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ABSTRACT

Object-based factorizations provide a useful level of abstraction for interacting
with the world. Building explicit object representations, however, often requires
supervisory signals that are difficult to obtain in practice. We present a paradigm
for learning object-centric representations for physical scene understanding with-
out direct supervision of object properties. Our model, Object-Oriented Predic-
tion and Planning (O2P2), jointly learns a perception function to map from image
observations to object representations, a pairwise physics interaction function to
predict the time evolution of a collection of objects, and a rendering function to
map objects back to pixels. For evaluation, we consider not only the accuracy of
the physical predictions of the model, but also its utility for downstream tasks that
require an actionable representation of intuitive physics. After training our model
on an image prediction task, we can use its learned representations to build block
towers more complicated than those observed during training.

1 INTRODUCTION

Consider the castle made out of toy blocks in Figure 1a. Can you imagine how each block was
placed, one-by-one, to build this structure? Humans possess a natural physical intuition that aids
in the performance of everyday tasks. This physical intuition can be acquired, and refined, through
experience. Despite being a core focus of the earliest days of artificial intelligence and computer
vision research (Roberts, 1963; Winston, 1970), a similar level of physical scene understanding
remains elusive for machines.

Cognitive scientists argue that humans’ ability to interpret the physical world derives from a richly
structured apparatus. In particular, the perceptual grouping of the world into objects and their re-
lations constitutes core knowledge in cognition (Spelke & Kinzler, 2007). While it is appealing to
apply such an insight to contemporary machine learning methods, it is not straightforward to do
so. A fundamental challenge is the design of an interface between the raw, often high-dimensional
observation space and a structured, object-factorized representation. Existing works that have inves-
tigated the benefit of using objects have either assumed that an interface to an idealized object space
already exists or that supervision is available to learn a mapping between raw inputs and relevant
object properties (for instance, category, position, and orientation).

Assuming access to training labels for all object properties is prohibitive for at least two reasons.
The most apparent concern is that curating supervision for all object properties of interest is difficult
to scale for even a modest number of properties. More subtly, a representation based on semantic

a) b)

Figure 1: (a) A toy block castle. (b) Our method’s build of the observed castle, using its learned
object representations as a guide during planning.
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a)  No object factorization

b)  Object property supervision c)  O2P2: Object factorization without object property supervision 
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Figure 2: We divide physical understanding tasks into three distinct paradigms. (a) The first ap-
proach makes the fewest assumptions, posing prediction tasks as an instance of image-to-image
translation. (b) The second uses ground-truth labels of object properties to supervise a learning
algorithm that can map to the space of a traditional or learned physics engine. (c) O2P2, like (b),
employs an object factorization and the functional structure of a physics engine, but like (a), does
not assume access to supervision of object properties. Without object-level supervision, we must
jointly learn a perception function to map from images to objects, a physics engine to simulate a
collection of objects, and a rendering engine to map a set of objects back to a single composite
image prediction. In all three approaches, we highlight the key supervision in orange.

attributes can be limiting or even ill-defined. For example, while the size of an object in absolute
terms is unambiguous, its orientation must be defined with respect to a canonical, class-specific ori-
entation. Object categorization poses another problem, as treating object identity as a classification
problem inherently limits a system to a predefined vocabulary.

In this paper, we propose Object-Oriented Prediction and Planning (O2P2), in which we train an ob-
ject representation suitable for physical interactions without supervision of object attributes. Instead
of direct supervision, we demonstrate that segments or proposal regions in video frames, without
correspondence between frames, are sufficient supervision to allow a model to reason effectively
about intuitive physics. We jointly train a perception module, an object-factorized physics engine,
and a neural renderer on a physics prediction task with pixel generation objective. We evaluate our
learned model not only on the quality of its predictions, but also on its ability to use the learned
representations for tasks that demand a sophisticated physical understanding.

2 OBJECT-ORIENTED PREDICTION AND PLANNING (O2P2)
In this section, we describe a method for learning object-based representations suitable for planning
in physical reasoning tasks. As opposed to much prior work on object-factorized scene represen-
tations (Section 4), we do not supervise the content of the object representations directly by way
of labeled attributes (such as position, velocity, or orientation). Instead, we assume access only to
segments or region proposals for individual video frames. Since we do not have labels for the object
representations, we must have a means for converting back and forth between images and object
representations for training. O2P2 consists of three components, which are trained jointly:

• A perception module that maps from an image to an object encoding. The perception module is
applied to each object segment independently.

• A physics module to predict the time evolution of a set of objects. We formulate the engine as a
sum of binary object interactions plus a unary transition function.

• A rendering engine that produces an image prediction from a variable number of objects. We
first predict an image and single-channel heatmap for each object. We then combine all of the
object images according to the weights in their heatmaps at every pixel location to produce a
single composite image.
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A high-level overview of the model is shown in Figure 2c. Below, we give details for the design of
each component and their subsequent use in a model-based planning setting.

2.1 PERCEPTION MODULE

The perception module is a four-layer convolutional encoder that maps an image observation to
object representation vectors O = {ok}k=1...N . We assume access to a segmentation of the input
image S = {sk}k=1...N and apply the encoder individually to each segment. The perception module
is not supervised directly to predict semantically meaningful properties such as position or orienta-
tion; instead, its outputs are used by the physics and rendering modules to make image predictions.
In this way, the perception module must be trained jointly with the other modules.

2.2 PHYSICS MODULE

The physics module predicts the effects of simulating a collection of object representations O for-
ward in time. As in Chang et al. (2016); Watters et al. (2017), we consider the interactions of all
pairs of object vectors. The physics engine contains two learned subcomponents: a unary transition
function ftrans applied to each object representation independently, and a binary interaction function
finteract applied to all pairs of object representations. Letting Ō = {ōk}k=1...N denote the output of
the physics predictor, the kth object is given by ōk = ftrans(ok) +

∑
j 6=k finteract(ok, oj) + ok, where

both ftrans and finteract are instantiated as two-layer MLPs.

Much prior work has focused on learning to model physical interactions as an end goal. In contrast,
we rely on physics predictions only insofar as they affect action planning. To that end, it is more
important to know the resultant effects of an action than to make predictions at a fixed time interval.
We therefore only need to make a single prediction, Ō = fphysics(O), to estimate the steady-state
configuration of objects as a result of simulating physics indefinitely. This simplification avoids
the complications of long-horizon sequential prediction while retaining the information relevant to
planning under physical laws and constraints.

2.3 RENDERING ENGINE

Because our only supervision occurs at the pixel level, to train our model we learn to map all object-
vector predictions back to images. A challenge here lies in designing a function which constructs
a single image from an entire collection of objects. The learned renderer consists of two networks,
both instantiated as convolutional decoders. The first network predicts an image independently for
each input object vector. Composing these images into a single reconstruction amounts to select-
ing which object is visible at every pixel location. In a traditional graphics engine, this would be
accomplished by calculating a depth pass at each location and rendering the nearest object.

To incorporate this structure into our learned renderer, we use the second decoder network to produce
a single-channel heatmap for each object. The composite scene image is a weighted average of all of
the object-specific renderings, where the weights come from the negative of the predicted heatmaps.
In effect, objects with lower heatmap predictions at a given pixel location will be more visible
than objects with higher heatmap values. This encourages lower heatmap values for nearer objects.
Although this structure is reminiscent of a depth pass in a traditional renderer, the comparison should
not be taken literally; the model is only supervised by composite images and no true depth maps are
provided during training.

2.4 LEARNING OBJECT REPRESENTATIONS

We train the perception, physics, and rendering modules jointly on an image reconstruction and
prediction task. Our training data consists of image pairs (I0, I1) depicting a collection of objects
on a platform before and after a new object has been dropped. (I0 shows one object mid-air, as if
being held in place before being released. We refer to Section 3 for details about the generation of
training data.) We assume access to a segmentation S0 for the initial image I0.

Given the observed segmented image S0, we predict object representations using the perception
module O = fpercept(S0) and their time-evolution using the physics module Ō = fphysics(O).
The rendering engine then predicts an image from each of the object representations: Î0 =

frender(O), Î1 = frender(Ō).

We compare each image prediction Ît to its ground-truth counterpart using both L2 distance and
a perceptual loss LVGG. As in Johnson et al. (2016), we use L2 distance in the feature space of a
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Algorithm 1 Planning Procedure
Input perception, physics, and rendering modules fpercept, fphysics, frender

Input goal image Igoal with N segments Sgoal = {sgoal
k }k=1...N

1: Encode the goal image into a set of N object representations Ogoal = {ogoal
k }k=1...N = fpercept(S

goal)

2: while Ogoal is nonempty do
3: Segment the objects that have already been placed to yield Scurr

4: for m = 1 to M do
5: Sample action am of the form (shape, position, orientation, color) from uniform distribution
6: Observe action am as a segment sm by moving object to specified position and orientation
7: Concatenate the observation and segments of existing objects Sm = {sm} ∪ Scurr

8: Encode segments Sm into a set of object representations Om = fpercept(S
m)

9: Predict the effects of simulating physics on the object representations Ōm = fphysics(O
m)

10: Select the representation ō ∈ Ōm of the object placed by sampled action am

11: Find the goal object gm that is closest to ō: gm = arg mini ||o
goal
i − ō||2

12: Compute the corresponding distance dm = ||otarg
gm − ō||2

13: end for
14: Select action am∗ with the minimal distance to its nearest goal object: m∗ = arg minm dm.
15: Execute action am∗ and remove object gm∗ from the goal Ogoal = Ogoal\{ogoal

gm∗ }.
16: end while

pretrained VGG network (Simonyan & Zisserman, 2014) as a perceptual loss function. The per-
ception module is supervised by the reconstruction of I0, the physics engine is supervised by the
reconstruction of I1, and the rendering engine is supervised by the reconstruction of both images.
Specifically, Lpercept(·) = L2(Î0, I0) + LVGG(Î0, I0),Lphysics(·) = L2(Î1, I1) + LVGG(Î1, I1), and
Lrender(·) = Lpercept(·) + Lphysics(·).

2.5 PLANNING WITH LEARNED MODELS

We now describe the use of our perception, physics, and rendering modules in the representative
planning task depicted in Figure 1, in which the goal is to build a block tower to match an observed
image. Here, matching a tower does not refer simply to producing an image from the rendering
engine that looks like the observation. Instead, we consider the scenario where the model must
output a sequence of actions to construct the configuration.

This setting is much more challenging because there is an implicit sequential ordering to building
such a tower. For example, the bottom cubes must be placed before the topmost triangle. O2P2 was
trained solely on a pixel-prediction task, in which it was never shown such valid action orderings (or
any actions at all). However, these orderings are essentially constraints on the physical stability of
intermediate towers, and should be derivable from a model with sufficient understanding of physical
interactions.

Although we train a rendering function as part of our model, we guide the planning procedure for
constructing towers solely through errors in the learned object representation space. The planning
procedure, described in detail in Algorithm 1, can be described at a high level in four components:

1. The perception module encodes the segmented goal image into a set of object representations
Ogoal.

2. We sample actions of the form (shape, position, orientation, color), where shape is categorical
and describes the type of block, and the remainder of the action space is continuous and describes
the block’s appearance and where it should be dropped.

3. We evaluate the samples by likewise encoding them as object vectors and comparing them with
Ogoal. We view action sample am as an image segment sm (analogous to observing a block
held in place before dropping it) and use the perception module to produce object vectors Om.
Because the actions selected should produce a stable tower, we run these object representations
through the physics engine to yield Ōm before comparing with Ogoal. The cost is the L2 distance
between the object ō ∈ Ōm corresponding to the most recent action and the goal object in Ogoal

that minimizes this distance.
4. Using the action sampler and evaluation metric, we select the sampled action that minimizes
L2 distance. We then execute that action in MuJoCo (Todorov et al., 2012). We continue this
procedure, iteratively re-planning and executing actions, until there are as many actions in the
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t = 1t = 0 t = 1t = 0

ReconstructionsSimulated
t = 1t = 0 t = 1t = 0

Figure 3: Given an observed segmented image I0 at t = 0, our model predicts a set of object
representations O, simulates the objects with a learned physics engine to produce Ō = fphysics(O),
and renders the resulting predictions Î = frender(Ō), the scene’s appearance at a later time. We use
the convention (in all figures) that observations are outlined in green, other images rendered with
the ground-truth renderer are outlined in black, and images rendered with our learned renderer are
outlined in blue.

executed sequence as there are objects in the goal image. In the simplest case, the distribution
from which actions are sampled may be uniform, as in Algorithm 1. Alternatively, the cross-
entropy method (CEM) (Rubinstein & Kroese, 2004) may be used, repeating the sampling loop
multiple times and fitting a Gaussian distribution to the lowest-cost samples. In practice, we used
CEM starting from a uniform distribution with five iterations, 1000 samples per iteration, and
used the top 10% of samples to fit the subsequent iteration’s sampling distribution.

3 EXPERIMENTAL EVALUATION

In our experimental evaluation, we aim to answer the following questions, (1) After training solely
on physics prediction tasks, can O2P2 reason about physical interactions in an actionable and useful
way? (2) Does the implicit object factorization imposed by O2P2’s structure provide a benefit over
an object-agnostic black-box video prediction approach? (3) Is an object factorization still useful
even without supervision for object representations?
3.1 IMAGE RECONSTRUCTION AND PREDICTION

We trained O2P2 to reconstruct observed objects and predict their configuration after simulating
physics, as described in Section 2.4. To generate training data, we simulated dropping a block on
top of a platform containing up to four other blocks. We varied the position, color, and orientation
of three block varieties (cubes, rectangular cuboids, and triangles). In total, we collected 60,000
training images using the MuJoCo simulator. Since our physics engine did not make predictions at
every timestep (Section 2.2), we only recorded the initial and final frame of a simulation. For this
synthetic data, we used ground truth segmentations corresponding to visible portions of objects.

Representative predictions of our model for image reconstruction (without physics) and prediction
(with physics) on held-out random configurations are shown in Figure 3. Even when the model’s
predictions differed from the ground truth image, such as in the last row of the figure, the physics
engine produced a plausible steady-state configuration of the observed scene.
3.2 BUILDING TOWERS

After training O2P2 on the random configurations of blocks, we fixed its parameters and employed
the planning procedure as described in Section 2.5 to build tower configurations observed in images.
We also evaluated the following models as comparisons:

• No physics is an ablation of our model that does not run the learned physics engine, but instead
simply sets Ō = O

• Stochastic adversarial video prediction (SAVP), a block-box video prediction model which does
not employ an object factorization Lee et al. (2018). The cost function of samples is evaluated
directly on pixels. The sampling-based planning routine is otherwise the same as in ours.
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O2P2
(ours)

Goal SAVPNo physics Oracle
(pixels)

Oracle
(objects)

Task 1

Task 2

Task 3

Task 4

Figure 4: Qualitative results on building towers using planning. Given an image of the goal tower,
we can use the learned object representations and predictive model in O2P2 for guiding a planner to
place blocks in the world and recreate the configuration. We compare with an ablation, an object-
agnostic video prediction model, and two ‘oracles’ with access to the ground-truth simulator.
Table 1: Accuracy (%) of block tower builds by our approach and the four comparison models. Our
model outperforms Oracle (pixels) despite not having the ground-truth simulator by virtue of a more
appropriate object-factorized objective to guide the planning procedure.

No physics SAVP Ours Oracle (pixels) Oracle (objects)
0 24 76 71 92

• Oracle (pixels) uses the MuJoCo simulator to evaluate samples instead of our learned physics
and graphics engines. The cost of a block configuration is evaluated directly in pixel space using
L2 distance.

• Oracle (objects) also uses MuJoCo, but has access to segmentation masks on input images while
evaluating the cost of proposals. Constraining proposed actions to account for only a single object
in the observation resolves some of the inherent difficulties of using pixel-wise loss functions.

Qualitative results of all models are shown in Figure 4 and a quantitative evaluation is shown in
Table 1. We evaluated tower stacking success by greedily matching the built configuration to the
ground-truth state of the goal tower, and comparing the maximum object error (defined on its po-
sition, identity, and color) to a predetermined threshold. Although the threshold is arbitrary in the
sense that it can be chosen low enough such that all builds are incorrect, the relative ordering of the
models is robust to changes in this value. All objects must be of the correct shape for a built tower
to be considered correct, meaning that our third row prediction in Figure 4 was incorrect because a
green cube was mistaken for a green rectangular cuboid.

While SAVP made accurate predictions on the training data, it did not generalize well to these more
complicated configurations with more objects per frame. As such, its stacking success was low.
Physics simulation was crucial to our model, as our No-physics ablation failed to stack any towers
correctly. We explored the role of physics simulation in the stacking task in Section 3.3. The ‘oracle’
model with access to the ground-truth physics simulator was hampered when making comparisons
in pixel space. A common failure mode of this model was to drop a single large block on the first
step to cover the visual area of multiple smaller blocks in the goal image. This scenario was depicted
by the blue rectangular cuboid in the first row of Figure 4 in the Oracle (pixels) column.

3.3 THE IMPORTANCE OF UNDERSTANDING PHYSICS

Figure 5 depicts the entire planning and execution procedure for O2P2 on a pyramid of six blocks.
At each step, we visualize the process by which our model selects an action by showing a heatmap of

6



Published as a conference paper at ICLR 2019
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Result

a)
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Selected action (before physics)

Predicted locations (after physics)

b)
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Figure 5: (a) Visualization of scored locations for dropping an object at each timestep. Because
O2P2 simulates physics before selecting an action, it is able to plan a sequence of stable actions. (b)
The selected block and drop position from the scored samples, outlined in white. (c) The prediction
from our physics model of the result of running physics on the selected block.

Goal O2P2 No physics
Scored locations First action Scored locationsExecution First action Execution

Figure 6: Heatmaps showing sampled action scores for the initial action given a goal block tower.
O2P2’s scores reflect that the objects resting directly on the platform must be dropped first, and
that they may be dropped from any height because they will fall to the ground. The No-physics
ablation, on the other hand, does not implicitly represent that the blocks need to be dropped in a
stable sequence of actions because it does not predict the blocks moving after being released.

scores (negative MSE) for each action sample according to the sample’s (x, y) position (Figure 5a).
Although the model is never trained to produce valid action decisions, the planning procedure se-
lects a physically stable sequence of actions. For example, at the first timestep, the model scores
three x-locations highly, corresponding to the three blocks at the bottom of the pyramid. It correctly
determines that the height at which it releases a block at any of these locations does not particularly
matter, since the block will drop to the correct height after running the physics engine. Figure 5b
shows the selected action at each step, and Figure 5c shows the model’s predictions about the con-
figuration after releasing the sampled block.

Similar heatmaps of scored samples are shown for the No-physics ablation of our model in Figure 6.
Because this ablation does not simulate the effect of dropping a block, its highly-scored action
samples correspond almost exactly to the actual locations of the objects in the goal image. Further,
without physics simulation it does not implicitly select for stable action sequences; there is nothing
to prevent the model from selecting the topmost block of the tower as the first action.

Planning for alternate goals. By implicitly learning the underlying physics of a domain, our
model can be used for various tasks besides matching towers. In Figure 7a, we show our model’s
representations being used to plan a sequence of actions to maximize the height of a tower. There is
no observation for this task, and the action scores are calculated based on the highest non-zero pixels
after rendering samples with the learned renderer. In Figure 7b, we consider a similar sampling
procedure as in the tower-matching experiments, except here only a single unstable block is shown.
Matching a free-floating block requires planning with O2P2 for multiple steps at once.
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Maximize height Make block stable
a) b)

Figure 7: O2P2 being used to plan for the alternate goals of (a) maximizing the height of a tower
and (b) making an observed block stable by use of any other blocks.

Figure 8: Ten goal images alongside the result of the Sawyer’s executed action sequence using
O2P2 for planning. The seven action sequences counted as correct are outlined in solid black; the
three counted as incorrect are outlined in dashed lines. We refer the reader to Appendix B for more
evaluation examples and people.eecs.berkeley.edu/∼janner/o2p2 for videos of the evaluation.

3.4 TRANSFER TO ROBOTIC ARM

We evaluated O2P2 on a Sawyer robotic arm using real image inputs. We deployed the same per-
ception, physics, and rendering modules used on synthetic data with minor changes to the planning
procedure to make real-world evaluation tractable. Instead of evaluating a sampled action by moving
an appropriate block to the specified position and inferring object representations with the perception
module, we trained a separate two-layer MLP to map directly from actions to object representations.
We refer to this module as the embedder: om = fembedder(am).

Mapping actions to object representations removed the need to manually move every sampled block
in front of the camera, which would have been prohibitively slow on a real robot. The embedder was
supervised by the predicted object representations of the perception module on real image inputs;
we collected a small dataset of the Sawyer gripper holding each object at one hundred positions and
recorded the ground truth position of the gripper along with the output of the perception module for
the current observation.

The embedder took the place of lines 6-8 of Algorithm 1. We also augmented the objective used to
select actions in line 11. In addition to L2 distance between goal and sampled object representations,
we used a pixelwise L2 distance between the observed and rendered object segments and between
the rendered object segments before and after use of the physics module. The latter loss is useful in a
real setting because the physical interactions are less predictable than their simulated counterparts, so
by penalizing any predicted movement we preferentially placed blocks directly in a stable position.

By using end-effector position control on the Sawyer gripper, we could retain the same action space
as in synthetic experiments. Because the position component of the sampled actions referred to the
block placement location, we automated the picking motion to select the sampled block based on
the shape and color components of an action. Real-world evaluation used colored wooden cubes
and rectangular cuboids.
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Real image object segments were estimated by applying a simple color filter and finding connected
components of sufficient size. To account for shading and specularity differences, we replaced all
pixels within an object segment by the average color within the segment. To account for noisy
segment masks, we replaced each mask with its nearest neighbor (in terms of pixel MSE) in our
MuJoCo-rendered training set.

We tested O2P2 on twenty-five goal configurations total, of which our model correctly built seven-
teen. Ten goal images, along with the result of our model’s executed action sequence, are shown in
Figure 8. The remainder of the configurations are included in Appendix B.

4 RELATED WORK

Our work is situated at the intersection of two distinct paradigms. In the first, a rigid notion of object
representation is enforced via supervision of object properties (such as size, position, and identity).
In the second, scene representations are not factorized at all, so no extra supervision is required.
These two approaches have been explored in a variety of domains.
Image and video understanding. The insight that static observations are physically stable config-
urations of objects has been leveraged to improve 3D scene understanding algorithms. For example,
Zheng et al. (2014); Gupta et al. (2010); Shao et al. (2014); Jia et al. (2015) build physically-plausible
scene representations using such stability constraints. We consider a scenario in which the physical
representations are learned from data instead of taking on a predetermined form. Wu et al. (2017b;a)
encode scenes in a markup-style representation suitable for consumption by off-the-shelf rendering
engines and physics simulators. In contrast, we do not assume access to supervision of object prop-
erties (only object segments) for training a perception module to map into a markup language.

There has also been much attention on inferring object-factorized, or otherwise disentangled, repre-
sentations of images (Eslami et al., 2016; Greff et al., 2017; van Steenkiste et al., 2018). In contrast
to works which aim to discover objects in a completely unsupervised manner, we focus on using
object representations learned with minimal supervision, in the form of segmentation masks, for
downstream tasks. Object-centric scene decompositions have also been considered as a potential
state representation in reinforcement learning (Diuk et al., 2008; Scholz et al., 2014; Devin et al.,
2017; Goel et al., 2018; Keramati et al., 2018). We are specifically concerned with the problem of
predicting and reasoning about physical phenomena, and show that a model capable of this can also
be employed for decision making.
Learning and inferring physics. Fragkiadaki et al. (2016); Watters et al. (2017); Chang et al.
(2016) have shown approaches to learning a physical interaction engine from data. Hamrick et al.
(2011) use a traditional physics engine, performing inference over object parameters, and show that
such a model can account for humans’ physical understanding judgments. We consider a similar
physics formulation, whereby update rules are composed of sums of pairwise object-interaction
functions, and incorporate it into a training routine that does not have access to ground truth super-
vision in the form of object parameters (such as position or velocity).

An alternative to using a traditional physics engine (or a learned object-factorized function trained
to approximate one) is to treat physics prediction as an image-to-image translation or classification
problem. In contrast to these prior methods, we consider not only the accuracy of the predictions of
our model, but also its utility for downstream tasks that are intentionally constructed to evaluate its
ability to acquire an actionable representation of intuitive physics. Comparing with representative
video prediction (Lee et al., 2018; Babaeizadeh et al., 2018) and physical prediction (Ehrhardt et al.,
2017; Mottaghi et al., 2016; Li et al., 2017; Lerer et al., 2016) methods, our approach achieves
substantially better results at tasks that require building structures out of blocks.

5 CONCLUSION

We introduced a method of learning object-centric representations suitable for physical interactions.
These representations did not assume the usual supervision of object properties in the form of po-
sition, orientation, velocity, or shape labels. Instead, we relied only on segment proposals and a
factorized structure in a learned physics engine to guide the training of such representations. We
demonstrated that this approach is appropriate for a standard physics prediction task. More impor-
tantly, we showed that this method gives rise to object representations that can be used for difficult
planning problems, in which object configurations differ from those seen during training, without
further adaptation. We evaluated our model on a block tower matching task and found that it outper-
formed object-agnostic approaches that made comparisons in pixel-space directly.
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A IMPLEMENTATIONS DETAILS

Objects were represented as 256-dimensional vectors. The perception module had four convolu-
tional layers of {32, 64, 128, 256} channels, a kernel size of 4, and a stride of 2 followed by a
single fully-connected layer with output size matching the object representation dimension. Both
MLPs in the physics engine had two hidden layers each of size 512. The rendering networks had
convolutional layers with {128, 64, 32, 3} channels (or 1 output channel in the case of the heatmap
predictor), kernel sizes of {5, 5, 6, 6}, and strides of 2. We used the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 1e-3.
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B SAWYER RESULTS

Figure 9: Extension of Figure 8, showing our planning results on a Sawyer arm with real image
inputs. The seven action sequences counted as correct are outlined in solid black; the three counted
as incorrect are outlined in dashed lines.

Figure 10: All actions taken by our planning procedure for one of the goal configurations from
Figure 8.
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