
Safe Learning and Control using Meta-Learning
Thomas Lew, James Harrison, Apoorva Sharma, Marco Pavone

I. INTRODUCTION

When deploying autonomous systems in uncertain environ-
ments or for extended durations, mismatch between a model of
the system dynamics and the true dynamics is inevitable. For
example, an autonomous free-flying spacecraft’s thrusters may
deviate from nominal behavior due to damage or interference
due to debris, modeled on our hardware testbed in Fig. 1. For
an autonomous agent to perform tasks in such settings, it must
control a system for which the system dynamics are uncertain,
and do so safely. Furthermore, this initial uncertainty might
be too high to carry out the desired task safely, in which case
autonomous agents must be able to learn, using data observed
online to reduce the uncertainty about the system dynamics.

This problem of maintaining safety constraints while con-
trolling uncertain systems is well-suited to model-based con-
trol approaches where the uncertain dynamics are represented
using a Gaussian process (GP) model [3, 5, 8]. A related
line of work has also considerd learning system dynamics
while maintaining stability or safety [1, 7, 11]. However, the
complexity of nonparametric kernel GPs scales poorly with
the amount of observed data (or the choice of the number
of inducing variables for sparse GPs [9]) and their ability to
incorporate prior knowledge is limited to the choice of kernel
and a handful of hyperparameters.

Recent work in meta-learning has emerged as a promising,
data-driven alternative for online learning, using an offline
training phase to imbue learning algorithms with prior knowl-
edge needed to efficiently fit data observed online. Using non-
linear activation functions and a Bayesian output layer which
is adapted online, such approaches outperform nonparametric
GPs in accuracy and adaptation capabilities [4]. In this work,
we present a unified framework for safe learning and adaptive
control of an uncertain nonlinear system which leverages the
computational and data efficiency gains of a meta-learned
dynamics model. This framework combines three key tech-
nical contributions: (1) Lipschitz normalization techniques to
improve the uncertainty propagation properties of the meta-
learned dynamics model; (2) a tractable optimization objective
for the exploration phase; (3) formulations of exploration
and exploitation tasks as chance-constrained optimal control
problems, which are solved using a novel sequential convex
programming (SCP) algorithm.

II. META-LEARNING A DYNAMICS MODEL

The goal of this work consists in controlling an uncertain
nonlinear system from an initial state x0 to a goal region Xgoal

while respecting safety constraints x ∈ Xfree. The system is
characterized by its unknown discrete-time dynamics fθ and
subject to external disturbances εk ∼ N (0,Σε) as

xk+1 = fθ(xk,uk) + εk, (1)
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Fig. 1: Perturbed Free-Flyer system avoiding obstacles.

where xk ∈ Rn is the state, uk ∈ U ⊂ Rm are the control
inputs and θ ∈ Θ ⊂ Rnθ are unknown latent parameters.
Since the true value of θ is initially unknown, it is necessary
to use an approximate model for (1) which includes the
uncertainty of its prediction, exploits prior knowledge of fθ
and enables fast online adaptation to fit the true model.

In this work, we leverage the Bayesian meta-learning
architecture presented in [4]. Decomposing fθ(·) into a
nominal model f(·) and an uncertain term KTφ(·), where
φ(·) is a neural network and K∼MN (K̄,Λ−1,Σε) with
MN (·) denoting the matrix normal distribution [4] and Λ
the precision matrix, an approximate model for (1) is

xk+1 = f(xk,uk) + KTφ(xk,uk) + εk. (2)

With this model structure, the distribution on K can be
efficiently updated as data is observed online. Specifically,
given a measurement xk+1 from a state xk using an input
uk, a prior distribution Kk∼MN (K̄k,Λ

−1
k ,Σε) is updated:
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Qk+1 = φkyT
k+1 + Qk with yk+1=(xk+1−f(xk, uk)) (3b)

K̄k+1 = Λ−1
k+1Qk+1, (3c)

where Q0 := Λ0K̄0 and φk := φ(xk,uk). Since all
the observed data is summarized in the updated distribution
parameters, the computational complexity of inference in this
model remains constant as a function of data observed online,
in contrast to nonparametric GP approaches.

Given the parameters of the posterior distribution Λ−1

and K̄, an initial state distribution N (µ0,Σ0), and an action
sequence u0, . . . ,uN−1, one can use a Taylor approximation
to approximate the distribution over future states. Denoting
Σk:=Var {xk}, f̄ :=f(µk,uk) and φ̄:=φ(µk,uk), we write

µk+1 = f(µk,uk) + KTφ(µk,uk) (4a)
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Σε+ (4b)

∇(f̄+K̄T φ̄)Σk∇(f̄+K̄T φ̄)T .

Note that since the initial state x0 is known perfectly, the first
prediction of the variance is exact and is given by the first
term of (4b), which was derived in [4]. Also, it is possible to
reduce the uncertainty propagation by using a nominal linear
state-feedback controller as in [5], which is done in this work.

The weights W of the neural network φ and the prior
parameters K̄0,Λ0 are learned in an offline meta-training
phase: Using a dataset of trajectories obtained by sampling



from a distribution of possible dynamics models in a simulator,
we use part of the trajectory together with Eqs. (3) to obtain
the posterior on K. Using this posterior and Eqs. (4), we
compute a distribution of the predictions for the remainder
of the trajectory. The negative log likelihood of the realized
trajectory under this distribution serves as the loss function for
the offline meta-training phase, thereby allowing us to learn
weights for φ that capture the structure in the problem domain,
and a prior on K that captures the uncertainty of the model.

However, when performing uncertainty propagation in the
planning phase, some techniques rely on the Lipschitz constant
of the approximate model (e.g., in [7]) which, for a model
with tanh(·) activation functions, is bounded by the product
of the maximum singular values of the layer weights. To make
the approximate model more amenable to Lipschitz-based
uncertainty propagation, we extend the training approach
from [4] by constraining the maximum singular values of
each layer’s weights Wj during the offline training procedure:

min Loss(K̄0,Λ0,φ) (5a)
subject to meta-learning constraints [4] (5b)

σmax(Wj) ≤ σ̄φj , ∀j = 1, . . . l (5c)
σmax(K̄0) ≤ σ̄K̄. (5d)

III. EXPLORATION - EXPLOITATION ALGORITHM

A. Exploration Objective
The exploration objective can be expressed as the mutual

information I(·) between the unknown function fθ and an
observation xk+1, characterizing the information gain [10]
from observing xk+1. Excluding the derivation due to space
constraints, the expected uncertainty reduction resulting from
observing xk+1 can be approximated as

E{I(xk+1; fθ)} ≈ 1

2

(
log(1+φ̄TΛ−1φ̄)

)
. (6)

Note that the complexity of evaluating the exploration cost
above and its gradient are constant. This is an advantage
compared to GPs and Sparse GPs [9], where complexity scales
with the number of observed data points or inducing variables,
respectively.

B. Chance-Constrained Trajectory Optimization
Using this model which captures fθ with high probability,

both the exploration and exploitation tasks can be written as

min
µ,u

lf (µN ) +

N−1∑
k=0

l(µk,uk) (7a)

s.t. µk+1 = (f + K̄φ)(µk,uk) ∀k = 0, . . . , N−1 (7b)
Pr(xk ∈ Xfree) ≥ px ∀k = 1, . . . , N−1 (7c)
Pr(xN ∈ Xf ) ≥ px (7d)
Pr(uk ∈ U) ≥ pu ∀k = 0, . . . , N−1 (7e)
x0 = x(0), (7f)

where l(·), lf (·) are positive cost functions, Xfree is the set
of states satisfying all constraints (velocity bounds, obstacle-
free, ...), Xf ⊂ Xfree is the terminal set, px, pu are probability
thresholds and x(0)∈X0⊂Xfree, with X0 the initial region. We
assume that all sets, including the positions of the obstacles,
are perfectly known, static and given to the planner.

To solve this problem, we use an extension of GuSTO
[2]. By propagating the uncertainty and convexifying non-
convex terms at each SCP iteration, this problem is solved
efficiently and this method can handle different uncertainty
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Fig. 2: Sequential Exploration - Exploitation algorithm. In
blue: planned trajectory with the px-confidence ellipsoidal
regions. In green: true trajectory after executing a control input
sequence, where the robot is represented as a green cylinder.

propagation methods (e.g., using (4) or leveraging Lipschitz
continuity as in [7]). This is in contrast to previous GP-MPC
approaches, where the uncertainty of the trajectory is often
only approximated along a nominal trajectory.

C. Dual Algorithm
Starting from an initially highly uncertain prior model

(K̄0,Λ0), it may be unfeasible to compute a feasible trajectory
to the goal. Therefore, we separate the learning and reaching
problem into two distinct exploration and exploitation phases
that are successively solved until the end region Xgoal is
reached. The exploitation problem consists in reaching the
end region Xf = Xgoal while minimizing the actuation effort∑

k ‖uk‖. The exploration problem consists in maximizing the
sum of information gains in (6) with the end state being in
the initial safe region Xf = X0. Since Λ is kept constant to
evaluate (6), this objective is only an approximation for the
maximization of the gain of information along the trajectory.
At the end of each phase, the resulting trajectory is used to
update the model parameters (K̄,Λ) using (3). By assuming
a Probabilistic Invariant Set for X0 [6] and an optimization
horizon (N, tf ) ensuring the existence of a solution to the
chance-constrained problem, we can guarantee that the system
remains safe at all times with high probability.

IV. RESULTS AND CONCLUSIONS

In Fig. 2, we show our exploration / exploitation algorithm.
Using a perturbed free-flyer system shown on Fig. 1, the goal
consists in traversing a terrain with obstacles. At first, the
problem is unfeasible due to high uncertainties. Therefore, it
is necessary to explore with a short planning horizon. After
executing each control input sequence, the resulting trajectory
is used to perform regression and we show that the norm of the
covariance matrix Λ−1 rapidly decreases. At iteration #5, the
problem is feasible and Xgoal is reached. On the last figure,
we re-initialize the system with the inferred model and safely
reach the goal region without further exploration, which was
initially impossible. All constraints are satisfied at all time,
verifying the probabilistic safety properties of our method.
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