination statistic
x they compute (and subsequently pass to the agent). In particular, we focus on how these de-
sign choices trade-off computational efficiency with providing useful information to the agent. The
structure of the models we consider are illustrated in Fig. 1.

AUTO-REGRESSIVE MODELS

A straight-forward choice is the family of causal, temporally auto-regressive models over the obser-
vations ot+1:t+τ , which we write in the following way:

p(ot+1:t+τ |o≤t, a<t+τ ) =

t+τ∏
r=t+1

p(or|f(o<r, a<r)).

If f is given by a first-in-first-out (FIFO) buffer of the last K observations and actions
or−K:r−1, ar−K:r−1, the above definition is a regular auto-regressive model (of order K), which
we denote by AR. Rolling out AR models is slow for two reasons: 1) we have to sequentially
sample, or “render”, all pixels ot+1:t+τ explicitly, which is particularly computationally demanding
for high-dimensional observations, and 2) vanilla AR models without any additional structure do
not reuse any computations from evaluating p(or|f(o<r, a<r)) for evaluating p(or+1|f(o≤r, a≤r)).
To speed-up AR models, we address the latter concern by considering the following model vari-
ant: we allow f to be a recurrent mapping that recursively updates sufficient statistics hr =
f(hr−1, ar−1, or−1), therefore reusing the previously computed statistics hr−1. We call these mod-
els recurrent auto-regressive models (RAR); if f is parameterized as a neural network, RARs are
equivalent to recurrent neural networks (RNNs). Although faster, we still expect Monte-Carlo roll-
outs of RARs to be slow, as they still need to explicitly render observations ot+1:t+τ . For both auto-
regressive models, the natural choice for imaginations xt+1:t+τ = ot+1:t+τ are predicted frames.

STATE-SPACE MODELS: ABSTRACTION IN SPACE

As discussed above, rolling out ARs is computationally demanding as it requires sampling, or “ren-
dering” all observations ot+1:t+τ . Causal state-space models (SSM) circumvent this by positing
that there is a compact state representation st that captures essential aspects of the environment
on an abstract level: it is assumed that st+1 can be “rolled out”, i.e. predicted, from the previous
state st and action at alone, without the help of previous pixels o≤t or any action other than at:
p(st+1|s≤t, a<t+τ , o≤t+τ ) = p(st+1|st, at). Hence SSMs allow for the following factorization of
the predictive distribution:

p(ot+1:t+τ |o≤t, a<t+τ ) =

∫ t+τ∏
r=t+1

(
p(sr|sr−1, ar−1)p(or|sr)

)
pinit(st|o≤t, a<t)dst:t+τ .

For this model class, we choose the imaginations xt+1:t+τ ∼ p(st+1:t+τ |o≤t, a<t+τ ) to be sampled
from the model distribution over the state representation. This choice implies that imaginations
are, by construction, sufficient to generate all possible predictions, do not require sampling pixel
observations and that they live in a conveniently lower-dimensional space.

Transition model We consider two flavors of SSMs: deterministic SSMs (dSSMs) and stochastic
SSMs (sSSMs). For dSSMs, the latent transition st+1 = g(st, at) is a deterministic function of the
past, whereas for sSSMs we transition distributions p(st+1|st, at) that explicitly model uncertainty
over the state st+1. sSSMs are a strictly larger model class than dSSMs, and we illustrate their
difference in capacity for modelling stochastic time-series in the Appendix. We parameterize sSSMs
by introducing for every t a latent variable zt whose distribution depends on st−1 and at−1, and by
making the state a deterministic function of the past state, action, and latent variable:

zt+1 ∼ p(zt+1|st, at), st+1 = g(st, at, zt+1).

Observation model The observation model, or decoder, computes the conditional distribution
p(ot|·). It either takes as input the state st (deterministic decoder), or the state st and latent zt
(stochastic decoder). For sSSMs, we always use the stochastic decoder. For dSSMs, we can use
either the deterministic decoder (dSSM-DET), or the stochastic decoder (dSSM-VAE). The latter
can capture joint uncertainty over pixels in a given observation ot, but not across time steps. Further
details can be found in section A.1.2 in the Appendix.
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2.2 JUMPY MODELS: ABSTRACTION IN TIME

To further reduce the computational time required for sampling a rollout of horizon τ , we also
consider modelling environment transitions at a coarser time scale. To this end, we sub-sample
observations by a factor of c, i.e. for τ ′ = bτ/cc, we replace sequences (ot, ot+1, . . . , ot+τ ), by the
subsampled sequence (ot, ot+c, ot+2c, . . . , ot+τ ′c). We “chunk” the actions by concatenating them
into a vector at ← (a>t , . . . , a

>
t+c−1)

>, and sum the rewards rt ←
∑c−1
s=0 rt+s. We refer to models

trained on data pre-processed in this way as jumpy models. Jumpy training is a convenient way to
inject temporal abstraction over at a time scale c into environment models. This approach allows us
to further reduce the computational load for Monte-Carlo rollouts roughly by a factor of c.

2.3 MODEL ARCHITECTURES, INFERENCE AND TRAINING

Here, we describe the parametric architectures for the models described above. We discuss the
architecture of the sSSM in detail, and then briefly explain the modifications of this model used to
implement RARs and dSSMs.
The states st, latent variables zt and observations ot are all shaped as convolutional feature maps
and are generated by transition modules zt ∼ p(zt|st−1, at−1), st = g(st−1, zt, at−1), and the de-
coder ot ∼ p(ot|st, zt) respectively. All latent variables are constrained to be normal with diagonal
covariances. All modules consist of stacks of convolutional neural networks with ReLU nonlineari-
ties. The transition modules use size-preserving convolutions, the decoder, size-expanding ones. To
overcome the limitations of small receptive fields associated with convolutions, for modelling global
effects of the environment dynamics, we use pool-and-inject layers: they perform max-pooling over
their input feature maps, tile the results and concatenate them back to the inputs. Using these layers
we can induce long-range spatial dependencies in the state st. All modules are illustrated in detail
in the Appendix.
We train the AR, RAR and dSSM-DET models by maximum likelihood estimation (MLE), i.e.
by maximizing L(θ) = log pθ(o1:T |a0:T−1, ô0) over model parameters θ, where T = 10 and ô0
denotes some initial context (in our experiments ô0 := o−2:0). We initialize the state pinit(s0|ô0)
with a convolutional network including an observation encoder e. This encoder e uses convolutions
that reduce the size of the feature maps from the size of the observation to the size of the state.
For the models containing latent variables, i.e. dSSM-VAE and sSSM, we cannot evaluate L(θ) in
closed form in general. We maximize instead the evidence-based lower bound ELBOq(θ) ≤ L(θ),
where q denotes an approximate posterior distribution, which reads as follows for the sSSM:

ELBOq(θ) =

T∑
t=1

Eq[log p(ot|st) + log p(zt|st−1, at−1)− log q(zt|st−1, at−1, ot:T )],

where θ now denotes the union of the model parameters and the parameters of q. Here, we used that
the structure of the sSSM to assume without loss of generality that q is Markovian in (zt, st) (see
Krishnan et al. (2015) for an in depth discussion). Furthermore, we restrict ourselves to the filtering
distribution q(zt|st−1, at−1, ot), which we model as normal distribution with diagonal covariance
matrix. We did not observe improvements in experiments by using the full smoothing distribution
q(zt|st−1, at−1, ot:T ). We share parameters between the prior and the posterior by making the
posterior a function of the state st computed by the transition module g, as follows:

zt+1 ∼ q(zt|st, at, ot+1), st+1 = g(st, zt+1, at).

The posterior uses the observation encoder e on ot+1; the resulting feature maps are then concate-
nated to st, and a number of additional convolutions compute the posterior mean and standard devi-
ation of zt+1. For all latent variable models, we use the reparametrization trick (Kingma & Welling,
2013; Rezende et al., 2014) and a single posterior sample to obtain unbiased gradient estimators of
the ELBO.
We can restrict the above sSSM to a dSSM-VAE, by not feeding samples of zt into the transition
model g. To ensure a fair model comparison (identical number of parameters and same amount of
computation), we numerically implement this by feeding the mean µt of p(zt|st−1, at−1) into the
transition function g instead. If we also do not feed zt (but the mean µt) into the decoder for render-
ing ot, we arrive at the dSSM-DET, which does not contain any samples of zt. We implement the
RAR based on the dSSM-DET by modifiying the transition model to st+1 = g(st, µt+1, at, e(ot)),
where e(·) denotes an encoder with the same architecture as the one of sSSM and dSSM-VAE.
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Figure 2: The architecture of the Imagination-Augmented Agent, which computes its policy πt and
value function Vt, by combining information from a model-free path with information from Monte-
Carlo rollouts of its environment model.

3 RL AGENTS WITH STATE-SPACE MODELS

We now use the environment models described above for model-based RL by integrating them into
the Imagination-Augmented Agents (I2A). We briefly describe the agent, for details see Weber et al.
(2017). The I2A is an RL agent with an actor-critic architecture, i.e. at each time step t, it explicitly
computes its policy π(at|o≤t, a<t) over the next action to take at and an approximate value function
V (o≤t, a<t), and it is trained using standard policy gradient methods (Mnih et al., 2016). Its policy
and value function are informed by the outputs of two separate pathways: 1) a model-free path,
that tries to estimate the value and which action to take directly from the latest observation ot using
a convolutional neural network (CNN); and 2) a model-based path, which we describe in the next
paragraph.
The model-based path of an I2A is designed in the following way. The I2A is endowed with a pre-
trained, fixed environment model p. At every time t, conditioned on past observations and actions
o≤t, a<t, it uses the model to simulate possible futures (”rollouts”) represented by imagnations
xt+1:t+τ over a horizon τ , under a rollout policy πr. It then extracts informative features from
the rollout imaginations x, and uses these, together with the results from the model-free path, to
compute π and V . It has been shown that I2As are robust to model imperfections: they learn to
interpret imaginations produced from the internal models in order to inform decision making as part
of standard return maximization. More precisely, the model-based path is computed by executing
the following steps (also see Fig. 2):

• The I2A updates the state st of its internal model by sampling from the initial model distri-
bution st|t ∼ pinit(st|o≤t). We denote this sample st|t to clearly indicate the real environ-
ment information is contained in that sample up to time t.
• The I2A draws K samples x1:Kt+1:t+τ |t from the distribution pπr

(xt+1:t+τ |st|t, a≤t). Here,
pπr

denotes the model distribution with internal actions at:t+τ |t being sampled from the
rollout policy πr. For SSMs, we require the rollout policy to only depend on the state so
that rollouts can be computed purely in abstract space.
• The imaginations x1:Kt+1:t+τ |t are summarized by a ”summarizer” module (e.g. an LSTM),

then combined with the model-free output and finally used to compute π(at|o≤t, a<t) and
V (o≤t, a<t).

Which imaginations x the model predicts and passes to the agent is a design choice, which strongly
depends on the model itself. As described above, for auto-regressive models (AR, RAR), we choose
the imaginations to be rendered pixel predictions okt+1:t+τ |t. For SSM, we are free to use predicted
pixels or predicted abstract states skt+1:t+τ |t as imaginations, the latter being much cheaper to com-
pute.
Apart from the choice of environment model, a key ingredient to I2As is the choice of internal
actions applied to the model. How to best design a rollout policy πr that extracts useful information
from a given environment model remains an open question, which also depends on the choice of
model itself. In the following and we investigate in the following different possibilities.
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3.1 DISTILLATION

In Weber et al. (2017), the authors propose to train the rollout policy πr to imitate the agent’s
model-based behavioral policy π. We call the resulting agent the distillation agent. Concretely, we
minimize the Kullback-Leibler divergence between π(·|o≤t, s≤t) and πr(·|st|t):

LD[πr] = λD KL(π‖πr) = −λDEπ[log πr(at|st|t)] + const,

where Eπ is the expectation over states and actions when following policy π. λD is a hyperparameter
that trades off reward maximization with the distillation loss.

3.2 LEARNING TO QUERY BY BACKPROPAGATION

An obvious alternative to distillation is to learn the parameters of πr jointly with the other parameters
of the agents by policy gradient methods. As the rollout actions sampled from πr are discrete random
variables, this optimization would require “internal” RL – i.e. redefining the action space to include
the internal actions and learning a joint policy over external and internal actions. However, we
expect the credit assignment of the rewards to the internal actions to be a difficult problem, resulting
in slow learning. Therefore, we take a heurisitic approach similar to Henaff et al. (2017) (and related
to Bengio et al., 2013): Instead of feeding the sampled one-hot environment action to the model,
we can instead directly feed the probability vector πr(at′ |st′|t) into the environment model during
rollouts. This can be considered as a relaxation of the discrete internal RL optimization problem.
Concretely, we back-propagate the RL policy gradients through the entire rollout into πr. This is
possible since the environment model is fully differentiable thanks to the reparametrization trick,
and the simulation policy is differentiable thanks to the relaxation of discrete actions. Parameters
of the environment model p are not optimized but kept constant, however. As the model was only
trained on one-hot representation at ∈ {0, 1}N , and not on continuous actions probabilities, it
is not guaranteed a-priori that the model generalizes appropriately. We explore promoting rollout
probabilities πr(·|st′|t) to be close to one-hot action vectors, and therefore are numerically closer to
the training data of the model, by introducing an entropy penalty.

3.3 MODULATION AGENT

When learning the rollout policy (either by distillation or back-propagation), we learn to choose
internal actions such that the simulated rollouts provide useful information to the agent. In these
approaches, we do not change the environment model itself, which, by construction, aims to capture
the true frequencies of possible outcomes. We can, however, go even one step further based on the
following consideration: It might be beneficial for the agent to preferentially “imagine” extreme out-
comes, e.g. rare (or even impossible) but highly rewarding or catastrophic transitions for a sequence
of actions; hence to change the environment model itself in an informative way. For instance, in
the game of MS PACMAN, an agent might profit form imagining the ghosts moving in a particu-
larly adversarial way, in order to choose actions safely. We can combine this consideration with the
learning-to-query approach above, by learning an informative joint “imagination” distribution over
actions and outcomes. We implement this in the following way. First, we train an unconditional
sSSM on environment transitions, i.e. a model that does not depend on the executed actions a<t
(this can simply be done by not providing the actions as inputs to the components of our state-space
models). As a result, the sSSM has to jointly capture the uncertainty over the environment and the
policy πdata (the policy under which the training data was collected) in the latent variables z. This
latent space is hence a compact, distributed representation over possible futures, i.e. trajectories,
under πdata. We then let the I2A search over z for informative trajectories, by replacing the learned
prior module p(zt|st−1) with a different distribution pimag(zt|st−1). The model is fully differen-
tiable and we simply backpropagate the policy gradients through the entire model; the remaining
weights of the model are left unchanged, except for those of pimag. In our experiments, we simply
replace the neural network parameterizing p(zt|st−1) with a new one of the same size for pimag, but
with freshly initialized weights.

4 RESULTS

Here, we apply the above models and agents to domains from the Arcade Learning Environment
(ALE, Bellemare et al., 2013). In spite of significant progress (Hessel et al., 2017), some games are
still considered very challenging environments for RL agents, e.g. MS PACMAN, especially when
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Model BOWLING CENTIPEDE MS PACMAN SURROUND rel. speed

AR – – 1.9 ± —- – 1.0×
RAR -0.9 ± 3.4 5.6 ± 0.3 4.3 ± 0.5 -4.7 ± 12.2 2.0×

dSSM-DET 0.4 ± 0.0 3.5 ± 0.2 0.4 ± 0.3 -0.4 ± 0.1 5.2×
dSSM-VAE 0.5 ± 0.0 5.0 ± 1.3 2.4 ± 3.0 0.7 ± 0.0 5.2×

sSSM 0.6 ± 0.0 5.6 ± 1.0 4.3 ± 0.3 0.9 ± 0.2 5.2×
sSSM (jumpy) – – 3.0 ± 2.0 – 13.6×

Table 1: Improvement of test likelihoods of environment models over a baseline model (standard
variational autoencoder, VAE), on 4 different ALE domains. Stochastic models with state uncer-
tainty (RAR, sSSM) outperform models without uncertainty representation. Furthermore, state-
space models (dSSM, sSSM) show a substantial speed-up over auto-regressive models. Results are
given as mean ± standard deviation, in units of 10−3 · nats · pixel−1.

not using any privileged information. All results are based on slightly cropped but full resolution
ALE observations, i.e. ot ∈ [0, 1]200×160×3.

4.1 COMPARISON OF ENVIRONMENT MODELS

We applied auto-regressive and state-space models to four games of the ALE, namely BOWLING,
CENTIPEDE, MS PACMAN and SURROUND. These environment where chose to cover a broad
range of environment dynamics. The data was obtained by a running a pre-trained baseline policy
pdata and collecting sequences of actions, observations and rewards a1:T , o1:T , r1:T of length T =
10. Results are computed on held-out test data. We optimized model hyper-parameters (learning
rate, weight decay, mini-batch size) on one game (MS PACMAN) for each model separately and
report mean likelihoods over five runs with the best hyper-parameter settings. In Tab. 1, we report
likelihood improvements over a baseline model, being a Variational Autoencoder (VAE) that models
frames as independent (conditioned on three initial frames).
In general, we found that, although operating on an abstract level, SSMs are competitive with, or
even outperform, auto-regressive models. The sSSM, which take uncertainty into account, achieves
consistently higher likelihoods in all games compared to models with deterministic state transitions,
namely dSSM-DET and dSSM-VAE, in spite of having the same number of parameters and oper-
ations. An example illustrating the differences in modelling capacity is shown in Fig. 17 (in the
Appendix) on MS PACMAN: the prediction of dSSM-DET exhibits “sprite splitting” (and eventu-
ally, “sprite melting”) at corridors, whereas multiple samples from the sSSM show that the model
has a reasonable and consistent representation of uncertainty in this situation.
We also report the relative computation time of rolling out, i.e. sampling from, the models. We
observe that SSMs, which avoid computing pixel renderings at each rollout step, exhibit a speedup
of > 5 over the standard AR model1. We want to point out that our AR implementation is already
quite efficient compared to a naive one, as it reuses costly vision pre-processing for rollouts where
possible. Furthermore, we show that a jumpy sSSM, which learns a temporally and spatially ab-
stracted state representation, is faster than the AR model by more than an order of magnitude, while
exhibiting comparable performance as shown in Tab. 1. This shows that using an appropriate model
architecture, we can learn highly predictive and compact dynamic state abstractions. Qualitatively,
we observe that the best models capture the dynamics of ALE games well, even faithfully predicting
global, yet subtle effects such as pixel representation of games scores over tens of steps (see Fig. 17
in the Appendix).

4.2 RL AGENTS WITH STATE-SPACE MODELS ON MS PACMAN

Here, we apply the I2A to a slightly simplified variant of the MS PACMAN domain with five in-
stead of eighteen actions. As environment models we use jumpy SSMs, since they exhibit a very
favourable speed-accuracy trade-off as shown in the previous section; in fact I2As with AR models
proved too expensive to run. In the following we compare the performance of I2As with different
variants of SSMs, as well as various baselines. All agents we trained with an action repeat of 4

1For lack of time, we could not collect performance of the AR model on all games; this will be fixed in a
later revision.
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Figure 3: Learning curves of different agents on the MS PACMAN environment. Model-based
Imagination-Augmented Agents (I2As) outperform the model-free baseline by a large margin. Fur-
thermore, learning the rollout policy πr, either by back-propagation or distillation provides the best
results.

(Mnih et al., 2015). We report results in terms of averaged episode returns as a function of experi-
ence (in number of environment steps), averaged over the best hyper-parameter settings. All I2As
do K = 5 (equal to the number of actions) rollouts per time step. Rollout depth τ was treated as
a hyper-parameter and varied over τ ∈ {2, 3, 4}; this corresponds to 24, 36 and 48 environment
steps (due to action repeats and jumpy training), allowing I2As to plan over a substantial horizon.
Learning curves for all agents with deterministic dSSMs are shown in Fig.3. Results and detailed
discussion for agents with sSSMs can be found in section A.3 the Appendix.
We first establish that all I2A agents, irrespective of the models they use, perform better than the
model-free baseline agent; the latter is equivalent to an I2A without a model-based pathway. The
improved performance of I2As is not simply due to having access to a larger number of input fea-
tures: an I2A agent with an untrained environment model performs substantially worse (data not
shown). A final baseline consists in using an I2A agent for which all imaginations st+1:t+τ |t are set
to the initial state representation st|t. The agent has the exact same architecture, number of weights
(forward model excluded), and operations as the I2A agent (denoted as ”baseline copy model” in
the figure legend). This agent performs substantially worse than the I2A agent, showing that envi-
ronment rollouts lead to better decisions. It performs better however than the random model agent,
which suggests that simply providing the initial state representation to the agent is already beneficial,
emphasizing the usefulness of abstract dynamic state representations.
A surprising result is that I2As with the deterministic state-space models dSSM outperform their
stochastic counterparts with sSSMs by a large margin. Although sSSMs capture the environment
dynamics better than dSSM, learning from their outputs seems to be more challenging for the agents.
We hypothesize that this could be due to the fact that we only produce only a small number of
samples (5 in our simulations), resulting in highly variable features that are passed to the I2As.
For the agents with deterministic models, we find that a uniform random rollout policy is a strong
baseline. It is outperformed by the distillation strategy, itself narrowly outperformed by the learning-
to-query strategy. This demonstrates that “imagining” behaviors different from the agents’ policy
can be beneficial for planning. Furthermore, we found that in general deeper rollouts with τ = 4
proved to outperfrom more shallow rollouts τ = 2, 3 for all I2As with deterministic SSMs.
A final experiment consists of running the I2A agent with distillation, but instead of providing
the abstract state features st+1:t+τ |t to the agent, we provide rendered pixel observations ot+1:t+τ |t
instead (as was done in Weber et al., 2017), and strengthen the summarizer (by adding convolutions).
This model has to decode and re-encode observations at every imagination step, which makes it our
slowest agent. We find that reasoning at pixel level eventually outperforms the copy and model-free
baselines. It is however significantly outperformed by all variants of I2A which work at the abstract
level, showing that the dynamics state abstractions, learned in an unsupervised way by a state-space
model, are highly informative features about future outcomes, while being cheap to compute at the
same time.
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5 RELATED WORK

Generative sequence models We build directly on a plethora of recent work exploring the contin-
uum of models ranging from standard recurrent neural networks (RNNs) to fully stochastic models
with uncertainty (Chung et al., 2015; Archer et al., 2015; Fraccaro et al., 2016; Krishnan et al., 2015;
Gu et al., 2015). Chung et al. (2015) explore a model class equivalent to what we called RARs
here. Archer et al. (2015); Fraccaro et al. (2016) train stochastic state-space models, without how-
ever investigating their computational efficiency and their applicability to model-based RL. Most of
the above work focuses on modelling music, speech or other low-dimensional data, whereas here
we present stochastic sequence models on high-dimensional pixel-based observations; noteworthy
exception are found in Watter et al. (2015); Wahlström et al. (2015). There, the authors chose a two-
stage approach by first learning a latent representation and then learning a transition model in this
representation. Multiple studies investigate the graphical-model structure of the prior and posterior
graphs and stress the possible importance of smoothing over filtering inference distributions (e.g.
Krishnan et al., 2015); in our investigations we did not find a difference between these distributions.
Furthermore, to the best our knowledge, this is the first study applying stochastic state-space mod-
els as action-conditional environment models. Most previous work on learning simulators for ALE
games apply deterministic models, and do not consider learning state-space models for efficient
Monte-Carlo rollouts (Oh et al., 2015). Chiappa et al. (2017) successfully train deterministic state-
space models for ALE modelling (largely equivalent to the considered dSSMs here); they however
do not explore the computational complexity advantage of SSMs, and do not study RL applications
of their models.

Model-based reinforcement learning Most model-based RL with neural network models has
previously focused on training the models on a given, compact state-representations. Directly learn-
ing models from pixels for RL is still an under-explored topic due to high demands on model accu-
racy and computational budget, but see Finn & Levine (2017); Watter et al. (2015); Wahlström et al.
(2015). Finn & Levine (2017) train an action-conditional video-prediction network and use it for
model-predictive control (MPC) of a robot arm. The applied model requires explicit pixel rendering
for long-term predictions and does not operate in abstract space. Agrawal et al. (2016) propose to
learn a forward and inverse dynamics model from pixels with applications to robotics. Our work
is related to multiple approaches in RL which aim to implicitly learn a model on the environment
using model-free methods. Tamar et al. (2016) propose an architecture that is designed to learn the
value-iteration algorithm which requires knowledge about environment transitions. The Predictron
is another implicit planning network, trained in a supervised way directly from raw pixels, mim-
icking Bellman updates / iterations (Silver et al., 2016b). A generalization of the Predictron to the
controlled setting was introduced by Oh et al. (2017). Another approach, presented by Jaderberg
et al. (2016), is to add auxiliary prediction losses to the RL training criterion in order to encourage
implicit learning of environment dynamics. van Seijen et al. (2017) obtain state of the art per-
formance on MS PACMAN with a model free architecture, but they however rely on privileged
information (object identity and positions, and decomposition of the reward function).

6 DISCUSSION

We have shown that state-space models directly learned from raw pixel observations are good candi-
dates for model-based RL: 1) they are powerful enough to capture complex environment dynamics,
exhibiting similar accuracy to frame-auto-regressive models; 2) they allow for computationally ef-
ficient Monte-Carlo rollouts; 3) their learned dynamic state-representations are excellent features
for evaluating and anticipating future outcomes compared to raw pixels. This enabled Imagination-
Augemented Agents to outperform strong model-free baselines. On a conceptual level, we present
(to the best of our knowledge) the first results on what we termed learning-to-query: We show a
learning a rollout policy by backpropagating policy gradients leads to consistent (if modest) im-
provements.

Here, we adopted the I2A assumption of having access to a pre-trained envronment model. In future
work, we plan to drop this assumption and jointly learn the model and the agent. Also, further
speeding up environment models is a major direction of research; we think that learning models
with the capacity of learning adaptive temporal abstractions is a particularly promising direction for
achieving agents that plan to react flexibly to their environment.
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A APPENDIX

A.1 DETAILS ON ENVIRONMENT MODELS

A.1.1 ARCHITECTURES

We show the structures the inference distributions of the models with latent variables in Fig. 4 and
Fig. 5. .

at−2 at−1

st−1 st

zt−1 zt

ot−1 ot

Figure 4: The architecture of the inference model q for the dSSM-VAE.

at−2 at−1

st−1 st

zt−1 zt

ot−1 ot

Figure 5: The architecture of the inference model q for the sSSM.

A.1.2 DETAIL IN THE OBSERVATION MODEL

For all models (auto-regressive and state-space), we interpret the three color channels of each pixel
in the observation ot ∈ [0, 1]H×W×3 (with frame height H and width W ) as pseudo-probabilities;
we score these using their KL divergence with model predictions. We model the reward with a
separate distribution: we first compute a binary representation of the reward

∑N−1
n=0 bt,n2

n = brtc
and model the coefficients bt,n as independent Bernoulli variables (conditioned on st, zt). We also
add two extra binary variables: one for the sign of the reward, and the indicator function of the
reward being equal to 0.

A.1.3 DETAILS OF NEURAL NETWORK IMPLEMENTATIONS

Here we show the concrete neural network layouts used to implement the sSSM. We first introduce
three higher level build blocks:
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• a three layer deep convolutional stack conv stack : (ki, ci)i=1,2,3, with kernel sizes
k1, k2, k3 and channels sizes c1, c2, c3, shown in Fig. 6;

• a three layer deep residual convolutional stack res conv with fixed sizes, shown in Fig. 7;

• the Pool & Inject layer, shown in Fig. 8.

Based on these building blocks, we define all modules in Fig. 9 to Fig. 14.

input k1 × k1, c1 relu k2 × k2, c2 + relu k3 × k3, c3 output

Figure 6: Definition of the basic convolutional stack conv stack : (ki, ci)i=1,2,3 with kernel size
parameters k1,2,3 and channel parameters c1,2,3. Here, a box with the label ki × ki, ci denotes a
convolution with a square kernel of size ki with ci output channels; strides are always 1× 1.

input 3 × 3, 32 relu 5 × 5, 32 relu 3 × 3, 64 + output

Figure 7: Definition of the residual convolutional stack res conv.

input 3 × 3, 32 max pool tile concat output

Figure 8: Definition of the Pool & Inject layer.

st−1

zt

at−1

concat res conv relu pool & inject res conv st

Figure 9: Transition module for computing the state transition function st = g(st−1, zt, at−1).

A.1.4 COLLECTION OF TRAINING DATA

We train a standard DQN agents on the four games BOWLING, CENTIPEDE, MS PACMAN and
SURROUND from the ALE as detailed by Mnih et al. (2015) using the original action space of 18
actions. After training, we collect a training set of 108 and a test set of 107 environment transitions
for each game by executing the learned policies. Actions are represented by one-hot vectors and are
tiled to yield convolutional feature maps of appropriate size. Pixel observations ot were cropped to
200× 160 pixels and normalized by 255 to lie in the unit cube [0, 1]3. Because the DQN agent were
trained with an action-repeat of four, we only model every fourth frame.

A.1.5 TRAINING DETAILS

All models were optimized using Adam (Kingma & Ba, 2014) with a mini-batch size of 16.

A.1.6 COMPARISON OF DETERMINISTIC AND STOCHASTIC STATE-SPACE MODELS

We illustrate the difference in modelling capacity between deterministic (dSSM) and stochastic
(sSSM) state-space models, by training both on a toy data set. It consists of small 80 × 80-pixel
image sequences of a bouncing ball with a drift and a small random diffusion term. As shown in
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st zt

concat

conv stack: (1, 32), (5, 32), (3, 64)

depth to space (2)

conv stack: (3, 64), (3, 64), (1, 48)

depth to space (4)

log-odds(ot)

3 × 3, 24

relu

reshape

linear

log-odds(bt)

Figure 10: Decoder module for computing the log-odds statistics of the Bernoulli distributions over
the pixels ot and the binary coefficients of the reward brtc =

∑N−1
n=0 bt,n2

n.

e(ot)

relu

conv stack: (3, 32), (5, 32), (3, 64)

space to depth (2)

conv stack: (3, 16), (5, 16), (3, 64)

space to depth (4)

ot

Figure 11: Encoder module computing an embedding e(ot) of an observation ot (not including the
reward).

st−1

at−1

concat conv stack: (1, 32), (3, 32), (3, 64) log(1 + exp(·)) σzt

µzt

Figure 12: Prior module for computing mean µzt and diagonal variance σzt of the normal distribu-
tion p(zt|st−1, at−1).

Fig. 16, after training, pixels rendered from the rollouts of a sSSM depict a plausible realization of
a trajectory of the ball, whereas the dSSM produces blurry samples, as conditioned on any number
of previously observed frames, the state of the ball is not entirely predictable due to diffusion. A
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st−1

at−1

e(ot)

µzt , σzt

concat conv stack: (1, 32), (3, 32), (3, 64) log(1 + exp(·)) σ̂zt

µ̂zt

Figure 13: Posterior module for computing mean µ̂zt and diagonal variance σ̂zt of the normal
distribution q(zt|st−1, at−1, ot). The posterior gets as additional inputs the prior statistics µzt , σzt .

e(o−1)

e(o0)

e(o−2)

concat conv stack: (1, 64), (3, 64), (3, 64) s0

Figure 14: Initial state module for computing the first initial state s0 as a function of the embedding
e(oi) for i = −2,−1, 0 of three previous observations.

Figure 15: Learning curves of the environment models on MS PACMAN.

dSSM (trained with an approximate maximum likelihood criterion, see above) will “hedge its bets”
by producing a blurry prediction. A similar result can be observed in rollouts from models trained
on ALE games, see Fig. 17.

A.2 APPENDIX: DETAILS ON AGENTS

A.2.1 MS PACMAN ENVIRONMENT VARIANT

For the RL experiments in the paper, we consider a slightly simplified version of the MS PACMAN
environment with only five actions (UP, LEFT, DOWN, RIGHT, NOOP). Furthermore, all agents
have an action-repeat of four, and only observe every fourth frame from the environment.
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Figure 16: Rollouts from a deterministic (dSSM, above) and a stochastic (sSSM, below) state-space
model trained on a bouncing ball dataset with diffusion.
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Figure 17: Two rollouts of length τ = 6 from a stochastic (sSSM, top two rows) and one rollout
from a deterministic (dSSM) state-space model for the MS PACMAN environment, given the same
initial frames and the same sequence of five actions.

A.2.2 ARCHITECTURE

We re-implemented closely the agent architecture presented by Weber et al. (2017). In the following
we list the changes in the architecture necessitated by the different environments and environment
models.

Model-free baseline The model-free baseline consisted of a four-layer CNN operating on ot with
sizes (4, 2, 16), (8, 4, 32), (4, 2, 64) and (3, 1, 64), where (k, s, c) donates a CNN layer with square
kernel size k, stride s and output channels s; each CNN layer is followed by a relu nonlinearity. The
output of the CNN is flatten and passed trough a fully-connected (FC) layer with 512 hidden units;
the final output is a value function approximation and the logits of the policy at time t.

Imagination-Augmented Agent (I2A) The model-free path consists of a CNN with the same size
as the one of the model-free agent (including the FC layer with 512 units). The model-based path is
designed as follows: The rollout outputs for each imagined time step s are encoded with a two layer
CNN with sizes (4, 1, 32) and (4, 1, 16), then flattened and passed to a fully-connected (FC) layer
with 128 outputs. These rollout statistics are then summarized (in reversed order) with an LSTM
with 256 hidden units and concatenated with the outputs of the model-free path.
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Rollout policies Trainable rollout policies that operate on the state st are given by a two layer
CNN with sizes (4, 1, 32) and (4, 1, 32), followed by an FC layer with 128 units. Pixel-based rollout
policies have the same neural network sizes as the model-free baseline, except that the last two CNN
layers have 32 feature maps each.

A.3 RESULTS I2A WITH STOCHASTIC STATE-SPACE MODELS

Learning curves for I2As with sSSMs are shown in Fig. 18. Both, I2As with learing-to-query
and distillation rollout policies outperform a uniform random rollout policy. The learning-to-query
agent shows weak initial performance, but eventually outperforms the other agents. This shows that
learning-to-sample informative outcomes is beneficial for agent performance.

Figure 18: Model results.
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