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Abstract

Deep Convolutional Networks (DCNs) have been shown to
be sensitive to Universal Adversarial Perturbations (UAPs):
input-agnostic perturbations that fool a model on large por-
tions of a dataset. These UAPs exhibit interesting visual
patterns, but this phenomena is, as yet, poorly understood.
Our work shows that visually similar procedural noise pat-
terns also act as UAPs. In particular, we demonstrate that
different DCN architectures are sensitive to Gabor noise pat-
terns. This behaviour, its causes, and implications deserve
further in-depth study.

1. Introduction

Deep Convolutional Networks (DCNs) have enabled deep
learning to become one the primary tools for computer vi-
sion tasks. However, adversarial examples—slightly altered
inputs that change the model’s output—have raised concerns
on their reliability and security. Adversarial perturbations
can be defined as the noise patterns added to natural inputs to
generate adversarial examples. Some of these perturbations
are universal, i.e. the same pattern can be used to fool the
classifier on a large fraction of the tested dataset (Moosavi-
Dezfooli et al., 2017; Khrulkov & Oseledets, 2018). As
shown in Fig. 1, it is interesting to observe that such Uni-
versal Adversarial Perturbations (UAPs) for DCNs contain
structure in their noise patterns.

Results from (Co et al., 2018) together with our results
here suggest that DCNs are sensitive to procedural noise
perturbations, and more specifically here to Gabor noise.
Existing UAPs have some visual similarities with Gabor
noise as in Figure 2. Convolutional layers induce a prior
on DCNs to learn local spatial information (Goodfellow
et al., 2016), and DCNs trained on natural image datasets,
such as ImageNet, learn convolution filters that are similar
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Figure 1. UAPs generated for VGG-19 targeting specific layers
using singular vector method (Khrulkov & Oseledets, 2018).

Figure 2. Gabor noise with normalized variance spectrums (Neyret
& Heitz, 2016) and decreasing frequency from left to right.

in appearance to Gabor kernels and colour blobs (Yosinski
et al., 2014; Olah et al., 2017). Gabor noise is a convolution
between a Gabor kernel? and a sparse white noise. Thus,
we hypothesize that DCNs are sensitive to Gabor noise, as it
exploits specific features learned by the convolutional filters.

In this paper we demonstrate the sensitivity of 3 different
DCN architectures (Inception v3, ResNet-50, and VGG-19),
to Gabor noise on the ImageNet image classification task.
We empirically observed that even random Gabor noise pat-
terns can be effective to generate UAPs. Understanding this
behaviour is important, as the generation and injection of
Gabor noise is computationally inexpensive and, therefore,
can become a threat to the security and reliability of DCNs.

2. Background

Compared to standard adversarial examples, UAPs reveal
more general features that the DCN is sensitive to. In con-
trast, adversarial perturbations generated for specific inputs,
though less detectable in many cases, can “overfit” and
evade only on inputs they were generated for (Zhou et al.,
2018). Previous approaches to generate UAPs use knowl-
edge of the model’s learned parameters. Moosavi-Dezfooli
et al. (2017) use the DeepFool algorithm (Moosavi-Dezfooli
et al., 2016) iteratively over a set of images to construct a

2A kernel (or filter) in image processing refers to a mask or
small matrix used for image convolution.



Sensitivity of Deep Convolutional Networks to Gabor Noise

UAP. A different approach is proposed in (Mopuri et al.,
2018), where UAPs are computed using Generative Adver-
sarial Nets (GANS).

Khrulkov & Oseledets (2018) proposed the singular vector
method to generate UAPs targeting specific layers of DCNG,
learning a perturbation s that maximises the L,,-norm of the
differences in the activations for that specific layer, f;:

argmax || f;(z) — fi(x + 5)[lp, sllq =€

where the L,-norm of s is constrained to €. This can ap-
proximated using the Jacobian for that layer:

1fi(2) = filz + s)llp = | Ji(2) - 5]lp-

The solution s that maximizes this is the (p, ¢)-singular vec-
tor can be computed with the power method (Boyd, 1974).
Then, s is effective to generate UAPs targeting a specific
layer in the DCN. The solutions obtained with this method
for the first layers of DCNs (see Fig. 1) resemble the Gabor
noise patterns shown in Fig. 2.

However none of these works highlight the interesting visual
patterns that manifest from these UAPs. In contrast, we
show that procedural noise can generate UAPs targeting
DCNs in a systematic and efficient way.

3. Gabor Noise

Gabor noise is the convolution of a sparse white noise and
a Gabor kernel, making it a type of Sparse Convolution
Noise (Lagae et al., 2009; 2010). The Gabor kernel g with
parameters {x, o, \, w} is the product of a circular Gaussian
and a harmonic function
glz,y) = ke ™ (@) cog 27 A(z cosw + ysinw)]

where x and o are the magnitude and width of the Gaussian,
and A and w are the frequency and orientation of the Har-
monic (Lagae et al., 2010). The value of the Gabor noise at
point (z,y) is given by

G(x7y) = szg(x — T Y — Yis ’{i70i7Aiawi)
i

where (x;,y;) are the coordinates of sparse random points
and w; are random weights.

Gabor noise is an expressive noise function and has expo-
nentially many parameterizations to explore. To simplify
the analysis, we choose anisotropic Gabor noise, where the
Gabor kernel parameters and weights are the same for each .
This results in noise patterns that have uniform orientation
and thickness. We also normalize the variance spectrum
of the Gabor noise using the algorithm in (Neyret & Heitz,
2016) to achieve min-max oscillations within the pattern.

4. Experiments

For our experiments we use the validation set from the
ILSVRC2012 ImageNet image classification task (Rus-
sakovsky et al., 2015) with 1,000 distinct categories.
We use 3 pre-trained ImageNet DCN architectures from
keras.applications: Inception v3 (Szegedy et al.,
2016), ResNet-50 (He et al., 2016), and VGG-19 (Simonyan
& Zisserman, 2014).

Inception v3 take input images with dimensions 299 x 299 x
3 while the other two networks take images with dimensions
224 x 224 x 3. The kernel size x = 23 is fixed so that the
Gabor kernels will fill the entire image regardless of the dis-
tribution of points. The number of points ¢ distributed will
be proportional to the image dimensions, which is indepen-
dent of the Gabor kernel parameters. The resulting Gabor
noise parameters we control are © = {o,w, A\}. We test the
sensitivity of the models with 1,000 random Gabor noise
perturbations generated from uniformly drawn parameters
© with o, A € [1.5,9] and w € [0, 7].

We evaluate our Gabor noise on 5,000 random images from
the validation set with an /., norm constraint of ¢ = 12
on the noise. The choice of % ~ 0.047 is consistent
with other attacks on ImageNet-scale models with less than
5% perturbation magnitude. To provide a baseline, we
also measure the sensitivity of the models to 1,000 uniform
random noise perturbations from {—¢, e }P*P>*3 where D
is the image’s side length. This is useful for showing that

the sensitivity to Gabor noise is not trivial.

4.1. Metrics

Given model output f, input x € X, perturbation s, and
small ¢ > 0, we define the universal sensitivity of a model
on perturbation s over X as

%Z If(@) = f(z+ 5)]oo, |IS]loc =e&-

reX

The norm constraint on s ensures that the perturbation is
small. For this paper, we choose co-norm as it is straightfor-
ward to impose for Gabor noise perturbations and is often
used in the adversarial machine learning literature. For clas-
sification tasks, it is also useful to consider the universal
evasion rate of a perturbation s over X

{z € X : argmax f(z) # argmax f(z + s)}|
Ry

This corresponds to the definition that an adversarial pertur-
bation is a small change that alters the predicted output label.
Note that we are not interested in the ground truth labels
for  or z + s. We focus instead on how small changes
to the input result in large changes to the model’s original
predictions.
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Figure 3. Histogram of 1,000 Gabor noise perturbations’ (top) universal sensitivity and (bottom) universal evasion over 5,000 inputs.

It is worth using both the universal sensitivity and the uni-
versal evasion metrics, as the former gives a continuous
measure of the sensitivity, while the latter tells us on how
much of the dataset that perturbation changes the decision
of the model.

4.2. Sensitivity to Gabor Noise

Our results show that the order from least to most sensi-
tive models are Inception v3, ResNet-50, and then VGG-19.
This is not surprising as the validation accuracies of these
models also appear in the same order. Overall, our exper-
iments show that the three models are significantly more
sensitive to the Gabor noise than random noise. The univer-
sal sensitivity and evasion rates of random noise have very
small variance and their values are clustered around their
medians. Table 1 shows how close the quartiles of random
noise’s are for VGG-19.

Inception v3 is also insensitive to random noise, but has a
moderate sensitivity to Gabor noise. ResNet-50 appears to
be more sensitive to the random noise than VGG-19, but
VGG-19 is more sensitive to Gabor noise than ResNet-50.
This implies that when comparing models higher sensitiv-
ity to one type of perturbation does not imply the same
relationship for another type of perturbation.

The results in Fig. 3 suggest that across the three models a
random Gabor noise is likely to affect the model outputs on
a third or more of the input dataset. From the histograms,
the Gabor noise perturbations appear to centre around rel-
atively high modes for both metrics. As an example, the
first quartile of Gabor noise, as seen in Table 1, has 49.3%
universal evasion, i.e. about 75% of the Gabor noise pertur-
bations change VGG-19’s decision on about half or more
of the input dataset. For the remainder of this analysis we
focus on VGG-19 as it is the most sensitive model. Similar

figures and statistics for the other two models are in the
appendix.

Table 1. Sensitivity (%) metric quartiles of Gabor and random
noise perturbations on VGG-19.

Universal Sensitivity Universal Evasion

Quartile Gabor Random Gabor Random
Ist 34.2 13.8 49.3 20.8
2nd 39.1 13.9 55.5 21.0
3rd 43.7 13.9 61.5 21.3

“Best” Parameters. Taking the top 10 perturbations that
VGG-19 is most sensitive to, we see that the other two
models are also very sensitive to these noise patterns. The
ranges of the universal evasion rate for these are 69.7% to
71.4% for VGG-19, 50.7% to 53.4% for ResNet-50, and
37.9% to 39.4% for Inception v3. These values are all
above the 3rd quartile for each of these models, showing its
generalizability to the other models.

In Fig. 5 we see a strong correlation (> 0.74) between the
universal sensitivity and evasion rates across models. This
further suggests that strong perturbations transfer across
these models. We also see a weak correlation between A
and the sensitivity and evasion rates for Inception v3, though
there appears to be none between A and the sensitivity values
for ResNet50.

The universal evasion rate of the perturbations appears to be
insensitive to its Gaussian width o and orientation w. How-
ever, the sensitivity for small A < 0.3 appears to fall below
the average, suggesting that below a certain value the Gabor
noise does not affect the model’s decision. Interestingly, A
corresponds to the width or thickness of the bands in the
image. Examples of Gabor noise perturbations can be seen
in the appendix.
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Figure 4. Histogram of 5,000 inputs’ (top) average sensitivity and (bottom) average evasion over 1,000 Gabor noise perturbations.
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Figure 5. Correlation matrix of Gabor noise parameters and metrics
for each model. Inception v3, ResNet-50, and VGG-19 are referred
to as “in3”, “r50”, and “v19” respectively.

Sensitivity of Inputs. The model’s sensitivity could vary
across the input dataset, meaning that the model’s predic-
tions is stable on some inputs while more susceptible to
small perturbations on others. To measure this, we look at
the sensitivity of single inputs over all perturbations.

Given a set of perturbations s € S, we define the average
sensitivity of a model on input x over .S as

1
5] SO @) = f@+ )l

ses

and the average evasion rate on = over S as

[{s € §:argmax f(z) # argmax f(xz + s)}|
5]

The bimodal distribution of the average evasion rate in Fig. 4
shows that for each model there are two large subsets of
the data: One that is very sensitive and another that is very

insensitive. The remaining data points are somewhat uni-
formly spread in the middle. Note that for Inception v3,
there is a much larger fraction of data points whose predic-
tion is not affected by Gabor perturbations. The distribution
for the average sensitivity appears to have similar shape,
but with more inputs in the 0-20% range for Inception v3.
The dataset is far less sensitive against random noise with
upwards of 60% of the dataset being insensitive to that noise
across all models.

5. Conclusion

The results show that the tested DCN models are sensitive
to Gabor noise for a large fraction of the inputs, even when
the parameters of the Gabor noise are chosen at random.
This hints that it may be representative of patterns learned
at the earlier layers as Gabor noise appears visually similar
to some UAPs targeting earlier layers in DCNs (Khrulkov
& Oseledets, 2018).

This phenomenon has important implications on the security
and reliability of DCNis, as it can allow attackers to craft
inexpensive black-box attacks. On the defender’s side, Ga-
bor noise patterns can also be used to efficiently generate
data for adversarial training to improve DCNs robustness.
However, both the sensitivity exploited and the potential to
mitigate it require a more in-depth understanding of the phe-
nomena at play. In future work, it may be worth analyzing
the sensitivity of hidden layer activations across different
families of procedural noise patterns and to investigate tech-
niques to reduce the sensitivity of DCNs to perturbations.
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A. Sensitivity to Gabor Noise

As seen in Figure 6, sensitivity metric values for random
noise fall in a narrow range and are significantly smaller than
the metric values of the Gabor noise. This is further shown
when comparing the quartiles of the universal evasion and
sensitivity in Tables 2 and 3.

Figures 9, 10, 11, 12, and 13 show some adversarial exam-
ples with the top perturbations.

Table 2. Sensitivity (%) metric quartiles of Gabor and random

B. Sensitivity of Inputs

Large part of the input dataset is insensitive to random noise
as shown in Tables 4, 5, 6 and Figure 7. With about 60%
of the dataset on having near 0% average evasion over the
random noise perturbations for all three models.

Table 4. Sensitivity (%) metric quartiles of input data over pertur-
bations on Inception v3.

Average Sensitivity Average Evasion

noise perturbations on Inception v3. Quartile Gabor Random Gabor Random
) o ) ) st 10.6 1.8 0.3 0.0
Universal Sensitivity Universal Evasion ond 26.8 6.7 19.8 0.0
Quartile  Gabor Random Gabor Random 3rd 451 17.0 65.6 4.1
Ist 29.9 11.8 32.8 13.0
2nd 31.8 11.8 34.9 13.2
3rd 33.2 11.9 36.9 13.5 Table 5. Sensitivity (%) metric quartiles of input data over pertur-

Table 3. Sensitivity (%) metric quartiles of Gabor and random
noise perturbations on ResNet-50.

Universal Sensitivity Universal Evasion

Quartile  Gabor Random Gabor  Random
Ist 35.7 19.3 44.3 25.6
2nd 37.7 19.3 46.8 25.8
3rd 40.4 194 50.1 26.0

bations on ResNet-50.

Average Sensitivity Average Evasion

Quartile  Gabor Random Gabor  Random
Ist 19.6 2.3 7.0 0.0
2nd 34.8 13.3 45.1 0.0
3rd 53.9 29.2 84.6 53.7

Table 6. Sensitivity (%) metric quartiles of input data over pertur-
bations on VGG-19.

Average Sensitivity Average Evasion

Quartile  Gabor Random Gabor  Random
Ist 22.3 3.1 18.4 0.0
2nd 34.2 10.3 60.2 0.0
3rd 52.2 19.6 90.0 24.5
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Figure 9. Gabor noise parameters ©s = {4.78,1.81,2.93} on
Inception v3.

Altered Image

mousetrap 0.994
syringe 0.001
lighter 0.000
buckeye 0.000
wood_rabbit 0.000
mongoose 0.000

chain_saw
mousetrap
window_screen
hamper
fire_screen
power_drill 0.001

Original Image Altered Image

cleaver 0.999
hatchet 0.000
spatula 0.000

window_screen 0.993
television 0.003
microwave 0.001

rule 0.000 ping-pong_ball 0.000
hook 0.000 jigsaw_puzzle 0.000
shovel 0.000 rock_beauty 0.000

Qriginal Image Altered Image

jigsaw_puzzle 0.772
window_screen 0.133
fountain 0.030
solar_dish 0.003
airship 0.003
Jjoystick 0.001

aircraft_carrier 0.976
shower_cap 0.001
liner 0.001
container_ship 0.000
projectile 0.000
dock 0.000

Figure 10. Gabor noise parameters ©7o9 = {7.92,1.85,3.12} on
Inception v3.



Sensitivity of Deep Convolutional Networks to Gabor Noise

Original Image

dugong 0.992
hippepotamus 0,002
sea_lion 0.002
electric_ray 0.001
stingray 0.001

eel 0.001

Original Image

| —
punching_bag 0.988
barrel 0.006
paper_towel 0.004
rain_barrel 0.001
oil_filter 0.000
toilet_tissue 0.000

Original Image

can_opener 0.992
lighter 0.003
whistle 0.003

corkscrew 0.001
hair_slide 0.000
hook 0.000

QOriginal Image

padlock 0.989

hook 0.005

switch 0.002
combination_lock 0.002
chain_saw 0.001
chainlink_fence 0.001

Figure 11. Gabor noise parameters ©119 = {6.69,1.02,8.45} on

ResNet-50.
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Figure 12. Gabor noise parameters O1s5 = {6.10, 1.99, 3.46} on
ResNet-50.
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Figure 13. Gabor noise parameters O25 = {6.29,1.10,4.86} on

VGG-19.
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