
On Compressing U-net Using Knowledge Distillation

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study the use of knowledge distillation to compress the U-net architecture. We1

show that, while standard distillation is not sufficient to reliably train a compressed2

U-net, introducing other regularization methods, such as batch normalization and3

class re-weighting, in knowledge distillation significantly improves the training4

process. This allows us to compress a U-net by over 1000x, i.e., to 0.1% of its5

original number of parameters, at a negligible decrease in performance.6

1 Introduction7

Deep learning has recently achieved ground-breaking results on several computer vision tasks, yield-8

ing highly effective architectures for many common vision tasks, such as image recognition [13]9

(VGG16, VGG19), human pose estimation [10] (Stacked Hourglass Networks) and image segmen-10

tation [12] (U-net). However, the increasing number of parameters of these models restricts their11

deployability in resource-constrained environments, such as on mobile devices. As a consequence,12

several lines of research have emerged to train more compact networks that achieve a performance13

similar to the popular, large ones.14

In particular, most neural network compression approaches fall in three broad categories: weight15

quantization [11, 16], architecture pruning [7, 14, 1] and knowledge distillation [2, 5, 4]. While the16

first two aim to reduce the size of a given large model by either limiting the number of bits used to17

represent each parameter, or by removing some of its units or layers, the third, which we investigate18

here, seeks to train a compact model (student) using knowledge acquired by the larger one (teacher).19

The first distillation method was introduced by Caruna et al. [2] who focused on the multi-layer20

perceptron case with an RMSE-based error metric. The concept was then popularized by Hinton21

et al. [5] with an approach exploiting the teacher’s predicted probabilities to train the student and22

by Romero et al. [4] who proposed to further exploit the teacher’s intermediate representations to23

guide the student. Since then, several application-driven knowledge distillation strategies have been24

developed, e.g., for face model identification [9], object detection [3] and face verification [15].25

In this paper, we study the use of the knowledge distillation technique of [5] to compress a U-26

net architecture for biomedical image segmentation. We first show that, without performing any27

distillation, the number of parameters of the U-net can be reduced drastically at virtually no loss28

of accuracy. We then observe that a direct application of knowledge distillation is insufficient to29

further compress the U-net, and propose to complement distillation with batch normalization and30

class re-weighting. As evidenced by our experiments, this allows us to reduce the U-net size to 0.1%31

of its original number of parameters at only a negligible loss of segmentation accuracy.32

2 Methodology33

U-net Architecture. The U-net architecture, initially introduced in [12] and depicted by Fig. 1, is a34

fully convolutional network with skip connections, comprising a contracting path and an expansive35

path. It relies on a channel depth of 64 at the first level and doubles it in 4 consecutive stages, reaching36

1024 at the bottom level. This is then reduced back to 64 by the expansive part.37
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Figure 1: U-net architecture. Each blue box corresponds to a multi-channel feature map, with the
number of channels indicated on top of the box. White boxes represent copied feature maps. Arrows
of different colors denote different operations. The golden arrows correspond to our modified version
of the original U-net of [12], where we added batch normalization.

Starting Channel Depth 64 16 4 2

Test Loss 0.1021 0.0822 0.0974 0.8227
Training Loss 0.0256 0.0220 0.0286 0.3423

Number of Iterations 80,000 150,000 300,000 290,000

Table 1: Performance of original U-net architectures (without batch normalization) when varying the
channel depth in the first layer. The number of iterations corresponds to the minimum test loss.

Knowledge Distillation. Let us consider a binary image segmentation problem, where the input is38

a W ×H image x and the output a binary W ×H label map y. Given training pairs (xt,yt), the39

training procedure of a U-net makes use of the cross-entropy loss40

H(yt, ŷt) = −
∑
(i,j)

yt
ij log(ŷ

t
ij) + (1− yt

ij) log(1− ŷt
ij) ,

where a yt
ij indicates the label of sample t at location (i, j), and ŷt is the probability map predicted41

by the network. In the standard setting, this probability map is obtained via the softmax function.42

As discussed in [5], however, softer probabilities can be obtained by increasing the temperature T43

of this softmax. Distillation is then achieved by training a teacher network at a temperature T > 144

to generate probabilities ŷt∗ for each sample xt in a validation set. These probabilities are then45

employed to train the student network using the cross-entropyH(yt∗, ŷt). This cross-entropy can46

be used either on its own, for vanilla distillation, or in conjunction with the original cross-entropy47

H(yt, ŷt), for mixed distillation. After being trained at T > 1, the softmax temperature of the48

student network is reduced back to 1.49

Improving Distillation. As evidenced by our results in Section 3, using standard distillation, whether50

vanilla or mixed, did not prove sufficient to distill a standard U-net into a very small one. To overcome51

this, we therefore propose two modifications of the original strategy. First, as indicated in Fig. 1,52

we introduce batch normalization [6] operations in every convolution layer of the contracting path.53

Second, we re-weight the classes according to their proportions in the training set. Specifically, the54

contribution of each foreground pixel in the loss is multiplied by a weight wf equal to the ratio of55

the number of background pixels over the number of foreground ones. In practice, because there56
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Ttransfer Test Loss Training Loss (Hard) Training Loss (Soft)

2 0.490 0.268 0.167
5 0.505 0.267 0.239
10 0.506 0.268 0.305
15 0.507 0.270 0.326
20 0.507 0.271 0.334

Table 2: Performance of the 2-Unet using mixed distillation with class re-weighting (without batch
normalization). The training soft losses are reported after multiplying by T 2

transfer to adjust for scale.

Network # trainable parameters IoU Score Cross Entropy Loss

Original 64-Unet 31,042,434 0.804 0.102
Original 4-Unet 122,394 0.807 0.097

Our 2-Unet (soft loss only) 30,902 0.752 0.134
Our 2-Unet (mixed distillation) 30,902 0.759 0.135

Table 3: Comparison of our method with a 64-Unet. Note that we achieve a competitive Intersection
over Union Score to the original 64-Unet with only 0.1% of its capacity.

are many more background pixels, this weight is larger than 1, i.e., wf = 17.8. The contribution57

of the background pixels is kept unchanged, i.e., wb = 1.0. These two modifications, i.e., batch58

normalization and class re-weighting, are performed on the student network only, to further help59

overcoming the general difficulty in training shallow networks. The former reduces the internal60

covariate shift and the latter combats the inherent class imbalance. As shown below, these two61

modifications allowed us to significantly reduce the necessary U-net size for accurate segmentation.62

3 Experiments63

Dataset. We use the Electron Microscopy (EM) Mitochondria Segmentation dataset of [8]. It contains64

a 5x5x5 micrometer section taken from the CA1 hippocampus region of the brain, corresponding65

to 1065x2048x1536 voxels of resolution approximately 5x5x5nm. This volume is separated into66

training and testing sub-volumes, each of which consists of 165 slices. We treat each slice as an67

image and aim to produce the corresponding binary label map, indicating the presence or absence of68

a mitochondria at the each location.69

Compressing without Distillation. First, we experiment with reducing the number of channels in70

the first U-Net layer while keeping the doubling trend of the contracting path without any distillation.71

As shown in Table 1, a U-net with only 4 initial channels (4-Unet) achieves a similar test loss to the72

original 64-Unet. In the remaining experiments, we use the 4-Unet as teacher network for distillation.73

Exploiting Standard Distillation. We then tried to make use of the standard distillation procedure74

of [5] to train a 2-Unet from a 4-Unet. To this end, we evaluated both vanilla distillation, mixed75

distillation and sequential distillation, where we started training with soft labels and then finished76

with hard ones, or vice-versa. All these attempts were unsuccessful, even with class re-weighting.77

This is illustrated by Table 2 for mixed distillation at different temperatures.78

Distilling Our Modified U-net. Finally, we evaluate the use of distillation with our modified U-79

net that incorporates batch normalization and class re-weighting. Note that for all the distillation80

experiments, the teacher is the original 4-Unet trained from scratch with hard training loss. As81

shown in Table 3 for both vanilla distillation and mixed distillation, a 2-Unet achieves segmentation82

accuracies similar to those of a standard 64-Unet, while requiring only about 0.1% of its capacity.83

Note that training a 2-Unet without distillation but with our modifications yields a training loss of84

0.265 and a test loss of 0.307, which shows that distillation is still required.85

4 Conclusion86

We have introduced a modified distillation strategy to compress a U-net architecture by over 1000x87

while retaining an accuracy close to the original U-net. This was achieved by modifying the U-net to88

incorporate batch normalization and class re-weighting. In the future, we plan to investigate the use89

of these modifications to perform distillation of other networks and for other application domains.90
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