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Abstract

Graph neural networks (GNNs) have been widely used in representation learning on
graphs and achieved state-of-the-art performance in tasks such as node classification
and link prediction. However, most existing GNNs are designed to learn node
representations on the fixed and homogeneous graphs. The limitations especially
become problematic when learning representations on a misspecified graph or
a heterogeneous graph that consists of various types of nodes and edges. In
this paper, we propose Graph Transformer Networks (GTNs) that are capable of
generating new graph structures, which involve identifying useful connections
between unconnected nodes on the original graph, while learning effective node
representation on the new graphs in an end-to-end fashion. Graph Transformer layer,
a core layer of GTNs, learns a soft selection of edge types and composite relations
for generating useful multi-hop connections so-called meta-paths. Our experiments
show that GTNs learn new graph structures, based on data and tasks without
domain knowledge, and yield powerful node representation via convolution on the
new graphs. Without domain-specific graph preprocessing, GTNs achieved the
best performance in all three benchmark node classification tasks against the state-
of-the-art methods that require pre-defined meta-paths from domain knowledge.

1 Introduction

In recent years, Graph Neural Networks (GNNs) have been widely adopted in various tasks over
graphs, such as graph classification [11, 21, 40], link prediction [18, 30, 42] and node classification
[3, 14, 33]. The representation learnt by GNNs has been proven to be effective in achieving state-of-
the-art performance in a variety of graph datasets such as social networks [7, 14, 35], citation networks
[19, 33], functional structure of brains [20], recommender systems [1, 27, 39]. The underlying graph
structure is utilized by GNNs to operate convolution directly on graphs by passing node features
[12, 14] to neighbors, or perform convolution in the spectral domain using the Fourier basis of a
given graph, i.e., eigenfunctions of the Laplacian operator [9, 15, 19].

However, one limitation of most GNNs is that they assume the graph structure to operate GNNs on is
fixed and homogeneous. Since the graph convolutions discussed above are determined by the fixed
graph structure, a noisy graph with missing/spurious connections results in ineffective convolution
with wrong neighbors on the graph. In addition, in some applications, constructing a graph to operate
GNNs is not trivial. For example, a citation network has multiple types of nodes (e.g., authors,
papers, conferences) and edges defined by their relations (e.g., author-paper, paper-conference),
and it is called a heterogeneous graph. A naïve approach is to ignore the node/edge types and
treat them as in a homogeneous graph (a standard graph with one type of nodes and edges). This,
apparently, is suboptimal since models cannot exploit the type information. A more recent remedy is
to manually design meta-paths, which are paths connected with heterogeneous edges, and transform

∗corresponding author

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



a heterogeneous graph into a homogeneous graph defined by the meta-paths. Then conventional
GNNs can operate on the transformed homogeneous graphs [37, 43]. This is a two-stage approach
and requires hand-crafted meta-paths for each problem. The accuracy of downstream analysis can be
significantly affected by the choice of these meta-paths.

Here, we develop Graph Transformer Network (GTN) that learns to transform a heterogeneous input
graph into useful meta-path graphs for each task and learn node representation on the graphs in an
end-to-end fashion. GTNs can be viewed as a graph analogue of Spatial Transformer Networks [16]
which explicitly learn spatial transformations of input images or features. The main challenge to
transform a heterogeneous graph into new graph structure defined by meta-paths is that meta-paths
may have an arbitrary length and edge types. For example, author classification in citation networks
may benefit from meta-paths which are Author-Paper-Author (APA) or Author-Paper-Conference-
Paper-Author (APCPA). Also, the citation networks are directed graphs where relatively less graph
neural networks can operate on. In order to address the challenges, we require a model that generates
new graph structures based on composite relations connected with softly chosen edge types in a
heterogeneous graph and learns node representations via convolution on the learnt graph structures
for a given problem.

Our contributions are as follows: (i) We propose a novel framework Graph Transformer Networks, to
learn a new graph structure which involves identifying useful meta-paths and multi-hop connections
for learning effective node representation on graphs. (ii) The graph generation is interpretable and the
model is able to provide insight on effective meta-paths for prediction. (iii) We prove the effectiveness
of node representation learnt by Graph Transformer Networks resulting in the best performance
against state-of-the-art methods that additionally use domain knowledge in all three benchmark node
classification on heterogeneous graphs.

2 Related Works

Graph Neural Networks. In recent years, many classes of GNNs have been developed for a wide
range of tasks. They are categorized into two approaches: spectral [5, 9, 15, 19, 22, 38] and non-
spectral methods [7, 12, 14, 26, 29, 33]. Based on spectral graph theory, Bruna et al. [5] proposed a
way to perform convolution in the spectral domain using the Fourier basis of a given graph. Kipf et al.
[19] simplified GNNs using the first-order approximation of the spectral graph convolution. On the
other hand, non-spectral approaches define convolution operations directly on the graph, utilizing
spatially close neighbors. For instance, Veličković et al. [33] applies different weight matrices for
nodes with different degrees and Hamilton et al. [14] has proposed learnable aggregator functions
which summarize neighbors’ information for graph representation learning.

Node classification with GNNs. Node classification has been studied for decades. Conventionally,
hand-crafted features have been used such as simple graph statistics [2], graph kernel [34], and
engineered features from a local neighbor structure [23]. These features are not flexible and suffer
from poor performance. To overcome the drawback, recently node representation learning methods
via random walks on graphs have been proposed in DeepWalk [28], LINE [32], and node2vec [13]
with tricks from deep learning models (e.g., skip-gram) and have gained some improvement in
performance. However, all of these methods learn node representation solely based on the graph
structure. The representations are not optimized for a specific task. As CNNs have achieved
remarkable success in representation learning, GNNs learn a powerful representation for given
tasks and data. To improve performance or scalability, generalized convolution based on spectral
convolution [4, 26], attention mechanism on neighbors [25, 33], subsampling [6, 7] and inductive
representation for a large graph [14] have been studied. Although these methods show outstanding
results, all these methods have a common limitation which only deals with a homogeneous graph.

However, many real-world problems often cannot be represented by a single homogeneous graph.
The graphs come as a heterogeneous graph with various types of nodes and edges. Since most GNNs
are designed for a single homogeneous graph, one simple solution is a two-stage approach. Using
meta-paths that are the composite relations of multiple edge types, as a preprocessing, it converts the
heterogeneous graph into a homogeneous graph and then learns representation. The metapath2vec
[10] learns graph representations by using meta-path based random walk and HAN [37] learns graph
representation learning by transforming a heterogeneous graph into a homogeneous graph constructed
by meta-paths. However, these approaches manually select meta-paths by domain experts and thus
might not be able to capture all meaningful relations for each problem. Also, performance can be
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significantly affected by the choice of meta-paths. Unlike these approaches, our Graph Transformer
Networks can operate on a heterogeneous graph and transform the graph for tasks while learning
node representation on the transformed graphs in an end-to-end fashion.

3 Method

The goal of our framework, Graph Transformer Networks, is to generate new graph structures and
learn node representations on the learned graphs simultaneously. Unlike most CNNs on graphs that
assume the graph is given, GTNs seek for new graph structures using multiple candidate adjacency
matrices to perform more effective graph convolutions and learn more powerful node representations.
Learning new graph structures involves identifying useful meta-paths, which are paths connected
with heterogeneous edges, and multi-hop connections. Before introducing our framework, we briefly
summarize the basic concepts of meta-paths and graph convolution in GCNs.

3.1 Preliminaries

One input to our framework is multiple graph structures with different types of nodes and edges. Let
T v and T e be the set of node types and edge types respectively. The input graphs can be viewed
as a heterogeneous graph [31] G = (V,E), where V is a set of nodes, E is a set of observed edges
with a node type mapping function fv : V → T v and an edge type mapping function fe : E → T e.
Each node vi ∈ V has one node type, i.e., fv(vi) ∈ T v . Similarly, for eij ∈ E, fe(eij) ∈ T e. When
|T e| = 1 and |T v| = 1, it becomes a standard graph. In this paper, we consider the case of |T e| > 1.
Let N denotes the number of nodes, i.e., |V |. The heterogeneous graph can be represented by a set
of adjacency matrices {Ak}Kk=1 where K = |T e|, and Ak ∈ RN×N is a standard adjacency matrix
with the k-th edge type. More compactly, it can be written as a tensor A ∈ RN×N×K . We also have
a feature matrix X ∈ RN×D meaning that the D-dimensional input feature given for each node.

Meta-Path [37] denoted by p is a path on the heterogeneous graph G that is connected with heteroge-
neous edges, i.e., v1

t1−→ v2
t2−→ . . .

tl−→ vl+1, where tl ∈ T e denotes an l-th edge type of meta-path.
It defines a composite relation R = t1 ◦ t2 . . . ◦ tl between node v1 and vl+1, where R1 ◦R2 denotes
the composition of relation R1 and R2. Given the composite relation R or the sequence of edge types
(t1, t2, . . . , tl), the adjacency matrix AP of the meta-path P is obtained by the multiplications of
adjacency matrices as

AP = At1At2 . . . Atl . (1)

The notion of meta-path subsumes multi-hop connections and new graph structures in our framework
are represented by adjacency matrices. For example, the meta-path Author-Paper-Conference (APC),
which can be represented as A AP−−→ P

PC−−→ C, generates an adjacency matrix AAPC by the
multipication of AAP and APC .

Graph Convolutional network (GCN). In this work, a graph convolutional network (GCN) [19] is
used to learn useful representations for node classification in an end-to-end fashion. Let H(l) be the
feature representations of the lth layer in GCNs, the forward propagation becomes

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
, (2)

where Ã = A+ I ∈ RN×N is the adjacency matrix A of the graph G with added self-connections,
D̃ is the degree matrix of Ã, i.e., D̃ii =

∑
j Ãij , and W (l) ∈ Rd×d is a trainable weight matrix.

One can easily observe that the convolution operation across the graph is determined by the given
graph structure and it is not learnable except for the node-wise linear transform H(l)W (l). So
the convolution layer can be interpreted as the composition of a fixed convolution followed by an
activation function σ on the graph after a node-wise linear transformation. Since we learn graph
structures, our framework benefits from the different convolutions, namely, D̃−

1
2 ÃD̃−

1
2 , obtained

from learned multiple adjacency matrices. The architecture will be introduced later in this section.
For a directed graph (i.e., asymmetric adjacency matrix), Ã in (2) can be normalized by the inverse
of in-degree diagonal matrix D−1 as H(l+1) = σ(D̃−1ÃH(l)W (l)).
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Figure 1: Graph Transformer Layer softly selects adjacency matrices (edge types) from the set of
adjacency matrices A of a heterogeneous graph G and learns a new meta-path graph represented by
A(1) via the matrix multiplication of two selected adjacency matrices Q1 and Q2. The soft adjacency
matrix selection is a weighted sum of candidate adjacency matrices obtained by 1× 1 convolution
with non-negative weights from softmax(W 1

φ ).

3.2 Meta-Path Generation

Previous works [37, 43] require manually defined meta-paths and perform Graph Neural Networks
on the meta-path graphs. Instead, our Graph Transformer Networks (GTNs) learn meta-paths for
given data and tasks and operate graph convolution on the learned meta-path graphs. This gives a
chance to find more useful meta-paths and lead to virtually various graph convolutions using multiple
meta-path graphs.

The new meta-path graph generation in Graph Transformer (GT) Layer in Fig. 1 has two components.
First, GT layer softly selects two graph structures Q1 and Q2 from candidate adjacency matrices A.
Second, it learns a new graph structure by the composition of two relations (i.e., matrix multiplication
of two adjacency matrices, Q1Q2).

It computes the convex combination of adjacency matrices as
∑
tl∈T e α

(l)
tl
Atl in (4) by 1x1 convolu-

tion as in Fig. 1 with the weights from softmax function as

Q = F (A;Wφ) = φ(A; softmax(Wφ)), (3)

where φ is the convolution layer and Wφ ∈ R1×1×K is the parameter of φ. This trick is similar
to channel attention pooling for low-cost image/action recognition in [8]. Given two softly chosen
adjacency matrices Q1 and Q2, the meta-path adjacency matrix is computed by matrix multiplication,
Q1Q2. For numerical stability, the matrix is normalized by its degree matrix as A(l) = D−1Q1Q2.

Now, we need to check whether GTN can learn an arbitrary meta-path with respect to edge types and
path length. The adjacency matrix of arbitrary length l meta-paths can be calculated by

AP =

( ∑
t1∈T e

α
(1)
t1 At1

)( ∑
t2∈T e

α
(2)
t2 At2

)
. . .

( ∑
tl∈T e

α
(l)
tl
Atl

)
(4)

where AP denotes the adjacency matrix of meta-paths, T e denotes a set of edge types and α(l)
tl

is
the weight for edge type tl at the lth GT layer. When α is not one-hot vector, AP can be seen as
the weighted sum of all length-l meta-path adjacency matrices. So a stack of l GT layers allows to
learn arbitrary length l meta-path graph structures as the architecture of GTN shown in Fig. 2. One
issue with this construction is that adding GT layers always increase the length of meta-path and this
does not allow the original edges. In some applications, both long meta-paths and short meta-paths
are important. To learn short and long meta-paths including original edges, we include the identity
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Figure 2: Graph Transformer Networks (GTNs) learn to generate a set of new meta-path adjacency
matrices A(l) using GT layers and perform graph convolution as in GCNs on the new graph structures.
Multiple node representations from the same GCNs on multiple meta-path graphs are integrated by
concatenation and improve the performance of node classification. Q(l)

1 and Q(l)
2 ∈ RN×N×C are

intermediate adjacency tensors to compute meta-paths at the lth layer.

matrix I in A, i.e., A0 = I . This trick allows GTNs to learn any length of meta-paths up to l + 1
when l GT layers are stacked.

3.3 Graph Transformer Networks

We here introduce the architecture of Graph Transformer Networks. To consider multiple types of
meta-paths simultaneously, the output channels of 1×1 convolution in Fig. 1 is set toC. Then, the GT
layer yields a set of meta-paths and the intermediate adjacency matricesQ1 andQ2 become adjacency
tensors Q1 and Q2 ∈ RN×N×C as in Fig.2. It is beneficial to learn different node representations via
multiple different graph structures. After the stack of l GT layers, a GCN is applied to each channel
of meta-path tensor A(l) ∈ RN×N×Cand multiple node representations are concatenated as

Z =

C

Ş
i=1

σ(D̃−1i Ã
(l)
i XW ), (5)

where Ş is the concatenation operator, C denotes the number of channels, Ã(l)
i = A

(l)
i + I is the

adjacency matrix from the ith channel of A(l), D̃i is the degree matrix of Ã(l)
i , W ∈ Rd×d is a

trainable weight matrix shared across channels and X ∈ RN×d is a feature matrix. Z contains the
node representations from C different meta-path graphs with variable, at most l + 1, lengths. It is
used for node classification on top and two dense layers followed by a softmax layer are used. Our
loss function is a standard cross-entropy on the nodes that have ground truth labels. This architecture
can be viewed as an ensemble of GCNs on multiple meta-path graphs learnt by GT layers.

4 Experiments

In this section, we evaluate the benefits of our method against a variety of state-of-the-art models on
node classification. We conduct experiments and analysis to answer the following research questions:
Q1. Are the new graph structures generated by GTN effective for learning node representation? Q2.
Can GTN adaptively produce a variable length of meta-paths depending on datasets? Q3. How can
we interpret the importance of each meta-path from the adjacency matrix generated by GTNs?

5



Table 1: Datasets for node classification on heterogeneous graphs.

Dataset # Nodes # Edges # Edge type # Features # Training # Validation # Test
DBLP 18405 67946 4 334 800 400 2857
ACM 8994 25922 4 1902 600 300 2125
IMDB 12624 37288 4 1256 300 300 2339

Datasets. To evaluate the effectiveness of meta-paths generated by Graph Transformer Networks,
we used heterogeneous graph datasets that have multiple types of nodes and edges. The main task
is node classification. We use two citation network datasets DBLP and ACM, and a movie dataset
IMDB. The statistics of the heterogeneous graphs used in our experiments are shown in Table 1.
DBLP contains three types of nodes (papers (P), authors (A), conferences (C)), four types of edges
(PA, AP, PC, CP), and research areas of authors as labels. ACM contains three types of nodes (papers
(P), authors (A), subject (S)), four types of edges (PA, AP, PS, SP), and categories of papers as labels.
Each node in the two datasets is represented as bag-of-words of keywords. On the other hand, IMDB
contains three types of nodes (movies (M), actors (A), and directors (D)) and labels are genres of
movies. Node features are given as bag-of-words representations of plots.

Implementation details. We set the embedding dimension to 64 for all the above methods for a
fair comparison. The Adam optimizer was used and the hyperparameters (e.g., learning rate, weight
decay etc.) are respectively chosen so that each baseline yields its best performance. For random
walk based models, a walk length is set to 100 per node for 1000 iterations and the window size
is set to 5 with 7 negative samples. For GCN, GAT, and HAN, the parameters are optimized using
the validation set, respectively. For our model GTN, we used three GT layers for DBLP and IMDB
datasets, two GT layers for ACM dataset. We initialized parameters for 1 × 1 convolution layers
in the GT layer with a constant value. Our code is publicly available at https://github.com/
seongjunyun/Graph_Transformer_Networks.

4.1 Baselines

To evaluate the effectiveness of representations learnt by the Graph Transformer Networks in node
classification, we compare GTNs with conventional random walk based baselines as well as state-of-
the-art GNN based methods.

Conventional Network Embedding methods have been studied and recently DeepWalk [28] and
metapath2vec [10] have shown predominant performance among random walk based approaches.
DeepWalk is a random walk based network embedding method which is originally designed for
homogeneous graphs. Here we ignore the heterogeneity of nodes/edges and perform DeepWalk
on the whole heterogeneous graph. However, metapath2vec is a heterogeneous graph embedding
method which performs meta-path based random walk and utilizes skip-gram with negative sampling
to generate embeddings.

GNN-based methods We used the GCN [19], GAT [33], and HAN [37] as GNN based methods.
GCN is a graph convolutional network which utilizes a localized first-order approximation of the
spectral graph convolution designed for the symmetric graphs. Since our datasets are directed
graphs, we modified degree normalization for asymmetric adjacency matrices, i.e., D̃−1Ã rather
than D̃−1/2ÃD̃−1/2. GAT is a graph neural network which uses the attention mechanism on the
homogeneous graphs. We ignore the heterogeneity of node/edges and perform GCN and GAT on
the whole graph. HAN is a graph neural network which exploits manually selected meta-paths.
This approach requires a manual transformation of the original graph into sub-graphs by connecting
vertices with pre-defined meta-paths. Here, we test HAN on the selected sub-graphs whose nodes are
linked with meta-paths as described in [37].

4.2 Results on Node Classification

Effectiveness of the representation learnt from new graph structures. Table 2. shows the perfor-
mances of GTN and other node classification baselines. By analysing the result of our experiment,
we will answer the research Q1 and Q2. We observe that our GTN achieves the highest perfor-
mance on all the datasets against all network embedding methods and graph neural network methods.
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Table 2: Evaluation results on the node classification task (F1 score).

DeepWalk metapath2vec GCN GAT HAN GTN−I GTN (proposed)
DBLP 63.18 85.53 87.30 93.71 92.83 93.91 94.18

ACM 67.42 87.61 91.60 92.33 90.96 91.13 92.68

IMDB 32.08 35.21 56.89 58.14 56.77 52.33 60.92

GNN-based methods, e.g., GCN, GAT, HAN, and the GTN perform better than random walk-based
network embedding methods. Furthermore, the GAT usually performs better than the GCN. This is
because the GAT can specify different weights to neighbor nodes while the GCN simply averages
over neighbor nodes. Interestingly, though the HAN is a modified GAT for a heterogeneous graph, the
GAT usually performs better than the HAN. This result shows that using the pre-defined meta-paths
as the HAN may cause adverse effects on performance. In contrast, Our GTN model achieved the
best performance compared to all other baselines on all the datasets even though the GTN model uses
only one GCN layer whereas GCN, GAT and HAN use at least two layers. It demonstrates that the
GTN can learn a new graph structure which consists of useful meta-paths for learning more effective
node representation. Also compared to a simple meta-path adjacency matrix with a constant in the
baselines, e.g., HAN, the GTN is capable of assigning variable weights to edges.

Identify matrix in A to learn variable-length meta-paths. As mentioned in Section 3.2, the
identity matrix is included in the candidate adjacency matrices A. To verify the effect of identity
matrix, we trained and evaluated another model named GTN−I as an ablation study. the GTN−I
has exactly the same model structure as GTN but its candidate adjacency matrix A doesn’t include an
identity matrix. In general, the GTN−I consistently performs worse than the GTN. It is worth to note
that the difference is greater in IMDB than DBLP. One explanation is that the length of meta-paths
GTN−I produced is not effective in IMDB. As we stacked 3 layers of GTL, GTN−I always produce
4-length meta-paths. However shorter meta-paths (e.g. MDM) are preferable in IMDB.

4.3 Interpretation of Graph Transformer Networks

We examine the transformation learnt by GTNs to discuss the question interpretability Q3. We first
describe how to calculate the importance of each meta-path from our GT layers. For the simplicity,
we assume the number of output channels is one. To avoid notational clutter, we define a shorthand
notation α · A =

∑K
k αkAk for a convex combination of input adjacency matrices. The lth GT layer

in Fig. 2 generates a normalized adjacency matrix A(l) for a new meta-path graph using the previous
layer’s output A(l−1) and input adjacency matrices α(l) · A as follows:

A(l) =
(
D(l−1)

)−1
A(l−1)

(
K∑
i

α
(l)
i Ai

)
, (6)

where D(l) denotes a degree matrix of A(l), Ai denotes the input adjacency matrix for an edge type i
and αi denotes the weight of Ai. Since we have two convex combinations at the first layer as in Fig.
1, we denote α(0) = softmax(W 1

φ), α
(1) = softmax(W 2

φ). In our GTN, the meta-path tensor from
the previous tensor is reused for Ql1, we only need α(l) = softmax(W 2

φ) for each layer to calculate
Ql2. Then, the new adjacency matrix from the lth GT layer can be written as

A(l) =
(
D(l−1)

)−1
. . .
(
D(1)

)−1 (
(α(0) · A)(α(1) · A)(α(2) · A) . . . (α(l) · A)

)
(7)

=
(
D(l−1)

)−1
. . .
(
D(1)

)−1 ∑
t0,t1,...,tl∈T e

α
(0)
t0 α

(1)
t1 . . . α

(l)
tl
At0At1 . . . Atl

, (8)

where T e denotes a set of edge types and α(l)
tl

is an attention score for edge type tl at the lth GT layer.
So, A(l) can be viewed as a weighted sum of all meta-paths including 1-length (original edges) to
l-length meta-paths. The contribution of a meta-path t0, t1, . . . , tl, is obtained by

∏l
i=0 α

(i)
ti .
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Table 3: Comparison with predefined meta-paths and top-ranked meta-paths by GTNs. Our model
found important meta-paths that are consistent with pre-defined meta-paths between target nodes (a
type of nodes with labels for node classifications). Also, new relevant meta-paths between all types
of nodes are discovered by GTNs.

Dataset Predefined Meta-path learnt by GTNs
Meta-path Top 3 (between target nodes) Top 3 (all)

DBLP APCPA, APA APCPA, APAPA, APA APCPC, APCPA, PC

ACM PAP, PSP PAP, PSP PAPA, APA, PAPS

IMDB MAM, MDM MDM, MAM, MDMDM DM, AM, MDM

(a) (b)

Figure 3: After applying softmax function on 1x1 conv filter W i
φ (i: index of layer) in Figure 1,

we visualized this attention score of adjacency matrix (edge type) in DBLP (left) and IMDB (right)
datasets. (a) Respectively, each edge indicates (Paper-Author), (Author-Paper), (Paper-Conference),
(Conference-Paper), and identity matrix. (b) Edges in IMDB dataset indicates (Movie-Director),
(Director-Movie), (Movie-Actor), (Actor-Movie), and identity matrix.

Now we can interpret new graph structures learnt by GTNs. The weight
∏l
i=0 α

(i)
ti for a meta-path

(t0, t1, . . . tl) is an attention score and it provides the importance of the meta-path in the prediction
task. In Table 3 we summarized predefined meta-paths, that are widely used in literature, and the
meta-paths with high attention scores learnt by GTNs.

As shown in Table 3, between target nodes, that have class labels to predict, the predefined meta-paths
by domain knowledge are consistently top-ranked by GTNs as well. This shows that GTNs are
capable of learning the importance of meta-paths for tasks. More interestingly, GTNs discovered
important meta-paths that are not in the predefined meta-path set. For example, in the DBLP dataset
GTN ranks APC as most importance meta-paths, which is not included in the predefined meta-path
set. It makes sense that author’s research area (label to predict) is relevant to the venues where
the author publishes. We believe that the interpretability of GTNs provides useful insight in node
classification by the attention scores on meta-paths.

Fig.3 shows the attention scores of adjacency matrices (edge type) from each Graph Transformer
Layer. Compared to the result of DBLP, identity matrices have higher attention scores in IMDB.
As discussed in Section 3.3, a GTN is capable of learning shorter meta-paths than the number of
GT layers, which they are more effective as in IMDB. By assigning higher attention scores to the
identity matrix, the GTN tries to stick to the shorter meta-paths even in the deeper layer. This result
demonstrates that the GTN has ability to adaptively learns most effective meta-path length depending
on the dataset.
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5 Conclusion

We proposed Graph Transformer Networks for learning node representation on a heterogeneous graph.
Our approach transforms a heterogeneous graph into multiple new graphs defined by meta-paths with
arbitrary edge types and arbitrary length up to one less than the number of Graph Transformer layers
while it learns node representation via convolution on the learnt meta-path graphs. The learnt graph
structures lead to more effective node representation resulting in state-of-the art performance, without
any predefined meta-paths from domain knowledge, on all three benchmark node classification on
heterogeneous graphs. Since our Graph Transformer layers can be combined with existing GNNs, we
believe that our framework opens up new ways for GNNs to optimize graph structures by themselves
to operate convolution depending on data and tasks without any manual efforts. Interesting future
directions include studying the efficacy of GT layers combined with different classes of GNNs rather
than GCNs. Also, as several heterogeneous graph datasets have been recently studied for other
network analysis tasks, such as link prediction [36, 41] and graph classification [17, 24], applying
our GTNs to the other tasks can be interesting future directions.
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