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Abstract
With the growing popularity of wearable devices,
the ability to utilize physiological data collected
from these devices to predict the wearer’s men-
tal state such as mood and stress suggests great
clinical applications, yet such a task is extremely
challenging. In this paper, we present a general
platform for personalized predictive modeling of
behavioural states like students’ level of stress.
Through the use of Auto-encoders and Multitask
learning we extend the prediction of stress to both
sequences of passive sensor data and high-level
covariates. Our model outperforms the state-of-
the-art in the prediction of stress level from mo-
bile sensor data, obtaining a 45.6% improvement
in F1 score on the StudentLife dataset.

1. Introduction
Today’s competitive and demanding environment often over-
whelms students with assignments, tests and part-time work.
A prolonged exposure to stressful academic and social en-
vironment causes cardiovascular diseases (Rozanski et al.,
1999; Kario et al., 2003), alterations of the brain causing
differences in memory and cognition (SJ et al., 2009), sup-
pression of the immune system (Khansari et al., 1990), and
poor academic performance (Sano et al., 2015; Trokel et al.,
2000). With the efforts of researchers at various institutions
several technologies for detecting stress has been accom-
plished. Few use heart rate and heart rate variability (Vri-
jkotte et al., 2000), cortisol levels (Dickerson & Kemenyr,
2004) and skin conductance (Setz et al.). Other techniques
do not depend on sensors but simply try to discover the
user’s stress through self-reporting tools e.g., (Rahman et al.,
2014) and surveys like the Perceived Stress Scale (Cohen
et al., 1983).

With the induction of high quality, robust sensors in wear-
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ables like FitBit, Apple Watch and smartphones, efficient
collection of physiological and behavioural data with rea-
sonable accuracy has become affordable. The StudentLife
study in (Wang et al., 2014) collected Sleep Patterns, Activ-
ity, Conversation, Location, information regarding Mental
Health like stress levels and much more through the Stu-
dentLife application on android smartphones.

Contemporary research such as (Sano & Picard, 2013) and
(Sano et al., 2015) has leveraged similar type of data from
sensors and Machine Learning to predict stress levels of
students. Furthermore, using the data collected from the
StudentLife application, (Wang et al., 2018) have been suc-
cessful in classifying students’ as depressed or not in a
binary classification problem. However, the task of predict-
ing human psychological state (e.g., stress) using passive
sensing data on a multi-class classification problem remains
a challenge. Lack of gold standard labels, noisy raw sensor
data, heterogeneity in granularity and inter subject variabil-
ity in behavioural and environmental patterns have stymied
predictive modeling of this kind.

(Mikelsons et al., 2018) have tried to predict stress of stu-
dents in the StudentLife dataset by novel feature engineer-
ing of location based features and Neural Networks. To
the best of our knowledge their model is the state-of-the-
art on predictive modeling of stress on this dataset and we
refer this model as Location Based MultiLayer Perceptron
(Location-MLP). However, it doesn’t address the challenges
of inter-subject variability or heterogeneity in granularity.
The model is also limited to location and few covariates as
features. In this paper we introduce the Cross-personal Ac-
tivity LSTM Multitask Auto-encoder Network (CALM-
Net) which considers data as time-series and is able to iden-
tify temporal patterns contained in student data. By includ-
ing these different levels of information and personalizing
the predictions to students, CALM-Net can achieve an aver-
age F1-score of 0.594 which is an improvement of 45.6%
when compared to the Location Based MLP. CALM-Net
offers the flexibility to personalize models and the ability to
incorporate time-series information, which in general, can
be used by researchers to improve performance for categori-
cal prediction of psychological states of humans.
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2. Background Information
The StudentLife study was conducted in Dartmouth college
where passive sensing and survey data was collected over
10 weeks among 48 students. The data collection, which
mainly comprises of sleep patterns, activity, meal counts
and conversations was facilitated by the StudentLife appli-
cation on a smartphone. On a daily basis the StudentLife
application collected stress data on a scale of 1-5 in the form
of Ecological Momentary Assessments (EMA) which are
responses to questionnaires in real time. Although EMAs
are self-reported and consequently noisy, they are usually a
good indicator of the actual stress state of the person making
it feasible but not ideal to use them as labels for supervised
learning tasks.

Out of the several challenges in the predictive modeling of
stress, one major challenge that makes this task formidable
is that the features have disparate granularity; they are also
missing at random, which could be caused by technical
issues such as a sensor failure or the phone being switched
off. The dataset is heterogeneous in nature since the data
collected, is from a variety of sources like passive sensors,
surveys and self reported EMAs. Out of the many discrete
sequence and covariate features in StudentLife dataset, we
select the ones that suggest evidence of these being good
predictors of stress in (Stults-Kolehmainen & Sinha, 2014;
Sano & Picard, 2013; Trokel et al., 2000; Sano et al., 2015)
etc.

Among the discrete sequence data, we use Activity and Au-
dio which are categorical integer values, recorded by the
StudentLife app as follows 0- No Activity/Silence, 1- Walk-
ing/Voice, 2- Running/Noise, 3- Unknown. Conversation,
Phone Charge, Phone Lock are all inferred as binary values.
These features are recorded at a variable rate, ranging from
once every 10 seconds to once every minute.

Along with the above passive sensing data our model uses in-
ferred and recorded covariates: Day of Week, Sleep Rating,
Sleep duration (all recorded or inferred as integer values)
and a binary covariate “Exam Period”. We use time to
next deadline as a feature which is inferred by the recorded
deadlines in StudentLife. We believe that as a deadline ap-
proaches the stress levels of students must increase. The fea-
tures, covariates, their respective value bounds and modes
are listed in appendix Table 3.

3. Methods
3.1. Problem Setup

Passive sensors in smartphones allow collection of rich dis-
crete time-series data crucial for stress prediction. The raw
and elongated time-series features such as Activity and Au-
dio can contribute to a few thousand data points everyday

and cannot be used for training ‘as is’ due to infrequent label
samples. To deal with this we first bin the whole time-series
into 1-minute bins and take the mode of the categorical
inferences. This offers a compact representation of what
the subject was doing in that minute, for example ‘was the
wearer running or having a conversation?’. This results in
1,440 sequences per day, which is still a very long sequence
to be modeled using Recurrent Neural Networks. We further
address this by computing the histogram of the features in 1-
hour bins yielding 24 sequences per stress label. Intuitively,
we are modeling how much conversation or activity a stu-
dent has undergone in an hour which led to the stress label
in a consistent manner, removing any bias due to irregular
sampling of sensors by containing that information in a base
bin of 1-minute. This type of feature engineering can easily
be extended to different datasets with similar/same type of
passive sensing time-series data as the final histogram is
independent of the initial binning granularity of 1 min and
can accommodate even higher-resolution data.

3.2. Models

3.2.1. LOCATION FEATURE BASED MLP

In the work done by (Mikelsons et al., 2018), a Multilayer
Perceptron (MLP) with 4 fully connected layers was em-
ployed to perform stress inference. Each fully connected
layer uses the tanh activation followed by a Batch Normal-
ization and Dropout layer. The input to the model is feature
engineered GPS data aggregated on a daily basis. There
are a total of 8 location features and 4 covariates. The loca-
tion features are total distance covered, max displacement,
distance entropy on 10 minutes bins, distance standard de-
viation, number of unique tiles visited, difference in tiles
visited from the previous day, approximate area of the GPS
convex hull, and number of clusters on the GPS data. Tiles
are non-overlapping, consecutively partitioned squares of
50 meters on the sides, where the combined squares repre-
sent the area the student may have traversed to. Each tile is
uniquely labeled and counts on tiles is one of the features
used. Throughout a day, the sequence of tiles were visited,
and the difference in sequence of tiles covered compared
to one on the previous were computed using Levenshtein
edit-distance. Finally, the covariates used are indicators of
whether the day is the start of term, mid-term, end of term
or a weekend.

We followed the paper in building the baseline and also
achieve an F-1 score of 0.42 with their experiment setup.
To the best of our knowledge this is the-state-of-the-art on
the StudentLife dataset. The features engineered with this
baseline was done to the best of our abilities, although we
note there may have been some discrepancy with the original
work in obtaining certain features.
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Figure 1. Cross-personal Activity LSTM Multitask Auto-encoder Network (CALM-Net).

3.2.2. LSTM

The state-of-the-art model which utilizes featured engi-
neered aggregates doesn’t model the time-series. This leads
to an inability to use the information in granular passive
sensing data which is ubiquitous in these kinds of datasets.
To model the temporal patterns of features like Activity,
Audio and Conversation we put the sequences of hourly
histograms through an LSTM (Long Short-term Memory
Network) (Hochreiter & Schmidhuber, 1997). Then we
concatenate the last hidden state with the covariates. This
concatenated output is passed through multiple layers of
fully connected layers with the ReLU activation to finally
obtain the class probabilities by using Weighted Categorical
Cross-Entropy. This as one of our baselines and compare
our final method to this. It is also a part of our next model.

3.2.3. LSTM MULTITASK NETWORK (LM-NET)

Due to the heterogeneous nature of the dataset it is hard to
incorporate information at different levels of granularity for
a predictive task. Furthermore, trying to capture personal
dynamics of all subjects using one model is demanding,
as these dynamics are very distinct and have high inter-
subject variability. To learn personalized models for each
student, we follow (Jaques et al., 2017) and use a Multitask
approach which comprises of a LSTM to model sequence of
histograms followed by shared fully connected layers and a
MLP for each student. A similar approach was also taken in
(Kandemir et al., 2014) for the prediction of affect (mood)
by learning user specific kernels. As indicated by our ex-
periments detailed in section 4, this approach can learn the

differences between students and subsequently yield signif-
icant improvement in performance. It also gives evidence
that learning a single model for all the students is unsuit-
able. Multitask learning also acts as a heavy regularizer,
preventing the model to overfit for one student or the most
common label. The shared layers learn common features,
while the personal layers learn features that are relevant to
the respective subject.

3.2.4. CROSS-PERSONAL ACTIVITY LSTM MULTITASK
AUTO-ENCODER NETWORK (CALM-NET)

Amongst the popular techniques for modeling time-series
data, variations of RNNs like GRU and LSTM are the most
popular, however people have used Auto-encoders for com-
pression and reduction of the temporal dimensions. In
(Lngkvist et al., 2014), different techniques for time-series
have been summarised. Out of which we try RNN-LSTM
and Auto-encoders. In CALM-Net we replace the LSTM
layer with an LSTM Auto-encoder. Due to the low amount
of training data available, we find it useful to reconstruct
the sequence of histograms through an Encoder-Decoder
pair. This also ensures that the model does not overfit to
the discrete training sequences. For calculating reconstruc-
tion error between the decoded sequences and the original
sequences we used Mean Absolute Error(MAE). The final
error/loss (expression in equation 1) is a weighted sum of
the Reconstruction Error and Classification Error where α
and β are hyperparameters.

α ∗RE + β ∗ CE (1)
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Table 1. F1 scores of stress level prediction on StudentLife dataset.

Model F1-score

Location-MLP 0.408
LSTM 0.426
Most Common Label 0.551
LM-Net 0.586
CALM-Net No covariates 0.571
CALM-Net 0.594

4. Result
Due to a heavy imbalance of class labels on a scale of 1-5,
we follow (Mikelsons et al., 2018), converting the five stress
label scale to a scale of three stress labels by defining our
classes as - below median stress, median stress and above
median stress. We determined that some students present
have high level of inter-subject variability which will make
classification of stress extremely difficult for the current
methods and selected the students who have greater than 40
labels and trained CALM-Net with a learning rate of 10−6

and a weight decay of 10−4. The details of the data split
and model configuration is given in appendix.

To evaluate our methods and make a fair comparison with
baselines and previous state-of-the-art. We report the av-
erage F1-score achieved by each method on 5-fold cross
validation. We compare against the state-of-the-art Location-
MLP method with the data of a full day on which the la-
bel was reported, which potentially uses some data that is
recorded after the stress label. Furthermore, we are com-
paring against LSTM, LSTM Multitask Network (LM-Net)
which are explained in section 3.2. The achieved results are
summarised in Table 1. As you can see, considering the data
as time-series along with additional features available in the
dataset improves the performance of the model as indicated
by LSTM model improving upon the performance of the
previous state-of-the-art model (Location-MLP). Since we
have personalized models for every student, we also con-
sidered another baseline which is just predicting the most
common label for the respective student as their stress state
and outperforming it. From the results it is evident that
personalizing the model to students can outperform state-
of-the-art model (Location-MLP) and LSTM, showing the
value of personalizing the methods to students. You can
further see that CALM-Net with a F1-score of 0.594 out-
performs the other models due to its ability to capture both
temporal patterns and learning personalized information
about the students. The detailed model configuration is
given in appendix section A.2.

Since CALM-Net can learn personalized patterns for each
student it yields better performance as we increase the num-
ber of students. To test this hypothesis we designed an exper-
iment where we try our model without Multitask heads and
with Multitask heads on 5 ,13 and 23 students. The results

Table 2. Percent gain in F1 Score with Multitask Learning com-
pared to the LSTM model on varying number of students.

Students F1-score F1-score % Inc
w/o Multitask Multitask

5 0.47 0.585 24.2 %
13 0.436 0.583 33.7 %
23 0.426 0.594 39.4 %

of this experiment are summarised in Table 2. These re-
sults indicate that when we increase the number of students
the performance of the model without Multitask heads will
drops significantly, while the model with Multitask heads
will achieve almost the same or better results, validating our
hypothesis.

5. Discussion
CALM-Net yields superior performance as it is able to
model the temporal events contributing to stress of a sub-
ject while dealing with long sequences of sensor data. The
Auto-encoder prevents the model to overfit on the training
sequences and provides an additional boost to the F1-score.
The ability of CALM-Net to incorporate granular tempo-
ral information and high-level covariates, along with an
architecture which is capable of deciphering personalized
patterns for each student without overfitting, contributes
to its high performance. Multitask learning improves the
performance of all evaluated models, showing that stress in-
dicators can generally be better modeled using personalized
layers.

6. Conclusion
We presented CALM-Net model for predicting stress levels
in StudentLife dataset. Our models are specially designed to
solve three challenges which are ubiquitous in passive sens-
ing datasets. First, it presents a general platform to address
the issue of data heterogeneity with use of LSTM Auto-
encoders. Second, it is able to deal with long and irregular
sequences by feature engineering and histogram of categori-
cal inference values addressing the Multi-Resolution nature
of the data which is commonplace in the field. Third, by
creating personalized models for every student while lever-
aging information from all the students it is able to achieve a
F1-score of 0.594. This allows us to cope with inter-subject
variability providing significant improvement upon previous
state-of-the-art models. We note that while the model per-
forms well on given set of students, it needs some data for
every student to be able to train their respective MLPs, so
the model is unable to predict stress level of new students,
we leave addressing this limitation for future work.
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A. Appendix
A.1. Used Features

In all, our data comprises of 23 students, totaling to 1183 data points achieving roughly equal amount of training data in
(Mikelsons et al., 2018). These 1183 data points have the following label distribution - 263 below median stress, 511 median
stress and 409 above median. Since student 59 has 269 labels which is on an average, four times the number of labels of
other students, is removed from the training set as he/she may dominate the shared layer and skew our predictions.

The list of student IDs used for training - [4, 7, 8, 10, 14, 16, 17, 19, 22, 23, 24, 32, 33, 35, 36, 43, 44, 49, 51, 52, 53, 57, 58]

We use both time-serie features and covariates as input to our LSTM, LM-Net and CALM-Net models. The time-serie
features we used are time to next label, time to next deadline, activity mode (a discrete scale of 0 to 3 indicating being
sedentary to high level of activity such as running), conversation duration mode, phone charge duration mode, and phone
lock duration mode. Finally the covariates used are the day of the week, sleep rating, hours slept and an indicator for an
exam period.

Feature Type Feature Name Feature Values Mode in dataset

Discrete Sequence Activity [0, 3] 0
Audio [0, 3] 0

Conversation [0, 1] 0
Phone Charge [0, 1] 0
Phone Lock [0, 1] 1

Day of the Week [0, 6] N/A
Exam Period [0, 1] 0

Covariates Time to next deadline [0,∞+) N/A
Sleep Rating [0,∞+) N/A

Sleep Duration [0,∞+) N/A

Table 3. Here we list the features we used in our experiment

A.2. Model Configurations

Hyper-parameter value

α 0.001
β 1
Auto-encoder embedding size 128
shared layers hidden size 256
Personal layer hidden size 64

Table 4. The configuration details of CALM-NET


