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ABSTRACT

Source separation for music is the task of isolating contributions, or stems, from dif-
ferent instruments recorded individually and arranged together to form a song. Such
components include voice, bass, drums and any other accompaniments. Contrarily
to many audio synthesis tasks where the best performances are achieved by models
that directly generate the waveform, the state-of-the-art in source separation for mu-
sic is to compute masks on the magnitude spectrum. In this paper, we first show that
an adaptation of Conv-Tasnet (Luo & Mesgarani, 2019), a waveform-to-waveform
model for source separation for speech, significantly beats the state-of-the-art on
the MusDB dataset, the standard benchmark of multi-instrument source separation.
Second, we observe that Conv-Tasnet follows a masking approach on the input
signal, which has the potential drawback of removing parts of the relevant source
without the capacity to reconstruct it. We propose Demucs, a new waveform-to-
waveform model, which has an architecture closer to models for audio generation
with more capacity on the decoder. Experiments on the MusDB dataset show
that Demucs beats previously reported results in terms of signal to distortion ratio
(SDR), but lower than Conv-Tasnet. Human evaluations show that Demucs has
significantly higher quality (as assessed by mean opinion score) than Conv-Tasnet,
but slightly more contamination from other sources, which explains the difference
in SDR. Additional experiments with a larger dataset suggest that the gap in SDR
between Demucs and Conv-Tasnet shrinks, showing that our approach is promising.

1 INTRODUCTION

Cherry first noticed the “cocktail party effect” (Cherry, 1953): how the human brain is able to separate
a single conversation out of a surrounding noise from a room full of people chatting. Bregman later
tried to understand how the brain was able to analyse a complex auditory signal and segment it
into higher level streams. His framework for auditory scene analysis (Bregman, 1990) spawned
its computational counterpart, trying to reproduce or model accomplishments of the brains with
algorithmic means (Wang & Brown, 2006), in particular regarding source separation capabilities.

When producing music, recordings of individual instruments called stems are arranged together and
mastered into the final song. The goal of source separation is to recover those individual stems
from the mixed signal. Unlike the cocktail party problem, there is not a single source of interest to
differentiate from an unrelated background noise, but instead a wide variety of tones and timbres
playing in a coordinated way. In the SiSec Mus evaluation campaign for music separation (Stöter
et al., 2018), those individual stems were grouped into 4 broad categories: (1) drums, (2) bass,
(3) other, (4) vocals. Given a music track which is a mixture of these four sources, also called
the mix, the goal is to generate four waveforms that correspond to each of the original sources. We
consider here the case of supervised source separation, where the training data contain music tracks
(i.e., mixtures), together with the ground truth waveform for each of the sources.

State-of-the-art approaches in music source separation still operate on the spectrograms generated by
the short-time Fourier transform (STFT). They produce a mask on the magnitude spectrums for each
frame and each source, and the output audio is generated by running an inverse STFT on the masked
spectrograms reusing the input mixture phase (Takahashi & Mitsufuji, 2017; Takahashi et al., 2018).
Several architectures trained end-to-end to directly synthesize the waveforms have been proposed
(Lluís et al., 2018; Jansson et al., 2017), but their performances are far below the state-of-the-art: in
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Figure 1: Mel-spectrogram for a 0.8 seconds extract of the bass source from the track “Stich Up” of
the MusDB test. From left to right: ground truth, Conv-Tasnet estimate and Demucs estimate. We
observe that Conv-Tasnet missed one note entirely.

the last SiSec Mus evaluation campaign (Stöter et al., 2018), the best model that directly predicts
waveforms achieves an average signal-to-noise ratio (SDR) over all four sources of 3.2, against 5.3 for
the best approach that predicts spectrograms masks (also see Table 1 in Section 6). An upper bound on
the performance of all methods relying on masking spectrograms is given by the SDR obtained when
using a mask computed using the ground truth sources spectrograms, for instance the Ideal Ratio
Mask (IRM) or the Ideal Binary Mask (IBM) oracles. For speech source separation, Luo & Mesgarani
(2019) proposed Conv-Tasnet, a model that reuses the masking approach of spectrogram methods but
learns the masks jointly with a convolutional front-end, operating directly in the waveform domain
for both the inputs and outputs. Conv-Tasnet surpasses both the IRM and IBM oracles.

Our first contribution is to adapt the Conv-Tasnet architecture, originally designed for monophonic
speech separation and audio sampled at 8 kHz, to the task of sterephonic music source separation
for audio sampled at 44.1 kHz. Our experiments show that Conv-Tasnet outperforms all previous
methods by a large margin, with an SDR of 5.7, but still under the SDR of the IRM oracle at 8.2
(Stöter et al., 2018). However, while Conv-Tasnet separates with a high accuracy the different sources,
we observed artifacts when listening to the generated audio: a constant broadband noise, hollow
instruments attacks or even missing parts. They are especially noticeable on the drums and bass
sources and we give one such example on Figure 1. Conv-Tasnet uses an over-complete linear
representation on which it applies a mask obtained from a deep convolutional network. Because
both the encoder and decoder are linear, the masking operation cannot synthesize new sounds. We
conjecture that the overlap of multiples instruments sometimes lead to a loss of information that is
not reversible by a masking operation.

To overcome the limitations of Conv-Tasnet, our second contribution is to propose Demucs, a new
architecture for music source separation. Similarly to Conv-Tasnet, Demucs is a deep learning model
that directly operates on the raw input waveform and generates a waveform for each source. Demucs
is inspired by models for music synthesis rather than masking approaches. It is a U-net architecture
with a convolutional encoder and a decoder based on wide transposed convolutions with large strides
inspired by recent work on music synthesis (Défossez et al., 2018). The other critical features of the
approach are a bidirectional LSTM between the encoder and the decoder, increasing the number of
channels exponentially with depth, gated linear units as activation function (Dauphin et al., 2017)
which also allow for masking, and a new initialization scheme.

We present experiments on the MusDB benchmark, which first show that both Conv-Tasnet and De-
mucs achieve performances significantly better than the best methods that operate on the spectrogram,
with Conv-Tasnet being better than Demucs in terms of SDR. We also perform human evaluations that
compare Conv-Tasnet and our Demucs, which show that Demucs has significantly better perceived
quality. The smaller SDR of Demucs is explained by more contamination from other sources. We
also conduct an in-depth ablation study of the Demucs architecture to demonstrate the impact of the
various design decisions. Finally, we carry out additional experiments by adding 150 songs to the
training set. In this experiment, Demucs and TasNet both achieve an SDR of 6.3, suggesting that
the gap in terms of SDR between the two models diminishes with more data, making the Demucs
approach promising. The 6.3 points of SDR also set a new state-of-the-art, since it improves on the
best previous result of 6.0 on the MusDB test set obtained by training with 800 additional songs.

We discuss in more detail the related work in the next Section. We then describe the original Conv-
Tasnet model of Luo & Mesgarani (2018) and its adaptation to music source separation. Our Demucs
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architecture is detailed in Section 4. We present the experimental protocol in Section 5, and the
experimental results compared to the state-of-the-art in Section 6. Finally, we describe the results of
the human evaluation and the ablation study.

2 RELATED WORK

A first category of methods for supervised music source separation work on time-frequency repre-
sentations. They predict a power spectrogram for each source and reuse the phase from the input
mixture to synthesise individual waveforms. Traditional methods have mostly focused on blind
(unsupervised) source separation. Non-negative matrix factorization techniques (Smaragdis et al.,
2014) model the power spectrum as a weighted sum of a learnt spectral dictionary, whose elements are
grouped into individual sources. Independent component analysis (Hyvärinen et al., 2004) relies on
independence assumptions and multiple microphones to separate the sources. Learning a soft/binary
mask over power spectrograms has been done using either HMM-based prediction (Roweis, 2001) or
segmentation techniques (Bach & Jordan, 2005).

With the development of deep learning, fully supervised methods have gained momentum. Initial work
was performed on speech source separation (Grais et al., 2014), followed by works on music using
simple fully connected networks over few spectrogram frames (Uhlich et al., 2015), LSTMs (Uhlich
et al., 2017), or multi scale convolutional/recurrent networks (Liu & Yang, 2018; Takahashi &
Mitsufuji, 2017). Nugraha et al. (2016) showed that Wiener filtering is an efficient post-processing
step for spectrogram-based models and it is now used by all top performing models in this category.
Those methods have performed the best during the last SiSec 2018 evaluation (Stöter et al., 2018)
for source separation on the MusDB (Rafii et al., 2017) dataset. After the evaluation, a reproducible
baseline called Open Unmix has been released by Stöter et al. (2019) and matches the top submissions
trained only on MusDB. MMDenseLSTM, a model proposed by Takahashi et al. (2018) and trained
on 807 unreleased songs currently holds the absolute record of SDR in the SiSec campaign. Both
Demucs and Conv-Tasnet obtain significantly higher SDR.

More recently, models operating in the waveform domain have been developed, so far with worse
performance than those operating in the spectrogram domain. A convolutional network with a U-Net
structure called Wave-U-Net was used first on spectrograms (Jansson et al., 2017) and then adapted to
the waveform domain (Stoller et al., 2018). Wave-U-Net was submitted to the SiSec 2018 evaluation
campaign with a performance inferior to that of most spectrogram domain models by a large margin.
A Wavenet-inspired, although using a regression loss and not auto-regressive, was first used for
speech denoising (Rethage et al., 2018) and then adapted to source separation (Lluís et al., 2018).
Our model significantly outperforms Wave-U-Net.Given that the Wavenet inspired model performed
worse than Wave-U-Net, we did not consider it for comparison.

In the field of monophonic speech source separation, spectrogram masking methods have enjoyed
good performance (Kolbæk et al., 2017; Isik et al., 2016). Luo & Mesgarani (2018) developed a
waveform domain methods using masking over a learnable front-end obtained from a LSTM that
reached the same accuracy. Improvements were obtained by Wang et al. (2018) for spectrogram
methods using the unfolding of a few iterations of a phase reconstruction algorithm in the training
loss. In the mean time, Luo & Mesgarani (2019) refined their approach, replacing the LSTM with a
superposition of dilated convolutions, which improved the SDR and definitely surpassed spectrogram
based approaches, including oracles that use the ground truth sources such as the ideal ratio mask
(IRM) or the ideal binary mask (IBM). We show in this paper that Conv-Tasnet also outperforms all
known methods for music source separation. However it suffers from significantly more artifacts
than the Demucs architecture we introduce in this paper, as measured by mean opinion score.

3 ADAPTING CONV-TASNET FOR MUSIC SOURCE SEPARATION

We describe in this section the Conv-Tasnet architecture of Luo & Mesgarani (2018) and give the
details of how we adapted the architecture to fit the setting of the MusDB dataset.

Overall framework Each source s is represented by a waveform xs ∈ RC,T where C is the
number of channels (1 for mono, 2 for stereo) and T the number of samples of the waveform. The
mixture (i.e., music track) is the sum of all sources x :=

∑S
s=1 xs. We aim at training a model g
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parameterized by θ, such that g(x) = (gs(x; θ))
S
s=1, where gs(x; θ) is the predicted waveform for

source s given x, that minimizes

min
θ

∑
x∈D

S∑
s=1

L(gs(x; θ), xs) (1)

for some dataset D and reconstruction error L. The original Conv-Tasnet was trained using a loss
called scale-invariant source-to-noise ratio (SI-SNR), similar to the SDR loss described in Section 5.
We instead use a simple L1 loss between the estimated and ground truth sources. We discuss in more
details regression losses in the context of our Demucs architecture in Section 4.2.

The original Conv-Tasnet architecture Conv-Tasnet (Luo & Mesgarani, 2018) is composed of a
learnt front-end that transforms back and forth between the input monophonic mixture waveform
sampled at 8 kHz and a 128 channels over-complete representation sampled at 1 kHz using a
convolution as the encoder and a transposed convolution as the decoder, both with a kernel size of
16 and stride of 8. The high dimensional representation is masked through a separation network
composed of stacked residual blocks. Each block is composed of a a 1x1 convolution, a PReLU (He
et al., 2015b) non linearity, a layer wise normalization over all channels jointly (Ba et al., 2016), a
depth-wise separable convolution (Chollet, 2017; Howard et al., 2017) with a kernel size of 3, a stride
of 1 and a dilation of 2nmodN , with n the 0-based index of the block and N an hyper-parameter, and
another PReLU and normalization. The output of each block participates to the final mask estimation
through a skip connection, preceded by a 1x1 convolution. The original Conv-Tasnet counted 3×N
blocks with N = 8. The mask is obtained summing the output of all blocks and then applying ReLU.
The output of the encoder is multiplied by the mask and before going through the decoder.

Conv-Tasnet for music source separation We adapted their architecture to the task of stereo-
phonic music source separation: the original Conv-Tasnet has a receptive field of 1.5 seconds for
audio sampled at 8 kHz, we take N = 10 and increased the kernel size (resp. stride) of the en-
coder/decoder from 16 (resp. 8) to 20 (resp. 10), leading to the same receptive field at 44.1 kHz. We
observed better results using 4×N blocks instead of 3×N and 256 channels for the encoder/decoder
instead of 128. With those changes, Conv-Tasnet obtained state-of-the-art performance on the MusDB
dataset, surpassing all known spectrogram based methods by a large margin as shown in Section 6.

Separating entire songs The original Conv-Tasnet model was designed for short sentences of a
few seconds at most. When evaluating it on an entire track, we obtained the best performance by first
splitting the input track into chunks of 8 seconds each. We believe this is because of the global layer
normalization. During training, only small audio extracts are given, so that a quiet part or a loud part
would be scaled back to an average volume. However, when using entire songs as input, it will most
likely contain both quiet and loud parts. The normalization will not map both to the same volume,
leading to a difference between training and evaluation. We did not observe any side effects when
going from one chunk to the next, so we did not look into fancier overlap-add methods.

4 THE DEMUCS ARCHITECTURE

The architecture we propose, which we call Demucs, is described in the next few subsections,
and the reconstruction loss is discussed in Section 4.2. Demucs takes a stereo mixture as input
and outputs a stereo estimate for each source (C = 2). It is an encoder/decoder architecture
composed of a convolutional encoder, a bidirectional LSTM, and a convolutional decoder, with the
encoder and decoder linked with skip U-Net connections. Similarly to other work in generation
in both image (Karras et al., 2018; 2017) and sound (Défossez et al., 2018), we do not use batch
normalization (Ioffe & Szegedy, 2015) as our early experiments showed that it was detrimental to the
model performance. The overall architecture is depicted in Figure 2a.

4.1 CONVOLUTIONAL AUTO-ENCODER

Encoder The encoder is composed of L := 6 stacked convolutional blocks numbered from 1 to
L. Each block i is composed of a convolution with kernel size K := 8, stride S := 4, Ci−1 input
channels, Ci output channels and ReLU activation, followed by a convolution with kernel size 1, 2Ci
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Encoder1(Cin = 2, Cout = 100)

Encoder2(Cin = 100, Cout = 200)

. . .

Encoder6(Cin = 1600, Cout = 3200)

L S T M
hidden size=3200
2 bidirectional layers

Linear(Cin = 6400, Cout = 3200)

Decoder6(Cin = 3200, Cout = 1600)

. . .

Decoder2(Cin = 200, Cout = 100)

Decoder1(Cin = 100, Cout = 4 ∗ 2)

(a) Demucs architecture with the mixture waveform as
input and the four sources estimates as output. Arrows
represents U-Net connections.

GLU(Conv1d(Cin, 2Cin,K = 3, S = 1))

Relu(ConvTr1d(Cin, Cout,K = 8, S = 4))

Encoderi

+

Decoderi+1 or LSTM

Decoderi−1 or output

Relu(Conv1d(Cin, Cout,K = 8, S = 4))

GLU(Conv1d(Cout, 2Cout,K = 1, S = 1))

Decoderi

Encoderi−1 or input

Encoderi+1 or LSTM

(b) Detailed view of the layers Decoderi on the top
and Encoderi on the bottom. Arrows represent con-
nections to other parts of the model. For convolutions,
Cin (resp Cout) is the number of input channels (resp
output), K the kernel size and S the stride.

Figure 2: Demucs complete architecture on the left, with detailed representation of the encoder and
decoder layers on the right.

output channels and gated linear units (GLU) as activation function (Dauphin et al., 2017). Since
GLUs halve the number of channels, the final output of block i has Ci output channels. A block is
described in Figure 2b. Convolutions with kernel width 1 increase the depth and expressivity of the
model at low computational cost. As we show in our ablation study 6.2, the usage of GLU activations
after these convolutions significantly boost performance. The number of channels in the input mixture
is C0 = C = 2, while we use C1 := 100 as the number of output channels for the first encoder block.
The number of channels is then doubled at each subsequent block, i.e., Ci := 2Ci−1 for i = 2..L, so
the final number of channels is CL = 3200. We then use a bidirectional LSTM with 2 layers and a
hidden size CL. The LSTM outputs 2CL channels per time position. We use a linear layer to take
that number down to CL.

Decoder The decoder is mostly the inverse of the encoder. It is composed of L blocks numbered in
reverse order from L to 1. The i-th blocks starts with a convolution with stride 1 and kernel width 3
to provide context about adjacent time steps, input/output channels Ci and a ReLU activation. Finally,
we use a transposed convolution with kernel width 8 and stride 4, Ci−1 outputs and ReLU activation.
The S sources are synthesized at the final layer only, after all decoder blocks. The final layer is
linear with S · C0 output channels, one for each source (4 stereo channels in our case), without any
additional activation function. Each of these channels directly generate the corresponding waveform.

U-network structure Similarly to Wave-U-Net (Jansson et al., 2017), there are skip connections
between the encoder and decoder blocks with the same index, as originally proposed in U-networks
(Ronneberger et al., 2015). While the main motivation comes from empirical performances, an
advantage of the skip connections is to give a direct access to the original signal, and in particular
allows to directly transfers the phase of the input signal to the output, as discussed in Section 4.2.
Unlike Wave-U-Net, we use transposed convolutions rather than linear interpolation followed by a
convolution with a stride of 1. For the same increase in the receptive field, transposed convolutions
require 4 times less operations and memory. This limits the overall number of channels that can be
used before running out of memory. As we observed that a large number of channels was key to
obtaining good results, we favored the use of transposed convolutions, as explained in Section 6.

Motivation: synthesis vs masking The approach we follow uses the U-Network architecture
(Ronneberger et al., 2015; Stoller et al., 2018; Jansson et al., 2017), and builds on transposed
convolutions with large number of channels and large strides (4) inspired by the approach to the
synthesis of music notes of Défossez et al. (2018). The U-Net skip connections and the gating
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performed by GLUs imply that this architecture is expressive enough to represent masks on a learnt
representation of the input signal, in a similar fashion to Conv-Tasnet. The Demucs approach is then
more expressive than Conv-Tasnet, and its main advantages are the multi-scale representations of the
input and the non-linear transformations to and from the waveform domain.

4.2 LOSS FUNCTION

For the reconstruction loss L(gs(x; θ), xs) in equation 1, we either use the average mean square
error or average absolute error between waveforms: for a waveform xs containing T samples and
corresponding to source s, a predicted waveform x̂s and denoting with a subscript t the t-th sample
of a waveform, we use one of L1 or L2:

L1(x̂s, xs) =
1

T

T∑
t=1

|x̂s,t − xs,t| L2(x̂s, xs) =
1

T

T∑
t=1

(x̂s,t − xs,t)2 . (2)

In generative models for audio, direct reconstruction losses on waveforms can pose difficulties
because they are sensitive to the initial phases of the signals: two signals whose only difference is a
shift in the initial phase are perceptually the same, but can have arbitrarily high L1 or L2 losses. It can
be a problem in pure generation tasks because the initial phase of the signal is unknown, and losses
on power/magnitude spectrograms are alternative that do not suffer from this lack of specification of
the output. Approaches that follow this line either generate spectrograms (e.g., Wang et al., 2017), or
use a loss that compares power spectrograms of target/generated waveforms (Défossez et al., 2018).

The problem of invariance to a shift of phase is not as severe in source separation as it is in
unconditional generation, because the model has access to the original phase of the signal. The pase
can easily be recovered from the skip connections in U-net-style architectures for separation, and is
directly used as input of the inverse STFT for methods that generate masks on power spectrograms.
As such, losses such as L1/L2 are totally valid for source separation. Early experiments with an
additional term including the loss of Défossez et al. (2018) did not suggest that it boosts performance,
so we did not pursue this direction any further. Most our experiments use L1 loss, and the ablation
study presented in Section 6.2 suggests that there is no significant difference between L1 and L2.

4.3 WEIGHT RESCALING AT INITIALIZATION

The initialization of deep neural networks is known to have a critical impact on the overall perfor-
mances (Glorot & Bengio, 2010; He et al., 2015a), up to the point that Zhang et al. (2019) showed that
with a different initialization called fixup, very deep residual networks and transformers can be trained
without batch normalization. While Fixup is not designed for U-Net-style skip connections, we
observed that the following different initialisation scheme had great positive impact on performances
compared to the standard initialization of He et al. (2015a) used in U-Networks.

Considering the so-called Kaiming initialization (He et al., 2015a) as a baseline, let us look at a
single convolution layer for which we denote w the weights after the first initialization. We take
α := std(w)/a, where a is a reference scale, and replace w by w′ = w/

√
α. Since the original

weights have element-wise order of magnitude (KCin)
−1/2 where K is the kernel width and Cin

the number of output channels, it means that our initialization scheme produces weights of order of
magnitude (KCin)

−1/4, together with a non-trivial scale. Based a search over the values [0.01, 0.05,
0.1], we select a = 0.1 for all the regular and transposed convolutions, see Section 6 for more details.
We experimentally observed that on a randomly initialized model applied to an audio extract, it kept
the standard deviation of the features along the layers of the same order of magnitude. Without initial
rescaling, the output the last layer has a magnitude 20 times smaller than the first.

4.4 RANDOMIZED EQUIVARIANT STABILIZATION

A perfect source separation model is time equivariant, i.e. shifting the input mixture by X samples
will shift the output Y by the exact same amount. Thanks to its dilated convolutions with a stride of 1,
the mask predictor of Conv-Tasnet is naturally time equivariant and even if the encoder/decoder is
not strictly equivariant, Conv-Tasnet still verifies this property experimentally (Luo & Mesgarani,
2019). Spectrogram based method will also verify approximately this property. Shifting the input
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by a small amount will only reflect in the phase of the spectrogram. As the mask is computed only
from the magnitude, and the input mixture phase is reused, the output will naturally be shifted by
the same amount. On the other hand, we noticed that our architecture did not naturally satisfy this
property. We propose a simple workaround called randomized equivariant stabilization, where we
sample S random shifts of an input mixture x and average the predictions of our model for each, after
having applied the opposite shift. This technique does not require changing the training procedure or
network architecture. Using S = 10, we obtained a 0.3 SDR gain, see Section 6.2 for more details. It
does make evaluation of the model S times slower, however, on a V100 GPU, separating 1 minute of
audio at 44.1 kHz with Demucs takes only 0.8 second. With this technique, separation of 1 minute
takes 8 seconds which is still more than 7 times faster than real time.

5 EXPERIMENTAL SETUP

5.1 EVALUATION FRAMEWORK

MusDB and additional data We use the MusDB dataset (Rafii et al., 2017) , which is composed
of 150 songs with full supervision in stereo and sampled at 44100Hz. For each song, we have the
exact waveform of the drums, bass, other and vocals parts, i.e. each of the sources. The
actual song, the mixture, is the sum of those four parts. The first 84 songs form the train set, the
next 16 songs form the valid set (the exact split is defined in the musdb python package) while
the remaining 50 are kept for the test set. We collected raw stems for 150 tracks, i.e., individual
instrument recordings used in music production software to make a song. We manually assigned each
instrument to one of the sources in MusDB. We call this extra supervised data the stem set. We also
report the performances of Tasnet and Demucs trained using these 150 songs in addition to the 84
from MusDB, to anaylze the effect of adding more training data.

Source separation metrics Measurements of the performance of source separation models was
developed by Vincent et al. for blind source separation (Vincent et al., 2006) and reused for supervised
source separation in the SiSec Mus evaluation campaign (Stöter et al., 2018). Similarly to previous
work (Stoller et al., 2018; Takahashi & Mitsufuji, 2017; Takahashi et al., 2018), we focus on the
SDR (Signal to Distortion Ratio) which measures the log ratio between the volume of the estimated
source projection onto the ground truth, and the volume of what is left out of this projection, typically
contamination by other sources or artifacts. Other metrics can be defined (SIR and SAR) and we
present them in the supplementary material. We used the python package museval which provide
a reference implementation for the SiSec Mus 2018 evaluation campaign. As done in the SiSec
Mus competition, we report the median over all tracks of the median of the metric over each track
computed using the museval package.

5.2 BASELINES

As baselines, we selected Open Unmix (Stöter et al., 2019), a 3-layer BiLSTM model with encoding
and decoding fully connected layers on spectrogram frames. It was released by the organizers of
the SiSec 2018 to act as a strong reproducible baseline and matches the performances of the best
candidates trained only on MusDB. We also selected MMDenseLSTM (Takahashi et al., 2018), a
multi-band dense net with LSTMs at different scales of the encoder and decoder. This model was
submitted as TAK2 and trained with 804 extra labeled songs1. Both MMDenseLSTM and Open
Unmix use Wiener filtering (Nugraha et al., 2016) as a last post processing step. The only waveform
based method submitted to the evaluation campaign is Wave-U-Net (Stoller et al., 2018) with the
identifier STL2. Metrics were downloaded from the SiSec submission repository. for Wave-U-Net
and MMDenseLSTM. For Open Unmix they were provided by their authors2. We also provide the
metrics for the Ideal Ratio Mask oracle (IRM), which computes the best possible mask using the
ground truth sources and is the topline of spectrogram based method (Stöter et al., 2018).

1Source: https://sisec18.unmix.app/#/methods/TAK2
2https://zenodo.org/record/3370486
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Table 1: Comparison of Conv-Tasnet and Demucs to state-of-the-art models that operate on the
waveform (Wave-U-Net) and on spectrograms (Open-Unmix without extra data, MMDenseLSTM
with extra data) as well as the IRM oracle on the MusDB test set. The Extra? indicates the number of
extra training songs used. We report the median over all tracks of the median SDR over each track,
as done in the SiSec Mus evaluation campaign (Stöter et al., 2018). The All column reports the
average over all sources. Demucs metrics are averaged over 5 runs, the confidence interval is the
standard deviation over

√
5. In bold are the values that are statistically state-of-the-art either with or

without extra training data.

Test SDR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

IRM oracle 7 N/A 8.22 8.45 7.12 7.85 9.43

Open-Unmix 7 7 5.33 5.73 5.23 4.02 6.32
Wave-U-Net 3 7 3.23 4.22 3.21 2.25 3.25
Demucs 3 7 5.58 ±.03 6.08 ±.06 5.83 ±.07 4.12 ±.04 6.29 ±.07
Conv-Tasnet 3 7 5.73 ±.03 6.08 ±.06 5.66 ±.16 4.37 ±.02 6.81 ±.04
Demucs 3 150 6.33 ±.02 7.08 ±.07 6.70 ±.06 4.47±.03 7.05 ±.04
Conv-Tasnet 3 150 6.32 ±.04 7.11 ±.13 7.00 ±.05 4.44±.03 6.74 ±.06
MMDenseLSTM 7 804 6.04 6.81 5.40 4.80 7.16

5.3 TRAINING PROCEDURE

Epoch definition and augmentation We define one epoch over the dataset as a pass over all
11-second extracts with a stride of 1 second. We use a random audio shift between 0 and 1 second
and keep 10 seconds of audio from there as a training example. We perform the following data
augmentation (Uhlich et al., 2017), also used by Open Unmix and MMDenseLSTM: shuffling sources
within one batch to generate one new mix, randomly swapping channels. We additionally multiply
each source by ±1 (Nachmani & Wolf, 2019). All Demucs models were trained over 240 epochs.
Conv-Tasnet was trained for 360 epochs when trained only on MusDB and 240 when trained with
extra data and using only 2-seconds audio extracts.

Training setup and hyper-parameters All models are trained with 16 V100 GPUs with 32GB of
RAM. We use a batch size of 64, the Adam (Kingma & Ba, 2015) optimizer with a learning rate
was chosen among [3e-4, 5e-4] and the initial number of channels was chosen in [64, 80, 100] based
on the L1 loss on the validation set. We obtained best performance with a learning rate of 3e − 4
and 100 channels. We then tried 3 different values for the initial weight rescaling reference level
described in Section 4.3, [0.01, 0.05, 0.1] and selected 0.1. We computed confidence intervals using
5 random seeds in Table 1. For the ablation study on Table 4, we provide metrics for a single run.

6 EXPERIMENTAL RESULTS

In this section, we first provide experimental results on the MusDB dataset for Conv-Tasnet and
Demucs compared with state-of-the-art baselines. We then dive into the ablation study of Demucs.

6.1 COMPARISON WITH BASELINES

We provide a comparison the state-of-the-art baselines on Table 1. The models on the top half were
trained without any extra data while the lower half used unreleased training songs. As no previous
work included confidence intervals, we considered the single metric provided by for the baselines as
the exact estimate of their mean performance.

Quality of the separation We first observe that Demucs and Conv-Tasnet outperforms all previous
methods for music source separation. Conv-Tasnet has significantly higher SDR with 5.73, improving
by 0.4 over Open-Unmix. Our proposed Demucs architecture has worse overall performance but
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Table 2: Mean Opinion Scores (MOS) evaluating the quality and absence of artifacts of the separated
audio. 38 people rated 20 samples each, randomly sample from one of the 3 models or the ground
truth. There is one sample per track in the MusDB test set and each is 8 seconds long. Ratings of 5
means that the quality is perfect (no artifacts).

Quality Mean Opinion Score

Architecture All Drums Bass Other Vocals

Ground truth 4.46 ±.07 4.56 ±.13 4.25 ±.15 4.45 ±.13 4.64 ±.13

Open-Unmix 3.03 ±.09 3.10 ±.17 2.93 ±.20 3.09 ±0.16 3.00 ±.17
Demucs 3.22 ±.09 3.77 ±.15 3.26 ±.18 3.32 ±.15 2.55 ±.20
Conv-Tasnet 2.85 ±.08 3.39 ±.14 2.29 ±.15 3.18 ±.14 2.45 ±.16

Table 3: Mean Opinion Scores (MOS) evaluating contamination by other sources. 38 people rated 20
samples each, randomly sampled from one of the 3 models or the ground truth. There is one sample
per track in the MusDB test set and each is 8 seconds long. Ratings of 5 means no contamination by
other sources.

Contamination Mean Opinion Score

Architecture All Drums Bass Other Vocals

Ground truth 4.59 ±.07 4.44 ±.18 4.69 ±.09 4.46 ±.13 4.81 ±.11

Open-Unmix 3.27 ±.11 3.02 ±.19 4.00 ±.20 3.11 ±.21 2.91 ±.20
Demucs 3.30 ±.10 3.08 ±.21 3.93 ±.18 3.15 ±.19 3.02 ±.20
Conv-Tasnet 3.42 ±.09 3.37 ±.17 3.73 ±.18 3.46 ±.17 3.10 ±.17

matches Conv-Tasnet for the drums source and surpasses it for the bass. When training on 150
extra songs, the two methods have the same overall performance of 6.3 SDR, beating MMDenseLSTM
by nearly 0.3 SDR, despite MMDenseLSTM being tained on 804 extra songs. Unlike for speech
separation (Luo & Mesgarani, 2019), all methods are still far below the IRM oracle, leaving room for
future improvements. We provide results for the other metrics (SIR and SAR) as well as box plots
with quantiles over the test set tracks in Appendix B. Audio samples for Demucs, Conv-Tasnet and
all baselines are provided in the ICLR link code, with more details given in Appendix A.

Human evaluations We noticed strong artifacts on the audio separated by Conv-Tasnet, especially
for the drums and bass sources: static noise between 1 and 2 kHz, hollow instrument attacks
or missing notes as illustrated on Figure 1. In order to confirm this observation, we organized
a mean opinion score survey. We separated 8 seconds extracts from all of the 50 test set tracks
for Conv-Tasnet, Demucs and Open-Unmix. We asked 38 participants to rate 20 samples each,
randomly taken from one of the 3 models or the ground truth. For each one, they were required to
provide 2 ratings on a scale of 1 to 5. The first one evaluated the quality and absence of artifacts (1:
many artifacts and distortion, content is hardly recognizable, 5: perfect quality, no artifacts) and the
second one evaluated contamination by other sources (1: contamination if frequent and loud, 5: no
contamination). We show the results on Tables 2 and 3. We confirmed that the presence of artifacts in
the output of Conv-Tasnet degrades the user experience, with a rating of 2.85±.08 against 3.22± .09
for Demucs. On the other hand, Conv-Tasnet samples had less contamination by other sources than
Open-Unmix or Demucs, although by a small margin, with a rating of 3.42± .09 against 3.30± .10
for Demucs and 3.27± .11 for Open-Unmix.

Training speed We measured the time taken to process a single batch of size 16 with 10 seconds
of audio at 44.1kHz (the original Wave-U-Net being only trained on 22 kHz audio, we double the
time for fairness), ignoring data loading and using torch.cuda.synchronize to wait on all
kernels to be completed. MMDenseLSTM does not provide a reference implementation. Wave-U-Net
takes 1.2 seconds per batch, Open Unmix 0.2 seconds per batch and Demucs 1.6 seconds per batch.
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Table 4: Ablation study for the novel elements in our architecture described in Section 4. We use
only the train set from MusDB and report best L1 loss over the valid set throughout training as well
the SDR on the test set for the epoch that achieved this loss.

Valid set Test set
Difference L1 loss SDR

no initial weight rescaling 0.172 4.94
no BiLSTM 0.175 5.12
ReLU instead of GLU 0.177 5.19
no 1x1 convolutions in encoder 0.176 5.30
no randomized equivariant stabilization N/A 5.34
kernel size of 1 in decoder convolutions 0.166 5.51
MSE loss N/A 5.55

Reference 0.164 5.58

Conv-Tasnet cannot be trained with such a large sample size, however a single iteration over 2 seconds
of audio with a batch size of 4 takes 0.7 seconds.

6.2 ABLATION STUDY FOR DEMUCS

We provide an ablation study of the main design decisions for Demucs in Table 4. Given the cost
of training a single model, we did not compute confidence intervals for each variation. Yet, any
difference inferior to .06, which is the standard deviation observed over 5 repetitions of the Reference
model, could be attributed to noise.

We observe a small but not significant improvement when using the L1 loss instead of the MSE
loss. Adding a BiLSTM and using the initial weight rescaling described in Section 4.3 provides
significant gain, with an extra 0.48 SDR for the first and 0.64 for the second. We observe that using
randomized equivariant stabilization as described in Section 4 gives a gain of almost 0.3 SDR. We did
not report the validation loss as we only use the stabilization when computing the SDR over the test
set. We applied the randomized stabilization to Open-Unmix and Conv-Tasnet with no gain, since, as
explained in Section 4.4, both are naturally equivariant with respect to initial time shifts.

We introduced extra convolutions in the encoder and decoder, as described in Sections 4.1. The
two proved useful, improving the expressivity of the model, especially when combined with GLU
activation. Using a kernel size of 3 instead of 1 in the decoder further improves performance. We
conjecture that the context from adjacent time steps helps the output of the transposed convolutions
to be consistent through time and reduces potential artifacts arising from using a stride of 4.

CONCLUSION

We showed that Conv-Tasnet, a state-of-the-art architecture for speech source separation that predicts
masks on a learnt front-end over the waveform domain, achieves state-of-the-art performance for
music source separation, improving over all previous spectrogram or waveform domain methods by
0.4 SDR. While Conv-Tasnet has excellent performance to separate sources, it suffers from noticeable
artifacts as confirmed by human evaluations. We developed an alternative approach, Demucs, that
combines the ability to mask over a learnt representation with stronger decoder capacity that allows
for audio synthesis. We conjecture that this can be useful when information is lost in the mix of
instruments and cannot simply be recovered by masking. We show that our approach produces
audio of significantly higher quality as measures by mean opinion scores and matches the SDR
of Conv-Tasnet when trained with 150 extra tracks. We believe those results make it a promising
alternative to methods based on masking only.
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APPENDIX

A AUDIO SAMPLES

We provide audio samples taken from the test set of MusDB. They are available through the ICLR
code sharing url3 along with all the source code to reproduce our experiments. The audio files for
the Wave-U-Net and MMDenseLSTM have been obtained from the SiSec Mus 2018 evaluation
campaign results website4. For Open Unmix, we generated them from the pretrained UMX model
using the reference PyTorch implementation5. We recommend listening to the audio samples with
headphones, while being careful with the volume. An HTML page index.html is provided for
easier comparison. The following folders are provided:

• Reference: ground truth,

• Open Unmix,

• WaveUNet,

• Demucs: trained only on MusDB,

• DemucsExtra: trained on MusDB and an extra 150 songs,

• ConvTasnet: trained only on MusDB,

• ConvTasnetExtra: trained on MusDB and an extra 150 songs,

• MMDenseNetLSTM, trained on MusDB and an extra 804 songs.

B RESULTS FOR ALL METRICS WITH BOX PLOTS

Reusing the notations from Vincent et al. (2006), let us take a source j ∈ 1, 2, 3, 4 and introduce
Psj (resp Ps) the orthogonal projection on sj (resp on Span(s1, . . . , s4)). We then take with ŝj the
estimate of source sj

starget := Psj (ŝj) einterf := Ps(ŝj)− Psj (ŝj) eartif := ŝj − Ps(ŝj)

We can now define various signal to noise ratio, expressed in decibels (dB): the source to distortion
ratio

SDR := 10 log10
‖starget‖2

‖einterf + eartif‖2
,

the source to interference ratio

SIR := 10 log10
‖starget‖2

‖einterf‖2

and the sources to artifacts ratio

SAR := 10 log10
‖starget + einterf‖2

‖eartif‖2
.

As explained in the main paper, extra invariants are added when using the museval package. We
refer the reader to Vincent et al. (2006) for more details. We provide box plots for each metric and
each target on Figure 3, generated using the notebook provided specifically by the organizers of the
SiSec Mus evaluation campaign6. Hereafter, we provide the equivalent of Table 1 in the main paper
for both SIR and SAR.

3https://www.dropbox.com/sh/o0gps94s120v7l4/AABS5vDfuuRjgY_zDjdSm_Fsa?
dl=1

4https://sisec18.unmix.app
5https://github.com/sigsep/open-unmix-pytorch.
6https://github.com/sigsep/sigsep-mus-2018-analysis
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Test SIR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

IRM oracle 7 N/A 15.53 15.61 12.88 12.84 20.78

Open-Unmix 7 7 10.49 11.12 10.93 6.59 13.33
Wave-U-Net 3 7 6.26 8.83 5.78 2.37 8.06
Demucs 3 7 10.39 ±.07 11.81 ±.27 10.55 ±.20 5.90 ±.04 13.31 ±.21
Conv-Tasnet 3 7 11.47 ±.09 12.31 ±.09 11.52 ±.15 7.76 ±.07 14.30 ±.32

Demucs 3 150 11.95 ±.09 13.74 ±.25 13.03 ±.22 7.11 ±.10 13.94 ±.10
Conv-Tasnet 3 150 12.24 ±.09 13.66 ±.14 13.18 ±.13 8.40 ±.08 13.70 ±.22
MMDenseLSTM 7 804 12.24 11.94 11.59 8.94 16.48

Test SAR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

IRM oracle 7 N/A 8.31 8.40 7.40 7.93 9.51

Open-Unmix 7 7 5.90 6.02 6.34 4.74 6.52
Wave-U-Net 3 7 4.49 5.29 4.64 3.99 4.05
Demucs 3 7 6.08 ±.01 6.18 ±.03 6.41 ±.05 5.18 ±.06 6.54 ±.04
Conv-Tasnet 3 7 6.13 ±.04 6.19 ±.05 6.60 ±.07 4.88 ±.02 6.87 ±.05

Demucs 3 150 6.50 ±.02 7.04 ±.07 6.68 ±.04 5.26 ±.03 7.00 ±.05
Conv-Tasnet 3 150 6.57 ±.02 7.35 ±.05 6.96 ±.08 4.76 ±.05 7.20 ±.05
MMDenseLSTM 7 804 6.50 6.96 6.00 5.55 7.48
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Figure 3: Boxplot showing the distribution of SDR, SIR and SAR over the tracks of the MusDB test.
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