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ABSTRACT

Recurrent Neural Networks have long been the dominating choice for sequence
modeling. However, it severely suffers from two issues: impotent in capturing
very long-term dependencies and unable to parallelize the sequential computation
procedure. Therefore, many non-recurrent sequence models that are built on con-
volution and attention operations have been proposed recently. Notably, models
with multi-head attention such as Transformer have demonstrated extreme effec-
tiveness in capturing long-term dependencies in a variety of sequence modeling
tasks. Despite their success, however, these models lack necessary components to
model local structures in sequences and heavily rely on position embeddings that
have limited effects and require a considerable amount of design efforts. In this
paper, we propose the R-Transformer which enjoys the advantages of both RNNs
and the multi-head attention mechanism while avoids their respective drawbacks.
The proposed model can effectively capture both local structures and global long-
term dependencies in sequences without any use of position embeddings. We eval-
uate R-Transformer through extensive experiments with data from a wide range
of domains and the empirical results show that R-Transformer outperforms the
state-of-the-art methods by a large margin in most of the tasks. We have made the
code and data publicly available 1.

1 INTRODUCTION

Recurrent Neural Networks (RNNs) especially its variants such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) have achieved great success in a wide range of sequence
learning tasks including language modeling, speech recognition, recommendation, etc (Mikolov
et al., 2010; Sundermeyer et al., 2012; Graves & Jaitly, 2014; Hinton et al., 2012; Hidasi et al.,
2015). Despite their success, however, the recurrent structure is often troubled by two notorious
issues. First, it easily suffers from gradient vanishing and exploding problems, which largely limits
their ability to learn very long-term dependencies (Pascanu et al., 2013). Second, the sequential
nature of both forward and backward passes makes it extremely difficult, if not impossible, to par-
allelize the computation, which dramatically increases the time complexity in both training and
testing procedure. Therefore, many recently developed sequence learning models have completely
jettisoned the recurrent structure and only rely on convolution operation or attention mechanism that
are easy to parallelize and allow the information flow at an arbitrary length. Two representative mod-
els that have drawn great attention are Temporal Convolution Networks(TCN) (Bai et al., 2018) and
Transformer (Vaswani et al., 2017). In a variety of sequence learning tasks, they have demonstrated
comparable or even better performance than that of RNNs (Gehring et al., 2017; Bai et al., 2018;
Devlin et al., 2018).

The remarkable performance achieved by such models largely comes from their ability to capture
long-term dependencies in sequences. In particular, the multi-head attention mechanism in Trans-
former allows every position to be directly connected to any other positions in a sequence. Thus,
the information can flow across positions without any intermediate loss. Nevertheless, there are
two issues that can harm the effectiveness of multi-head attention mechanism for sequence learn-
ing. The first comes from the loss of sequential information of positions as it treats every position
identically. To mitigate this problem, Transformer introduces position embeddings, whose effects,

1https://www.dropbox.com/sh/u35qgqnmjpywcqn/AAAITcId7DRPOD9KRooQW7i2a?dl=0
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Figure 1: The illustration of one layer of R-Transformer. There are three different networks that are
arranged hierarchically. In particular, the lower-level is localRNNs that process positions in a local
window sequentially (This figure shows an example of local window of size 3); The middle-level
is multi-head attention networks which capture the global long-term dependencies; The upper-level
is Position-wise feedforward networks that conduct non-linear feature transformation. These three
networks are connected by a residual and layer normalization operation. The circles with dash line
are the paddings of the input sequence

however, have been shown to be limited (Dehghani et al., 2018; Al-Rfou et al., 2018). In addition,
it requires considerable amount of efforts to design more effective position embeddings or different
ways to incorporate them in the learning process (Dai et al., 2019). Second, while multi-head atten-
tion mechanism is able to learn the global dependencies, we argue that it ignores the local structures
that are inherently important in sequences such as natural languages. Even with the help of position
embeddings, the signals at local positions can still be very weak as the number of other positions is
significantly more.

To address the aforementioned limitations of the standard Transformer, in this paper, we propose
a novel sequence learning model, termed as R-Transformer. It is a multi-layer architecture built
on RNNs and the standard Transformer, and enjoys the advantages of both worlds while naturally
avoids their respective drawbacks. More specifically, before computing global dependencies of po-
sitions with the multi-head attention mechanism, we firstly refine the representation of each position
such that the sequential and local information within its neighborhood can be compressed in the
representation. To do this, we introduce a local recurrent neural network, referred to as LocalRNN,
to process signals within a local window ending at a given position. In addition, the LocalRNN
operates on local windows of all the positions identically and independently and produces a latent
representation for each of them. In this way, the locality in the sequence is explicitly captured. In
addition, as the local window is sliding along the sequence one position by one position, the global
sequential information is also incorporated. More importantly, because the localRNN is only ap-
plied to local windows, the aforementioned two drawbacks of RNNs can be naturally mitigated. We
evaluate the effectiveness of R-Transformer with a various of sequence learning tasks from different
domains and the empirical results demonstrate that R-Transformer achieves much stronger perfor-
mance than both TCN and standard Transformer as well as other state-of-the-art sequence models.

The rest of the paper is organized as follows: Section 2 discusses the sequence modeling problem
we aim to solve; The proposed R-Transformer model is presented in Section 3. In Section 4, we
describe the experimental details and discuss the results. The related work is briefly reviewed in
Section 5. Section 6 concludes this work.

2 SEQUENCE MODELING PROBLEM

Before introducing the proposed R-Transformer model, we formally describe the sequence modeling
problem. Given a sequence of length N : x1, x2, · · · , xN , we aim to learn a function that maps the
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input sequence into a label space Y: (f : XN → Y). Formally,

y = f(x1, x2, · · · , xN ) (1)

where y ∈ Y is the label of the input sequence. Depending on the definition of label y, many
tasks can be formatted as the sequence modeling problem defined above. For example, in language
modeling task, xt is the character/word in a textual sentence and y is the character/word at next
position (Mikolov et al., 2010); in session-based recommendation, xt is the user-item interaction
in a session and y is the future item that users will interact with (Hidasi et al., 2015); when xt is a
nucleotide in a DNA sequence and y is its function, this problem becomes a DNA function prediction
task (Quang & Xie, 2016). Note that, in this paper, we do not consider the sequence-to-sequence
learning problems. However, the proposed model can be easily extended to solve these problems
and we will leave it as one future work.

3 THE R-TRANSFORMER MODEL

The proposed R-Transformer consists of a stack of identical layers. Each layer has 3 components
that are organized hierarchically and the architecture of the layer structure is shown in Figure 1.
As shown in the figure, the lower level is the local recurrent neural networks that are designed to
model local structures in a sequence; the middle level is a multi-head attention that is able to capture
global long-term dependencies; and the upper level is a position-wise feedforward networks which
conducts a non-linear feature transformation. Next, we describe each level in detail.

3.1 LOCALRNN: MODELING LOCAL STRUCTURES

Sequential data such as natural language inherently exhibits strong local structures. Thus, it is desir-
able and necessary to design components to model such locality. In this subsection, we propose to
take the advantage of RNNs to achieve this. Unlike previous works where RNNs are often applied
to the whole sequence, we instead reorganize the original long sequence into many short sequences
which only contain local information and are processed by a shared RNN independently and identi-
cally. In particular, we construct a local window of sizeM for each target position such that the local
window includes M consecutive positions and ends at the target position. Thus, positions in each
local window form a local short sequence, from which the shared RNN will learn a latent represen-
tation. In this way, the local structure information of each local region of the sequence is explicitly
incorporated in the learned latent representations. We refer to the shared RNN as LocalRNN. Com-
paring to original RNN operation, LocalRNN only focuses on local short-term dependencies without
considering any long-term dependencies. Figure 2 shows the different between original RNN and
LocalRNN operations. Concretely, given the positions xt−M+1, xt−M+2, · · · , xt of a local short
sequence of length M , the LocalRNN processes them sequentially and outputs M hidden states, the
last of which is used as the representation of the local short sequences:

ht = LocalRNN(xt−M+1, xt−M+2, · · · , xt) (2)

where RNN denotes any RNN cell such as Vanilla RNN cell, LSTM, GRU, etc. To enable the model
to process the sequence in an auto-regressive manner and take care that no future information is
available when processing one position, we pad the input sequence by (M − 1) positions before the
start of a sequence. Thus, from sequence perspective, the LocalRNN takes an input sequence and
outputs a sequence of hidden representations that incorporate information of local regions:

h1, h2, · · · , hN = LocalRNN(x1, x2, · · · , xN ) (3)

The localRNN is analogous to 1-D Convolution Neural Networks where each local window is pro-
cessed by convolution operations. However, the convolution operation completely ignores the se-
quential information of positions within the local window. Although the position embeddings have
been proposed to mitigate this problem, a major deficiency of this approach is that the effective-
ness of the position embedding could be limited; thus it requires considerable amount of extra ef-
forts (Gehring et al., 2017). On the other hand, the LocalRNN is able to fully capture the sequential
information within each window. In addition, the one-by-one sliding operation also naturally incor-
porates the global sequential information.
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Figure 2: An illustration of the original and local RNN. In contrast to orignal RNN which maintains
a hidden state at each position summarizing all the information seen so far, LocalRNN only operates
on positions within a local window. At each position, LocalRNN will produce a hidden state that
represents the information in the local window ending at that position.

Discussion: RNNs have long been a dominating choice for sequence modeling but it severely suffers
from two problems – The first one is its limited ability to capture the long-term dependencies and the
second one is the time complexity, which is linear to the sequence length. However, in LocalRNN,
these problems are naturally mitigated. Because the LocalRNN is applied to a short sequence within
a local window of fixed size, where no long-term dependency is needed to capture. In addition, the
computation procedures for processing the short sequences are independent of each other. Therefore,
it is very straightforward for the parallel implementation (e.g., using GPUs), which can greatly
improve the computation efficiency.

3.2 CAPTURING THE GLOBAL LONG-TERM DEPENDENCIES WITH MULTI-HEAD
ATTENTION

The RNNs at the lower level introduced in the previous subsection will refine representation of each
positions such that it incorporates its local information. In this subsection, we build a sub-layer
on top of the LocalRNN to capture the global long-term dependencies. We term it as pooling sub-
layer because it functions similarly to the pooling operation in CNNs. Recent works have shown
that the multi-head attention mechanism is extremely effective to learn the long-term dependencies,
as it allows a direct connection between every pair of positions. More specifically, in the multi-
head attention mechanism, each position will attend to all the positions in the past and obtains
a set of attention scores that are used to refine its representation. Mathematically, given current
representations h1, h2, · · · , ht, the refined new representations ut are calculated as:

ut =MultiHeadAttention(h1, h2, · · · , ht) (4)
= Concatenation(head1(ht), head2(ht), · · · , headk(ht))W o

where headk(ht) is the result of kth attention pooling and W o is a linear projection matrix. Con-
sidering both efficiency and effectiveness, the scaled dot product is used as the attention func-
tion (Vaswani et al., 2017). Specifically, headi(ht) is the weighted sum of all value vectors and
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the weights are calculated by applying attention function to all the query, key pairs:

{α1, α2, · · ·αn } = Softmax({< q, k1 >√
(dk)

,
< q, k2 >√

(dk)
, · · · , < q, kn >√

(dk)
}) (5)

headi(ht) =

n∑
j=1

αjvj

where q, ki, and vi are the query, key, and value vectors and dk is the dimension of ki. More-
over, q, ki, and vi are obtained by projecting the input vectors into query, key and value spaces,
respectively (Vaswani et al., 2017). They are formally defined as:

q, ki, vi =W qht,W
khi,W

vhi (6)

where W q , W k and W v are the projection matrices and each attention pooling headi has its own
projection matrices. As shown in Eq. (5), each headi is obtained by letting ht attending to all the
“past” positions, thus any long-term dependencies between ht and hi can be captured. In addition,
different heads will focus on dependencies in different aspects. After obtaining the refined rep-
resentation of each position by the multi-head attention mechanism, we add a position-wise fully
connected feed-forward network sub-layer, which is applied to each position independently and
identically. This feedforward network transforms the features non-linearly and is defined as follows:

FeedForward(mt) = max(0, utW1 + b1)W2 + b2 (7)

Following (Vaswani et al., 2017), We add a residual (He et al., 2016) and layernorm (Ba et al., 2016)
connection between all the sub-layers.

3.3 OVERALL ARCHITECTURE OF R-TRANSFORMER

With all the aforementioned model components, we can now give a formal description of the overall
architecture of an N -layer R-Transformer. For the ith layer (i ∈ {1, 2, · · ·N}):

hi1, h
i
2, · · · , hiT = LocalRNN(xi1, x

i
2, · · · , xiT ) (8)

ĥi1, ĥ
i
2, · · · , ĥiT = LayerNorm(hi1 + xi1, h

i
2 + xi2, · · · , hiT + xiT )

ui1, u
i
2, · · · , uiT =MultiHeadAttention(ĥi1, ĥ

i
2, · · · , ĥiT )

ûi1, û
i
2, · · · , ûiT = LayerNorm(ui1 + ĥi1, u

i
2 + ĥi2, · · · , uiT + ĥiT )

mi
1,m

i
2, · · · ,mi

T = FeedForward(ûi1, û
i
2, · · · , ûiT )

xi+1
1 , xi+1

2 , · · · , xi+1
T = LayerNorm(mi

1 + ûi1,m
i
2 + ûi2, · · · ,mi

T + ûiT )

where T is the length of the input sequence and xit is the input position of the layer i at time step t.

Comparing with TCN: R-Transformer is partly motivated by the hierarchical structure in TCN Bai
et al. (2018), thus, we make a detailed comparison here. In TCN, the locality in sequences in
captured by convolution filters. However, the sequential information within each receptive field
is ignored by convolution operations. In contrast, the LocalRNN structure in R-Transformer can
fully incorporate it by the sequential nature of RNNs. For modeling global long-term dependencies,
TCN achieves it with dilated convolutions that operate on nonconsecutive positions. Although such
operation leads to larger receptive fields in lower-level layers, it misses considerable amount of
information from a large portion of positions in each layer. On the other hand, the multi-head
attention pooling in R-Transformer considers every past positions and takes much more information
into consideration than TCN.

Comparing with Transformer: The proposed R-Transformer and standard Transformer enjoys
similar long-term memorization capacities thanks to the multi-head attention mechanism (Vaswani
et al., 2017). Nevertheless, two important features distinguish R-Transformer from the standard
Transformer. First, R-Transformer explicitly and effectively captures the locality in sequences with
the novel LocalRNN structure while standard Transformer models it very vaguely with multi-head
attention that operates on all of the positions. Second, R-Transformer does not rely on any position
embeddings as Transformer does. In fact, the benefits of simple position embeddings are very
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Table 1: MNIST classification task results. Italic numbers denote that the results are directly copied
from other papers that have the same settings.

Model # of layers / hidden size Test Accuracy(%)

RNN (Bai et al., 2018) - 21.5
GRU (Bai et al., 2018) - 96.2

LSTM (Bai et al., 2018) 1/ 130 87.2
TCN (Bai et al., 2018) 8 /25 99.0

Transformer 8/32 98.2
R-Transformer 8/32 99.1

limited (Al-Rfou et al., 2018) and it requires considerable amount of efforts to design effective
position embeddings as well as proper ways to incorporate them (Dai et al., 2019). In the next
section, we will empirically demonstrate the advantages of R-Transformer over both TCN and the
standard Transformer.

4 EXPERIMENT

Since the R-Transformer is a general sequential learning framework, we evaluate it with sequential
data from various domains including images, audios and natural languages. We mainly compare
it with canonical recurrent architectures (Vanilla RNN, GRU, LSTM) and two of the most popular
generic sequence models that do not have any recurrent structures, namely, TCN and Transformer.
However, since the majority of existing efforts to enhance Transformer are for natural languages, in
the natural language evaluation, we also include one recent advanced Transformer, i.e., Transformer-
XL. For all the tasks, Transformer and R-Transformer were implemented with Pytorch and the re-
sults for canonical recurrent architectures and TCN were directly copied from Bai et al. (2018) as
we follow the same experimental settings. In addition, to make the comparison fair, we use the same
set of hyperparameters (i.e, hidden size, number of layers, number of heads) for R-Transformer and
Transformer. Moreover, unless specified otherwise, for training, all models are trained with same
optimizer and learning rate is chosen from the same set of values according to validation perfor-
mance. In addition, the learning rate annealed such that it is reduced when validation performance
reaches plateau.

4.1 PIXEL-BY-PIXEL MNIST: SEQUENCE CLASSIFICATION

This task is designed to test model ability to memorize long-term dependencies. It was firstly pro-
posed by Le et al. (2015) and has been used by many previous works (Wisdom et al., 2016; Chang
et al., 2017; Zhang et al., 2016; Krueger et al., 2016). Following previous settings, we rescale each
28 × 28 image in MNIST dataset LeCun et al. (1998) into a 784 × 1 sequence, which will be clas-
sified into ten categories (each image corresponds to one of the digits from 0 to 9) by the sequence
models. Since the rescaling could make pixels that are connected in the origin images far apart from
each other, it requires the sequence models to learn very long-term dependencies to understand the
content of each sequence. The dataset is split into training and testing sets as same as the default
ones in Pytorch(version 1.0.0) 2. The model hyperparameters and classification accuracy are re-
ported in Table 1. From the table, it can be observed that firstly, RNNs based methods generally
perform worse than others. This is because the input sequences exhibit very long-term dependen-
cies and it is extremely difficult for RNNs to memorize them. On the other hand, methods that build
direct connections among positions, i.e., Transformer, TCN, achieve much better results. It is also
interesting to see that TCN is slightly better than Transformer, we argue that this is because the stan-
dard Transformer cannot model the locality very well. However, our proposed R-Transformer that
leverages LocalRNN to incorporate local information, has achieved better performance than TCN.

2https://pytorch.org
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Table 2: Polyphonic music modeling. Italic numbers denote that the results are directly copied from
other papers that have the same settings.

Model # of layers / hidden size NLL

RNN (Bai et al., 2018) - 4.05
GRU (Bai et al., 2018) - 3.46

LSTM (Bai et al., 2018) - 3.29
TCN (Bai et al., 2018) 4 /150 3.07

Transformer 3/160 3.34
R-Transformer 3/160 2.37

Table 3: Character-level language modeling. Italic numbers denote that the results are directly
copied from other papers that have the same settings.

Model # of layers / hidden size bpc

RNN (Bai et al., 2018) - 1.48
GRU (Bai et al., 2018) - 1.37

LSTM (Bai et al., 2018) 2 /600 1.36
TCN (Bai et al., 2018) 3 /450 1.31

Transformer 3/512 1.34
R-Transformer 3/512 1.24

4.2 NOTTINGHAM: POLYPHONIC MUSIC MODELING

Next, we evaluate R-Transformer on the task of polyphonic music modeling with Nottingham
dataset (Boulanger-Lewandowski et al., 2012). This dataset collects British and American folk tunes
and has been commonly used in previous works to investigate the model’s ability for polyphonic mu-
sic modeling (Boulanger-Lewandowski et al., 2012; Chung et al., 2014; Bai et al., 2018). Following
the same setting in Bai et al. (2018), we split the data into training, validation, and testing sets which
contains 694, 173 and 170 tunes, respectively. The learning rate is chosen from {5e−4, 5e−5, 5e−6}
and dropout with probability of 0.1 is used to avoid overfitting. Moreover, gradient clipping is used
during the training process. We choose negative log-likelihood (NLL) as the evaluation metrics and
lower value indicates better performance. The experimental results are shown in Table 2. Both
LTSM and TCN outperform Transformer in this task. We suspect this is because these music tunes
exhibit strong local structures. While Transformer is equipped with multi-head attention mechanism
that is effective to capture long-term dependencies, it fails to capture local structures in sequences
that could provide strong signals. On the other hand, R-Transformer enhanced by LocalRNN has
achieved much better results than Transformer. In addition, it also outperforms TCN by a large mar-
gin. This is expected because TCN tends to ignore the sequential information in the local structure,
which can play an important role as suggested by (Gehring et al., 2017).

4.3 PENNTREEBANK: LANGUAGE MODELING

In this subsection, we further evaluate R-Transformer’s ability on both character-level and word-
level language modeling tasks. The dataset we use is PennTreebank(PTB) (Marcus et al., 1993) that
contains 1 million words and has been extensively used by previous works to investigate sequence
models (Chen & Goodman, 1999; Chelba & Jelinek, 2000; Kim et al., 2016; Tran et al., 2016). For
character-level language modeling task, the model is required to predict the next character given a
context. Following the experimental settings in Bai et al. (2018), we split the dataset into train-
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ing, validation and testing sets that contains 5059K, 396K and 446K characters, respectively. For
Transformer and R-Transformer, the learning rate is chosen from {1, 2, 3} and dropout rate is 0.15.
Gradient clipping is also used during the training process. The bpc is used to measure the predicting
performance.

For word-level language modeling, the models are required to predict the next word given the con-
textual words. Similarly, we follow previous works and split PTB into training, validation, and
testing sets with 888K, 70K and 79K words, respectively. The vocabulary size of PTB is 10K. As
with character-level language modeling,the learning rate is chosen from {1, 2, 3} for Transformer
and R-Transformer and dropout rate is 0.35. In this task, we also add Transformer-XL (Dai et al.,
2019) as one baseline, which has been particularly designed for language modeling tasks and has
achieved state-of-the-art performance. Note that to make the comparison fair, we apply the same
model configuration, i.e., number of layers, to Transformer-XL. All other settings such as optimizer
are the same as its original ones. The learning rate is chosen from {0.01, 0.001, 0.0001} and its best
validation performance is achieved with 0.001. Note that, except dropout, no other regularization
tricks such as variational dropout and weight dropout are applied. The prediction performance is
evaluated with perplexity, the lower value of which denotes better performance.

The experimental results of character-level and word-level language modeling tasks are shown in
Table 3 and Table 4, respectively. Several observations can be made from the Table 3. First, Trans-
former performs only slightly better than RNNs while much worse than other models. The reason
for this observation is similar to the case of polyphonic music modeling task that language ex-
hibits strong local structures and standard Transformer can not fully capture them. Second, TCN
achieves better results than all of the RNNs, which is attributed to its ability to capture both local
structures and long-term dependencies in languages. Notably, for both local structures and long-
term dependencies, R-Transformer has more powerful components than TCN, i.e., LocalRNN and
Multi-head attention. Therefore, it is not surprising to see that R-Transformer achieves significantly
better results. Table 4 presents the results for word-level language modeling. Similar trends are
observed, with the only exception that LSTM achieves the best results among all the methods. In
addition, the result of Transformer-XL is only slightly better than R-transformer. Considering the
fact that Transformer-XL is specifically designed for language modeling and employs the recurrent
connection of segments (Dai et al., 2019), this result suggests the limited contribution of engineered
positional embeddings.

4.4 DISCUSSIONS AND EVALUATION LIMITATIONS

In summary, experimental results have shown that the standard Transformer can achieve better re-
sults than RNNs when sequences exhibit very long-term dependencies, i.e., sequential MNIST while
its performance can drop dramatically when strong locality exists in sequences, i.e., polyphonic mu-
sic and language. Meanwhile, TCN is a very strong sequence model that can effectively learn both
local structures and long-term dependencies and has very stable performance in different tasks. More
importantly, the proposed R-Transformer that combines a lower level LocalRNN and a higher level
multi-head attention, outperforms both TCN and Transformer by a large margin consistently in most
of the tasks. The experiments are conducted on various sequential learning tasks with datasets from
different domains. Moreover, all experimental settings are fair to all baselines. Thus, the observa-
tions from the experiments are reliable with the current experimental settings. However, due to the
computational limitations, we are currently restricted our evaluation settings to moderate model and
dataset sizes. Thus, more evaluations on big models and large datasets can make the results more
convincing. We would like to leave this as one future work.

5 RELATED WORK

Recurrent Neural Networks including its variants such LSTM (Hochreiter & Schmidhuber, 1997)
and GRU (Cho et al., 2014) have long been the default choices for generic sequence modeling.
A RNN sequentially processes each position in a sequence and maintains an internal hidden state
to compresses information of positions that have been seen. While its design is appealing and it
has been successfully applied in various tasks, several problems caused by its recursive structures
including low computation efficiency and gradient exploding or vanishing make it ineffective when
learning long sequences. Therefore, in recent years, a lot of efforts has been made to develop models
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Table 4: Word-level language modeling. Italic numbers denote that the results are directly copied
from other papers that have the same settings.

Model # of layers / hidden size Perplexity

RNN (Bai et al., 2018) - 114.50
GRU (Bai et al., 2018) - 92.48

LSTM (Bai et al., 2018) 3 /700 78.93
TCN (Bai et al., 2018) 4 /600 88.68

Transformer 3/128 122.37
Transformer-XL 3/128 83.38
R-Transformer 3/128 84.38

without recursive structures and they can be roughly divided into two categories depending whether
they rely on convolutions operations or not.

The first category includes models that mainly built on convolution operations. For example, van
den Oord et al. have designed an autoregressive WaveNet that is based on causal filters and dilated
convolution to capture both global and local information in raw audios (Van Den Oord et al., 2016).
Ghring et al. has successfully replace traditional RNN based encoder and decoder with convolu-
tional ones and outperforms LSTM setup in neural machine translation tasks (Gehring et al., 2017;
2016). Moreover, researchers introduced gate mechanism into convolutions structures to model se-
quential dependencies in languages (Dauphin et al., 2017). Most recently, a generic architecture
for sequence modeling, termed as Temporal Convolutional Networks (TCN), that combines compo-
nents from previous works has been proposed in (Bai et al., 2018). Authors in (Bai et al., 2018) have
systematically compared TCN with canonical recurrent networks in a wide range of tasks and TCN
is able achieve better performance in most cases. Our R-transformer is motivated by works in this
group in a sense that we firstly models local information and then focus on global ones.

The most popular works in second category are those based on multi-head attention mechanism.
The multi-head attention mechanism was firstly proposed in Vaswani et al. (2017), where impressive
performance in machine translation task has been achieved with Transformer. It was then frequently
used in other sequence learning models (Devlin et al., 2018; Dehghani et al., 2018; Dai et al., 2019).
The success of multi-head attention largely comes from its ability to learn long-term dependencies
through direct connections between any pair of positions. However, it heavily relies on position
embeddings that have limited effects and require a fair amount of effort to design effective ones.
In addition, our empirical results shown that the local information could easily to be ignored by
multi-head attention even with the existence of position embeddings. Unlike previously proposed
Transformer-like models, R-Transformer in this work leverages the strength of RNN and is able
model the local structures effectively without the need of any position embeddings.

6 CONCLUSION

In this paper, we propose a novel generic sequence model that enjoys the advantages of both RNN
and the multi-head attention while mitigating their disadvantages. Specifically, it consists of a Lo-
calRNN that learns the local structures without suffering from any of the weaknesses of RNN and
a multi-head attention pooling that effectively captures long-term dependencies without any help of
position embeddings. In addition, the model can be easily implemented with full parallelization over
the positions in a sequence. The empirical results on sequence modeling tasks from a wide range of
domains have demonstrated the remarkable advantages of R-Transformer over state-of-the-art non-
recurrent sequence models such as TCN and standard Transformer as well as canonical recurrent
architectures.
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