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ABSTRACT

Learning domain-invariant representation is a dominant approach for domain gen-
eralization, where we need to build a classifier that is robust toward domain
shifts induced by change of users, acoustic or lighting conditions, etc. However,
prior domain-invariance-based methods overlooked the underlying dependency of
classes (target variable) on source domains during optimization, which causes the
trade-off between classification accuracy and domain-invariance, and often inter-
feres with the domain generalization performance. This study first provides the
notion of domain generalization under domain-class dependency and elaborates
on the importance of considering the dependency by expanding the analysis of
Xie et al. (2017). We then propose a method, invariant feature learning under
optimal classifier constrains (IFLOC), which explicitly considers the dependency
and maintains accuracy while improving domain-invariance. Specifically, the pro-
posed method regularizes the representation so that it has as much domain infor-
mation as the class labels, unlike prior methods that remove all domain informa-
tion. Empirical validations show the superior performance of IFLOC to baseline
methods, supporting the importance of the domain-class dependency in domain
generalization and the efficacy of the proposed method for overcoming the issue.

1 INTRODUCTION

In supervised learning problems we typically assume that samples are obtained from the same dis-
tribution in training and testing; however, such an assumption does not hold in many practical situa-
tions, depressing the classification accuracy for the test data (Torralba & Efros (2011)). One typical
situation is domain generalization (e.g., Blanchard et al. (2011)): we have labeled data from several
source domains and collectively exploit them so that the trained system generalizes to other, unseen
but somewhat similar, target domains. Such challenges arise in many applications, e.g., hand-writing
recognition (Shankar et al. (2018)), robust speech recognition (Sriram et al. (2018)), and sensor data
interpretation (Erfani et al. (2016)).

To address domain generalization, many methods take advantage of invariant feature learning
(Muandet et al. (2013); Erfani et al. (2016); Ghifary et al. (2017); Xie et al. (2017)). Such meth-
ods assume that learning the representation (k) that is invariant to domains (d) from input data
(z) prevents h to overfit to source domains and leads to higher classification accuracy for unseen
domains. To obtain such h, we used various methods to measure the invariance of A to d and im-
posed some regularization on the measurement. For example, domain adversarial networks (DAN)
(Ganin et al. (2016); Xie et al. (2017)) measure the invariance using a domain classifier (also called
a discriminator) parameterized by deep neural networks and impose regularization by deceiving it.

Most prior works, however, overlooked the underlying dependency of classes on source domains,
which we refer to as domain-class dependency. More specifically, we define domain-class depen-
dency as the situation where domain and class labels are statistically dependent due to some common
latent factor (z) of y and d (Figure 1-right). Under the domain-class dependency, merely forcing the
optimal domain-invariance harms the classification accuracy, as shown in Figure 1-(c). Intuitively
speaking, since y contains information about d under domain-class dependency, h must keep at least
as much domain information as y to achieve the optimal classification accuracy; however, invariant
feature learning attempts to remove all domain information from h, which causes the trade-off. It
might be similar to the situation where p(y|x) and p(x) change across domains due to the causal
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Figure 1: The illustration of the domain-class dependency problem. While Li et al. (2018c) focused
on the causal relationship between x and y, we focus on the relationship between y and d because
it causes the following trade-off problem. (a) When domain and class are independent, domain
invariance and classification accuracy can be optimized at the same time. (b,c) In domain-class de-
pendency, there is a trade-off between these two: (b) optimal invariance cannot be achieved when
optimal classification accuracy is achieved, and (c) vice versa. We propose a method to lead explic-
itly to (b) rather than (c), because the primary purpose for domain generalization is classification,
not domain-invariance itself.

structure y — x (Zhang et al. (2013); Gong et al. (2016) in domain adaptation and Li et al. (2018c¢)
in domain generalization), which we call conditional probability shift. However, the shift does not
cause the trade-off as long as y and d are independent (Figure 1-left), so it is necessary to focus on
the relationship between y and d.

Unfortunately, domain-class dependency is common in real-world datasets as shown in Zhang et al.
(2013). The dependency can be caused by both the characteristics of data and errors in collecting
data. For example, the WISDM Activity Prediction dataset (Kwapisz et al. (2011)), where classes
and domains correspond to activities and users, exhibits the dependency because (1) some activities
(jogging and climbing stairs) are strenuous (data characteristics) and (2) other activities (sitting and
standing) and some users were added only after the study began (data-collection errors).

In this paper, we address domain generalization under domain-class dependency. We first expand
the analysis about DAN by Xie et al. (2017), show that domain-class dependency causes the trade-
off problem, and then derive a way to evade the trade-off. Specifically, we investigate the condition
where the domain-invariance is maximized under the constraint that it does not interfere with classi-
fication accuracy (Figure 1 (b)), because the primary purpose of domain generalization is classifica-
tion rather than domain-invariance itself. We then propose a novel method invariant feature learn-
ing under optimal classifier constraint (IFLOC), modifying DAN’s regularization term to make the
learned representation have as much domain information as the class labels, i.e., H(d|h) = H(d|y)
holds (here H denotes entropy). Like DAN, IFLOC has an encoder, classifier, and domain discrim-
inator, and also takes over the good properties of DAN: it does not depend on pre-defined metrics
(e.g., maximum mean discrepancy (Tzeng et al. (2014))), and it can be trained in an end-to-end
manner. Empirical validations show the superior performance of IFLOC to baseline methods, sup-
porting the importance of considering domain-class dependency in domain generalization tasks and
the efficacy of the proposed approach for overcoming the issue.

The main contributions of this paper can be summarized as follows. Firstly, we elaborate on the
trade-off problem under domain-class dependency, both theoretically and experimentally, for the
first time in domain generalization context. Secondly, to address the issue we provide theoretical
analysis, which shows to what extent latent representations can become invariant to domains without
interfering with classification accuracy. Finally, based on the analysis we propose a novel method
IFLOC, and validated its efficacy by the experiments on both synthetic and real world datasets.

2 RELATED WORKS

Invariant feature learning is a general-purpose method applicable to domain generalization as
well as to domain adaptation (e.g., Tzeng et al. (2014); Ganin et al. (2016)), style transfer (e.g.,
Lample et al. (2017); Chou et al. (2018)), and fairness-aware classification (e.g., Zemel et al. (2013);
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Louizos et al. (2016); Madras et al. (2018)). However, it is likely that adjusting it to each specific
task can improve performance. For example, in the fairness-aware classification task Madras et al.
(2018) proposed to optimize the fairness criterion directly instead of applying invariance to sensi-
tive variables. By analogy, we adapted invariant feature learning for domain generalization so as to
address the domain-class dependency problem.

Domain generalization has been attracting considerable attention in recent years (Blanchard et al.
(2011); Muandet et al. (2013); Shankar et al. (2018)). Note that it is different from domain adap-
tation in that we cannot obtain input and label data from target domain(s). Although the efficacy
of domain-invariance-based methods had been known, Li et al. (2017) showed that non end-to-end
methods such as DICA (Muandet et al. (2013)) and MTAE (Ghifary et al. (2015)) do not tend to
outperform even vanilla CNN. Thus, end-to-end methods are desirable and can be divided into two
categories: adversarial-learning-based methods such as DAN (Ganin et al. (2016); Xie et al. (2017))
and pre-defined-metric-based methods (e.g., Ghifary et al. (2017); Li et al. (2018b)).

In particular, IFLOC closely relates to DAN. Although DAN was originally invented for domain
adaptation, Xie et al. (2017) showed its efficacy in domain generalization. Also, Xie et al. (2017)
provided the intuitive explanation of the trade-off between classification accuracy and domain in-
variance. However, they did not provide any way to deal with the problem because its focus is
invariant feature learning itself. Louppe et al. (2017) provided the similar analysis with Xie et al.
(2017), but differs in that they focused on the relation between nuisance parameters (domains) and
output distribution of a domain classifier. IFLOC also relates to domain confusion loss (Tzeng et al.
(2015)) in that their encoders attempt to directly minimize Kullback-Leibler divergence (KLD) be-
tween output distribution of the discriminators and some domain distribution (p(d|y) in IFLOC and
uniform distribution in domain confusion loss), rather than deceive the discriminator as DAN.

There are several studies that address domain generalization without utilizing invariant feature learn-
ing. For example, Motiian et al. (2017); Li et al. (2018c) proposed to make use of semantic align-
ment, which attempts to make latent representation given class label (p(h|y)) identical within source
domains. This approach was originally proposed in Gong et al. (2016) in domain adaptation con-
text, but its efficacy for domain-class dependency is not obvious because it focuses on conditional
probability shift. CrossGrad (Shankar et al. (2018)) is one of the recent state-of-the-art domain gen-
eralization methods, which utilizes data augmentation with adversarial examples. However, since
the method relies on the assumption that y and d are independent, it might not be directly applicable
to our setting. MLDG (Li et al. (2018a)), also one of the state-of-the-art methods, utilizes meta-
learning. Since it makes no assumption about the relation between y and d, it could be combined
with our proposed method, though we have not experimentally confirmed it.

There are several kinds of distributional shifts other than domain-class dependency, such as condi-
tional probability shift. Although the distinction between that shift and domain-class dependency is
important, it has been received less attention. For example, Li et al. (2018c¢) claimed that conditional
probability shift might harm the performance of domain-invariance-based methods, but our analysis
in Sec.4.1.1 suggests that the root cause of the performance degradation is not it but domain-class
dependency. They also proposed to correct the shift of p(y) across source domains by aligning sam-
pling frequency of each class across domains. However, this approach is not applicable to when
some classes are rarely or never appear in some domains (e.g., as in WISDM dataset). In domain
adaptation, Zhang et al. (2013); Gong et al. (2016) address the situation where p(y) changes across
source and target domains by estimating p(y) change using unlabeled target data. However, this
approach is not applicable (or necessary) to domain generalization because our problem setting is
different from theirs in that we are agnostic on target domain and aim to care about p(y) change
within source domains instead.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT OF DOMAIN GENERALIZATION

Denote X, ), and D as the input feature, label, and domain spaces, respectively. With random vari-
ablesx € X', y € Y, and d € D, we can define the probability distribution for each domain d as
p(x,y|d). Here, we assume that y and d are discrete variables for simplicity. In domain generaliza-
tion, we are given a training dataset consisting of D, = {5,437}, forall s € {1,2,...,m}. Here,
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each D, corresponds to samples drawn from the source domain p(x, y|d = s). Using the training
dataset, we train a classifier f : X — )/, and use the classifier to predict labels of samples drawn
from the unknown target domain p(x, y|d = t).

3.2 DOMAIN ADVERSARIAL NETWORKS FOR DOMAIN GENERALIZATION

In this section, we give a brief overview of DAN (Ganin et al. (2016)) given that our proposed
method is an extension of it. DAN trains a domain discriminator that attempts to predict domains
from latent representations encoded by an encoder, while simultaneously trains the encoder to re-
move domain information by deceiving the discriminator. This procedure ensures that there is no
or little domain information in the representations, so a label classifier attached to the encoder can
make robust predictions regarding unseen target domains.

Formally, we denote fg(x), g (ylh), and gp(d|h) (E, M, and D are the parameters) as determin-
istic encoder, probabilistic model of label classifier, and that of domain discriminator, respectively.
Then, the objective function of DAN is described as follows:

min max J(E,M,D) =Eg; g y~p(e,dyv1ogap(dlh = fe(z)) —logqm(ylh = fe(z))] (1)

Here, the second term in Eq.1 simply maximizes the log likelihood of ¢a; as well as in standard
classification problems. On the other hand, the first term corresponds to a minimax game between
the encoder and discriminator, where the decoder gp(d|h) tries to predict d from & and the encoder
fE(x) tries to fool gp(d|h).

As Xie et al. (2017) originally showed, the minmax game ensures that the learned representation has
no or little domain information, i.e., the representation becomes domain-invariant. Such invariance
makes a prediction from h to y independent from d, and therefore hopefully helps to build a classifier
that correctly handle samples drawn from unknown domains. Below is a brief explanation.

Since h is a deterministic mapping of z, the joint probability distribution of h, d and y can be defined
as follows:

ﬁE(haday) :/ﬁE((L'7d7h,y)dl'

- / pl(a d, )5 (fr(x) = h)dz @)

Here, we use the notation of pg for the true probability distribution that depends on the encoder’s
parameter E. Using Eq.2, Eq.1 can be replaced as follows:

gllﬁ max J(E, M, D) = Ep dy~pphdy)v1ogap(dlh) —logqn (y|h)] 3)

Assuming E is fixed, the solutions M* and D* to Eq.3 obviously satisfy qar+(y|h) = pr(y|h)
and ¢p-~(d|h) = pr(d|h). Then, substituting gas~ and gp+ into Eq.3, we can obtain the following
optimization problem depending only on E':

min J(E) = = yHp, (dh) + Hp, (y]h) S

Solving Eq.4, we can obtain the solutions M*, D*, and E*, which are in Nash equilibrium. Here,
Hj,, (d|h) means conditional entropy with joint probability distribution pg(d, k). Thus, minimizing
the second term in Eq.4 intuitively means learning (the mapping function fg to) the latent represen-
tation h which contains as much information about y as possible. On the other hand, the first term
can be regarded as a regularizer that attempts to learn i which is invariant to d.

4 OUR APPROACH

4.1 ANALYSIS OF DOMAIN-CLASS DEPENDENCY

We address domain generalization under domain-class dependency, i.e., the situation where
p(y|d) # p(y) holds. Although the issue had been overlooked, it is common in real-world datasets
given that they can have the dependency in nature, e.g., nocturnal annimals (class) do not tend to
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appear in daylight (domain), and the dependency in such datasets is often not corrected unlike in
standard benchmark datasets. To address the problem, we expand the analysis of Xie et al. (2017) to
theoretically show that domain-class dependency causes the trade-off between accuracy and invari-
ance, and to consider to what extent the latent representation should become invariant.

4.1.1 TRADE-OFF CAUSED BY DOMAIN-CLASS DEPENDENCY

We first show that the performance of DAN explained in the previous section suffers from the ex-
istence of domain-class dependency. The following analysis also suggests that all of the methods
that utilize domain-invariant representation suffer from the dependency. Concretely, we show that
the domain-class dependency causes the trade-off between classification accuracy and domain in-
variance: when d and y are not statistically independent, any E cannot optimize the first and second
term in Eq.4 at the same time. In this analysis, for simplicity, we assume that we can obtain any
pe(y|h), pr(d|h), i.e., the models have enough capacity and there are no optimization difficulties.

To begin with, we consider only the first term in Eq.4 and address the optimization problem:

mbin J1(E) =—~vHp,(d|h) ®)

Using the property of entropy, Hp,, (d|h) is bounded as follows:
Hjp(dlh) < H(d) (6)

Here, Hj,, (d|h) = H(d) holds only if h and d are independent. Thus, Eq.5 has the solution F'*,
which satisfies the following condition:

Hy . (d[h) = H(d) )

Eq.7 suggests that the regularizer in DAN is intended to remove all information about domains from
latent variables, thereby making domains and latent variables independent.

Next, we analogically consider only the second term in Eq.4, thereby addressing the following
optimization problem:

mEin J2(E) = Hp, (ylh) 3)

Since conditional entropy H (a|b) has a minimum value when b contains all information about a,
Eq.8 has the solution E2*, which satisfies the following equation:

HﬁEz* (d|h) = HﬁEz* (d|ha y) 9
Using Eq.9 and the property of entropy: H (a|b, ¢) < H(alb), we can obtain the following condition:
Hp. (dlh) = Hp,, (d|h, y) < H(d|y) (10)

Dp2x
Eq.10 implies that i has at least as much information about d as y does. Now, we assume that y and
d are not independent, i.e., domain-class dependency exists, and obtain the following condition:

Hp,,. (d|h) < H(dly) < H(d) (11)

Considering Eq.7 and Eq.11, E** # E?* holds. This means that when y and d are not independent,
there is no solution F that optimizes Eq.5 and Eq.8 at the same time, i.e., there is a trade-off between
classification accuracy and domain invariance.

It is worth noting that although Li et al. (2018c) claimed that conditional probability shift (the causal
structure y — ) could harm the domain generalization performance of invariance-based methods,
this analysis suggests that it does not harm DAN as long as domain and class are independent. It can
be confirmed by considering Eq.7 and Eq.10; even when the shift occurs, i.e., H (y|z,d) < H(y|z)
holds and then H;, (y|h,d) < Hp,(ylh) holds, it does not conflict with Hj . (d|h) = H(d|y) =
H(d) as long as H(d|y) = H(d) holds. In other words, we only need to infer latent variable h that
satisfies the causal structure y — h — x to avoid the trade-off. Although Gong et al. (2016) showed
the similar result in domain adaptation context, it has been overlooked in domain generalization.
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4.1.2 OPTIMAL DOMAIN-INVARIANCE UNDER DOMAIN-CLASS DEPENDENCY

If we cannot avoid the trade-off, the next question is how to deal with it, i.e., to what extent the rep-
resentation should become domain-invariant for domain generalization tasks. We propose to max-
imize domain-invariance within a range that does not interfere with classification accuracy, rather
than merely enforcing domain-invariance without any constraint. The reason for the constraint is
that the primary purpose of domain generalization is classification for unseen domains rather than
domain-invariance itself, and the improvement of the invariance could harm the classification per-
formance for them. For example, in WISDM, if we know the target activity (class) was performed
by not an old but yound man (domain), we can predict it was jogging with higher probability, so we
should avoid removing such domain information that is useful in the classification task. As another
example, if the target domain has the similar characteristics as a certain source domain (or as an
extreme case, p(x, y|d = s) = p(x, y|d = t) holds), giving priority to domain-invariance obviously
interferes with the domain generalization performance.

Given that Eq.10 is the necessary condition where we can build an optimal classifier, we can write
the optimization problem of maximizing domain-invariance within a range that does not interfere
with classification accuracy as follows:

minJ(E) = —Hy (dlh) (12
subject to Hp, (d|h) < H(d|y) (13)

Continuing, we can obtain the solution E*, which obviously satisfies H,,. (d|h) = H(d|y). More
specifically, when we want to maximize domain-invariance (Eq.12) within the range that does not
interfere with accuracy (Eq.13), the solution satisfies H; . (d|h) = H(d|y). So without inter-
fering with classification accuracy we can remove domain information from h to the extent that
Hj,, (d|h) = H(d|y) holds, i.e., h has as much information about d as y does.

4.2 PROPOSED METHOD

Based on the above analysis, the remaining challenge is how to impose such regularization that
makes Hj,, (d|h) = H(d|y) hold. Although DAN might be able to achive that condition by carefully
tuning the regularizer (v in Eq.1), such tuning is time-consuming and impracticable as suggested in
our experiments. Alternatively, we propose a novel method called IFLOC, modifying DAN’s regu-
larization term: while the encoder of DAN attempts to fool a discriminator, that of IFLOC attempts
to directly minimize KLD between p(d|y) and ¢p (d|h). Formally, IFLOC solves the following joint
optimization problem by alternating gradient descent.

g}g} J(E, M) =B, ay~p(e.ay) [ YPrLpy)lgp(dlh = fe(r))] —logqm(y|h = fr(x))] (14)

min J(E, D) = Eq gup(ea)|~ log ap(dlh = fu(x))] (15)

The second term in Eq.14 and Eq.15 respectively means maximization of log-likelihood of g;; and
qp as well as DAN. However, the first term in Eq.14 differs from DAN in that it is intended to satisfy
gp(d|h) = p(d|y) for almost every (y, h) pair.

Next we show that the regularization of IFLOC is intended to achieve Hj, (d|h) = H(d|y). Simi-
larly to Section 3.2, D* and M *, which are the solutions to Eq.14 and Eq.15 with fixed E, obviously
satisfy ¢, = pr(d|h), q¢}; = Pr(y|h). Thus Eq.14 can be written as follows:

min J(E) = Epy~pp(hy) VDL p(dly) [P (dIR)]] + Hps (y7) (16)

Since the minimization of the KLD term does not interfere with the second term op-
timization, E*, which is the solution to Eq.16 and in Nash equilibrium, satisfies
Epy~ppr (h,y) [P Lp(d|y) |PE-(d|h)]] = 0. Then, Hj,. (d|h) = H(d|y) obviously holds.

Note that we cannot obtain true p(d|y), but we can use a maximum likelihood or maximum a pos-
teriori estimator for it. Also, we could use some divergences other than D, [p(d|y)|gp(d|h)] in
Eq.14, e.g., Dk r[gp(d|R)|p(d|y)], but in doing so, we could not observe performance gain, so we
discontinued testing them.
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Table 1: Sample sizes for each domain-class pair in BMNISTR. Those for the classes 0~4 are
variable across domains, whereas the classes 5~9 have identical sample sizes across domains.

Dataset | Class | MO MI15 M30 M45 M60 M75
BMNISTR-1 0~4 | 100 85 70 55 40 25
5~9 | 100 100 100 100 100 100
BMNISTR-2 | 0~4 | 100 80 60 40 20 0
5~9 | 100 100 100 100 100 100
BMNISTR-3 | 0~4 | 100 90 80 70 60 50
5~9 | 100 100 100 100 100 100
BMNISTR-4 | 0~4 | 100 25 100 25 100 25
5~9 | 100 100 100 100 100 100

5 EXPERIMENTS

5.1 DATASETS

BMNISTR We created the Biased Rotated MNIST dataset (BMNISTR) by modifying the sample
size of MNISTR (Ghifary et al. (2015)) so that class distribution differs among the domains. Specif-
ically, we created four variants of MNISTR that have different types of domain-class dependency,
referred to as BMNISTR-1 through BMNISTR-4. As shown in Table 1, BMNISTR-1, -2, and -3
have similar trends but different degrees of dependency; BMNISTR-1 and BMNISTR-4 differ in
trends. In MNISTR, each class is represented by 10 digits. Each domain was created by rotating im-
ages by 15 degree increments: 0, 15, 30, 45, 60, and 75 (referred to as MO, ..., M75). Each image is
cropped to 16 x 16 in accordance with Ghifary et al. (2015). In training, we employed one-domain-
leave-out setting: trained on five of the six domains and then tested using the remaining one. We
used two convolution layers and two fully-connected (FC) layers (with nonlinear activations) as the
encoder, three FC layers as the classifier, and two FC layers as the discriminator.

PACS The PACS dataset (Lietal. (2017)) has 9991 images across 7 categories (dog, elephant,
giraffe, guitar, house, horse, and person) and 4 domains comprising different stylistic depictions
(Photo, Art painting, Cartoon, and Sketch). It has domain-class dependency probably because sam-
ples in some <domain, class> pairs are difficult to obtain. For example, p(y = person|d = Phot)
is much higher than p(y = person|d = Sketch), which indicates that photos of person are easier
to obtain than those of animals, but sketches of persons are more difficult to obtain than those of
animals in the wild. The concrete sample sizes for each category and style is shown in Table 4 in ap-
pendix. In training, we employed one-domain-leave-out setting as well as in BMNISTR, and used
the ImageNet pre-trained AlexNet CNN (Krizhevsky et al. (2012)) as the base network, following
previous studies (Li et al. (2017; 2018a)). The two-FC-layer discriminator was connected to the last
FC layer, following Ganin et al. (2016).

WISDM The WISDM Activity Prediction dataset contains sensor data of accelerometers for six
human activities (walking, jogging, upstairs, downstairs, sitting, and standing) performed by 36
users (domains). WISDM suffers from the dependency due to the reason noted in Sec.l. The
concrete sample sizes for each user and activity is shown in Table 5 in appendix. Referring to
Andrey (2017), we use the sliding-window procedure with 60 frames (=3 seconds) and 20-frame
overlap. The total number of samples was 54455. In training, we used randomly chosen <10/26>,
<16/20>, and <26/ 10> users as <source / target> domains. We parameterized the encoder using
three convolution layers followed by one FC layer and the classifier by logistic regression, following
previous studies (Yang et al. (2015); Iwasawa et al. (2017)). The two-FC-layer discriminator was
connected to the output of the encoder.

5.2 BASELINES

To demonstrate the efficacy of the proposed method IFLOC, we compared it with the following
methods. (1) CNN is a vanilla convolutional networks trained on the aggregation of data from all
source domains. Although CNN has no special treatments for domain generalization, Li et al. (2017)
reports that it outperforms many traditional domain generalization methods. (2) DAN (Xie et al.
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Table 2: Mean F scores for the classes 0~4 and classes 5~9 with the target domain MO.

CNN DAN IFLOC-Abl IFLOC  Relative Improvement

Dataset Class of IFLOC to IFLOC-Abl
BMNISTR-1 0~4 83.86 84.54 87.46 90.62 3.6%

5~9  83.90 85.24 86.46 88.10 1.9%
BMNISTR-2 0~4 8476 86.20 86.42 89.58 3.7%

5~9 8336 85.22 85.62 86.86 1.4%
BMNISTR-3 0~4 8254 85.30 88.60 89.64 1.2%

5~9  82.18 85.80 87.60 89.04 1.6%
BMNISTR-4 0~4 7126 79.22 76.56 80.02 4.5%

5~9  78.62 83.14 82.94 82.80 -0.2%

(2017)) is expected to generalize across domains via invariant feature learning, but it has the trade-
off between domain invariance and classification accuracy as explained in Section 4.1.1. We trained
DAN with a gradient reverse layer following Ganin et al. (2016); Xie et al. (2017). Also, we used
(3) IFLOC-ADI, which is a version of IFLOC modified for ablation studies. IFLOC-AbI replaces
Dgr[p(d|y)|pe(d|h)] in Eq.14 of Dk [p(d)|pe(d|h)], so it attempts to learn the representation
that is completely invariant to domains or make H (d|h) = H(d) hold as well as DAN. Comparing
IFLOC and IFLOC-ADbI, we measured the genuine effect of taking domain-class dependency into
account. In training IFLOC and IFLOC-ADI, we cannot obtain true p(d|y) and p(d), so we used
maximum likelihood estimators of them for calculating the KLLD terms.

5.3 EXPERIMENTAL SETTINGS

For all the datasets and methods, we used RMSprop for optimization. And we set the learning rate,
batch size, and the number of iterations as Se-4, 128, and 10k for BMNISTR; 5e-5, 64, and 10k
for PACS; le-4, 128, and 30k for WISDM, respectively. For DAN, IFLOC-Abl, and IFLOC we
optimized the weighting parameter ~ from {0.0001,0.001,0.01,0.1, 1, 10}, and used the ~ anneal-
ing following Ganin et al. (2016). In all the experiments, we split source data into 80% of training
data and 20% of validation data, assuming that target data are not absolutely available in the train-
ing phase. We conducted experiments multiple times with different seeds. Specifically, we trained
on 10 and 25 seeds in BMNISTR and WISDM, chose the best hyperparameter that achieved the
highest validation accuracies measured in each epoch, and reported the mean scores (accuracies and
f-values) for the hyperparameter. In PACS, since it requires a long time to train on, we chose the
best v from {0.0001,0.001,0.01, 0.1} with three experiment, and reported the mean scores in ex-
periments with 20 seeds in total. Also, we empirically measured the level of domain-invariance by
training a post-hoc classifier that is intended to predict d over learned representation, following pre-
vious studies (Xie et al. (2017); Iwasawa et al. (2017); Moyer et al. (2018)). Specifically, we trained
the classifier with 400 hidden units on 10k iterations (by RMSprop optimizer with a 0.001 learning
rate and 128 batch size) with the data that is used for training the models. We then evaluated the
domain classification accuracy (referred to as D-Acc) 10 times at equal intervals during training,
and reported D-Acc in the nearest time when the validation accuracy is maximized.

5.4 RESULTS

We first investigated how domain-class dependency affects the performance of domain-invariance-
based methods. In Table 2, we compared mean f-scores for the classes O through 4 and classes 5
through 9 in BMNISTR with the target domain MO. Recall that sample sizes for the classes 0~4
are variable across domains, whereas the classes 5~9 has identical sample sizes across domains
(Table 1). The f-scores show that IFLOC outperformed DAN and IFLOC-ADbI in most dataset-
class pairs, which supports that domain-class dependency depresses the performance of domain-
invariance-based methods and that IFLOC can mitigate the problem. Futher, relative improvement of
IFLOC to IFLOC-ADbI is more significant for the classes 0~4 than 5~9 in BMNISTR-1, BMNISTR-
2, and BMNISTR-4, suggesting that IFLOC tends to increase performance more significantly for
classes where the domain-class dependency occurs. Also, the improvement is more significant in
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Figure 2: Class accuracy (Y-Acc) and domain accuracy (D-Acc) with various v in BMNISTR-1.
Each caption shows the metric name (Y-Acc or D-Acc) and target domain.

82 80

for]
N

Eeteiay-sisaiainins- SN [T Y—

80 go *TTETT e 70 T TR -
.78 P P s -~ 78 \\ '\\ 60" ‘\\ "o,
876 e 76 LAY 50 .

374 R 40/

27 e DAN s
721 e IFLOC 72 e | 30
70] --e-- IFLOC-AbI % 70 * | 20 b

e ‘ I ‘ I S
107 107 1072 107t 10° 10" ®8yg-¢ 153 12 1071 100 10' 0107 107 102 107! 10° 10}
(a)Y-Acc, 26 users (b)Y-Acc, 10 users (c)D-Acc, 26 users

Figure 3: Class accuracy (Y-Acc) and domain accuracy (D-Acc) with various v in WISDM. Each
caption shows the metric name (Y-Acc or D-Acc) and target domain.

BMNISTR-1 than in BMNISTR-3, suggesting that the stronger the domain-class dependency is,
the lower the performance of domain-invariance-based methods becomes. Finally, although the
dependencies of BMNISTR-1 and BMNISTR-4 have different trends as described in Table 1, IFLOC
improved f-scores in both datasets.

Next we investigated the relationship between the strength of regularization and performance. Fig-
ures 2 and 3 show the hyperparameter sensitivity of class accuracies (Y-Acc) and domain accuracies
(D-Acc) for DAN, IFLOC-ADI, and IFLOC. Note that the gray line in Figures 2-(c) and 3-(c) shows
the trivial baseline predicting the majority label. From these figures, we can make the following
observations. (1) All the methods including IFLOC could improve the invariance by using stronger
regularizer. Concretely, Figures 2-(c) and 3-(c) show D-Acc tends to become low (invariance be-
comes high) for all the models when the regularizer becomes strong (such as v =1 or 10) except that
IFLOC-ADI has high D-Acc with v = 10 in Figure 3-(c). That high D-Acc might be because the
validation accuracy achieved the highest value before the domain-invariance matured. (Recall that
the more the representation becomes invariant, the lower the accurary becomes under the trade-off).
(2) The training of IFLOC tends to be more stable than that of DAN when the regularizer becomes
strong. Figures 2-(a,b) and 3-(a,b) show that IFLOC and IFLOC-AbI could achieve higher Y-Acc
than DAN when v = 1 or 10, i.e., the regularization is strong, except for IFLOC-AbI with v = 1 in
Figure 3-(b). This tendency might be because the regularizer of IFLOC is KLD and thus bounded by
0, in contrast to that of DAN that can increase to infinity and destabilize the traininig. (3) IFLOC,
as it was designed, does not tend to decrease classification accuracy with strong regularizer, and thus
IFLOC is robust toward hyperparameter choice. Figures 2-(b) and 3-(a,b) show that while Y-Acc of
IFLOC-ADbI decreases with strong regularization (such as when v = 1 or 10), that of IFLOC does
not decrease as much.

Finally, we compared mean accuracies (with standard errors) in both synthetic (BMNISTR) and
standard benchmark (PACS and WISDM) datasets (Table 3). Note that the H(d)/H (d|y) column
is estimated from source data, which indicates the strength of domain-class dependency. IFLOC
outperformed IFLOC-Abl in BMNISTR with all the target domains; PACS with photo, art_painting,
and sketch target domains; and WISDM with 26- and 20-target-user domains. Also, IFLOC out-
performed DAN in BMNISTR with all the target domains; PACS with photo and art_painting target
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Table 3: Accuracies for each dataset and target domain

H(d)/H(dly) CNN DAN IFLOC-Abl IFLOC
Dataset Target (%)
BMNISTR-1 MO 101.2 839+ 04 850+ 04 870+ 04 893+ 04
Mi15 101.5 985+ 02 985+ 0.1 983+ 0.2 988+ 0.1
M30 101.6 975+ 0.1 974+ 0.1 97.6%= 0.1 983+ 0.2
M45 101.6 899+ 09 902+ 0.6 928+ 0.5 933+ 0.6
M60 101.3 967+ 03 970+ 02 96.6=% 02 974=% 0.2
M75 100.7 87.1+ 0.5 873+ 04 877+ 0.5 881+ 04
Avg 92.3 92.6 93.3 94.2
BMNISTR-2 Avg 92.3 92.2 93 94.2
BMNISTR-3 Avg 92.2 92.7 94 94.5
BMNISTR-4 Avg 90.6 91.7 91.6 92.9
PACS photo 107.2 80.6+ 03 81.1+ 0.3 8l1.6+ 0.3 829 0.2
art_painting 108.5 592+ 04 60.1+ 03 605+ 04 612+ 0.2
cartoon 109.7 632+ 03 643+ 03 644* 04 638=* 03
sketch 101.5 582+ 05 589+ 04 581+ 0.6 59.0+ 0.5
Avg 65.3 66.1 66.2 66.7
WISDM 26 users 107.1 783+ 03 782+ 0.3 784+ 02 789+ 03
20 users 1042 797+ 02 802+ 03 79.7+ 03 80.0+ 0.3
10 users 103.5 80.6+ 0.2 80.6+ 02 81.2% 03 81.2* 0.3

domains; and WISDM with 26- and 10-target-user domains. This supports the importance of con-
sidering domain-class dependency in real-world datasets and the efficacy of the proposed model.

Table 3 also shows that when the number of source domains increased from 10 to 26 in WISDM,
the improvement of IFLOC from IFLOC-Abl became insignificant. One possible reason is that
WISDM with 10 target users has low domain-class dependency than with 26 target users as shown
inthe H(d)/H (d|y) column. Another possible reason is the optimization difficulty. As Moyer et al.
(2018) reported, in adversarial invariant feature learning, an encoder often overfits to the discrimi-
nator trained alongside that encoder, and does not provide truly invariant representation (the same
problem can be observed in Figures 2-(c) and 3-(c)). We suspect that when the number of source
domains increases, the optimization of the domain discriminator becomes difficult, which makes the
encoder overfit to that poor discriminator and worsen the problem. Also, the improvement of IFLOC
from IFLOC-ADbl] is less significant in WISDM than that in BMNISTR and PACS, which could be re-
lated to the same problem since the number of source domains for BMNISTR and PACS is smaller
than that for WISDM. If the optimization difficulty prevents IFLOC from working properly, we
might be able to mitigate it by using ideas from the studies that investigate the convergence and
optimization difficulty in adversarial training (e.g., Nagarajan & Kolter (2017); Heusel et al. (2017);
Balduzzi et al. (2018)).

6 CONCLUSION

In this paper, we addressed domain generalization under domain-class dependency, which was over-
looked by most prior domain generalization methods relying on domain-invariant representation. We
theoretically showed the importance of considering the dependency and the way to overcome the
problem by expanding the analysis of Xie et al. (2017). We then proposed a novel method IFLOC,
which maximizes domain-invariance within a range that does not interfere with classification ac-
curacy. Empirical validations show the superior performance of IFLOC to the baseline methods,
supporting the importance of the domain-class dependency in domain generalization tasks and the
efficacy of the proposed method for overcoming the issue. Future work includes applying the regu-
ralization idea of making H (d|h) = H (d|y) to other methods, e.g., Conditional VAE (Louizos et al.
(2016)) or CrossGrad (Shankar et al. (2018)) because they have clear and tractable data generating
process but assume the independence of y and d. Also intended is to use it for transfer learning tasks
in a few-shot setting (e.g., life-long learning) where domain-class dependency is likely to occur due
to scarce sample size.

10
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A DOMAIN-CLASS DEPENDENCY IN PACS AND WISDM

Table 4: Sample sizes for each <domain, class> pair in PACS dataset. The column shows category
name while and index shows style.

Guitar House Giraffe Person Horse Dog Elephant

Art Painting 184 295 285 449 201 379 255
Cartoon 135 288 346 405 324 389 457
Photo 186 280 182 432 199 189 202
Sketch 608 80 753 160 816 772 740

Table 5: Sample sizes for each <domain, class> pair in WISDM dataset. The column shows activity
name and the index shows user id.

Jogging Walking Upstairs Downstairs Sitting  Standing

User 1 145 742 108 224 160 78
User 2 142 481 282 186 0 0
User 3 645 654 240 231 780 267
User 4 637 619 237 214 113 78
User 5 614 650 229 210 56 80
User 6 637 574 101 86 0 0
User 7 588 617 81 69 81 33
User 8 599 621 160 171 102 79
User 9 599 308 269 206 123 94
User 10 597 625 119 118 71 95
User 11 610 616 188 115 150 81
User 12 626 356 0 0 77 51
User 13 620 604 217 131 0 0
User 14 0 624 68 76 147 96
User 15 318 610 167 162 81 73
User 16 602 650 212 187 0 81
User 17 0 706 142 147 0 63
User 18 593 658 178 189 0 0
User 19 661 690 406 141 0 0
User 20 611 310 149 144 32 25
User 21 616 537 130 141 112 81
User 22 613 327 239 94 0 0
User 23 42 301 66 86 60 0
User 24 0 626 209 191 75 152
User 25 641 666 194 140 76 65
User 26 513 853 220 165 132 161
User 27 701 841 231 192 105 128
User 28 4717 622 240 199 78 140
User 29 548 646 168 164 78 139
User 30 309 349 269 179 0 0
User 31 550 641 154 145 0 0
User 32 0 644 0 0 0 0
User 33 322 346 0 0 0 0
User 34 587 584 0 0 0 0
User 35 457 549 178 110 124 116
User 36 808 879 212 128 124 104
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