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Abstract

In today’s world, neural networks are being in almost every discipline resulting
in significant improvement in all the tools and applications. But in the field of
Physics, they struggle to attain the basic laws like conservation of momentum. The
paper Hamiltonian Neural Networks addresses this issue by using Hamiltonian
mechanics to train the neural network in an unsupervised method. The following
report is an explanation of the paper and the code to reproduce the claimed results.

1 Introduction

Neural networks have the remarkable ability to learn and generalize underlying patterns in data. They
have been known to give state-of-the-art results of most of the computational tasks. Due to this, much
research goes into how to improve them in terms of accuracy, speeding their training time, and many
other aspects. A relatively newer field where neural networks are applied is in Physics. Even today,
neural networks given a task to predict the dynamics of a system are unable to learn the basic physical
laws governing the whole system. Neural networks do not have any idea of the physical laws and
learn them form the data instead. As the data is never perfect, learning only an approximation of the
laws is possible. These laws behave close to the conservation laws underlying when observed for a
short time frame, but in the long run, the cracks start to appear. Many researchers have tried to find
these physical priors that transfer across tasks.

In this work, we reproduce the paper1 Hamiltonian Neural Network [1]. The approach presented
in the paper takes inspiration from the Hamiltonian mechanics, a branch of physics that deals with
conservation laws and invariances, and defines the concept of Hamiltonian Neural Networks (HNNs).
The general idea of Hamiltonian mechanics is, to begin with, an equation called Hamiltonian, which
relates various quantities of the system to a conserved quantity of the system and uses it to simulate
how the system would ideally work. This equation is found using the domain-specific knowledge, but
in the paper, the equation is learned by the Hamiltonian Neural Network on its own using the data.

As the official implementation 2 of the experiments is already provided by the authors in pytorch3, we
reproduce the results in Tensorflow. We reproduce their results for the ideal mass-spring system, ideal
pendulum system, real pendulum system, 2-body system, 3-body system, pixel-pendulum system.
We were able to reproduce their results for all the results, although their implementation for pixel
pendulum didn’t directly work for us and we came up with specific changes. We also experiment with
a new system, real mass-spring system and provided our results and also point at some interesting
insights from the data. In the rest of the sections, we will talk a little about the theory of Hamiltonian
Neural Networks and then we will move on to our implementations and results.

1Our code is available at github.com/ayushgarg31/HNN-Neurips2019
2The official implementation is available at github.com/greydanus/hamiltonian-nn
3https://pytorch.org/
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2 Theory

Predicting Dynamics:
A Physics model is said to be complete if it can predict the changes in the system. As explained
above, generic Neural Networks can follow the physical laws of conservation. This is the main goal,
to learn the dynamics of a physics system in a Neural Network. So, to train the Neural Network, we
make it predict the next state of the system from the current state. The past study on these concepts
had a few theoretical problems with it as considering time to have discrete steps, not being able to
follow the conservation laws. But as we know, time is continuous, so we define the model as a set of
differential equations and integrate from the start time to close time. The following equation shows
the calculation using the time derivatives of the states of the system (S)

(q1, p1) = (q0, p0) +

∫ t1

t0

S(q, p)dt (1)

Since the neural networks are not able to conserve energy, the loss accumulates and affects later in
the future. The HNN paper addresses the following 2 problems. To understand the concept of HNN
we need to understand Hamiltonian Equations and Mechanics.

Hamiltonian Mechanics:
With a purpose to introduce classical mechanics in a more comprehensive unified manner, William
Hamilton introduced the Hamiltonian Dynamics, which are now being used in every area of physics.
Using the data of positions q = (q1, q2, q3, .....qN ) and the data of momentum’s
p = (p1, p2, p3, .....pN ) we form N coordinated tuples which describes a complete system.
Now we take a scalar function H(p,q) called Hamiltonian. So, the following equations give us the
time evolution information of the system caused by the moving coordinates in the direction.

dq

dt
=
dH

dp
,
dp

dt
=
dH

dq
(2)

SH =

(
dH

dp
,−dH

dq

)
(3)

This equation gives us the time evolution of the system. This gradient is a different type of gradient
called "Symplectic Gradient." Moving a system in the direction of the gradients of H changes the
output as quickly as possible, but moving in the direction of the Symplectic Gradient does no change
the output. Using the above set of equations, we calculate the total energy of the systems in which
energy is conserved. The importance of understanding Hamiltonian Mechanics is felt when working
with systems with many degrees of freedom like celestial systems, fluid systems, etc.

3 Implementations and results

In this section, we will talk about our implementations and results obtained using our implementations
of the systems presented in the paper. All our implementations are in tensorflow4 v2.0.0-beta.

Defining recurring expressions - H is the conserved quantity (energy here), k is the spring constant,
q is the position vector of the system, p is the momentum vector, m is the mass, g is the gravitational
constant and l is the pendulum length. The state of the system is described using a concatenation of
(q, p).

Details of neural networks -
Baseline - It is a simple Multi-Layer Perceptron model which takes input the state of the system
(q, p), and outputs their time derivatives (∂q/∂t, ∂p/∂t). It has 3 dense layers, each with 200 hidden
units with a tanh non-linearity function on the first 2 layers.

Hamiltonian neural network - In this architecture we input the state of the system (q, p) and subject
it to 3 dense layers each with 200 hidden units, out of which the last layer gives a scalar quantity
which is the conserved quantity H neural network has learned. Then we differentiate the output
of the 3 layers with respect to the input states and use the equation [2] to get the time derivatives
(∂q/∂t, ∂p/∂t). The differentiation is a part of the neural network itself.

4https://www.tensorflow.org/
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3.1 Ideal Mass-Spring system

This was the first system we tried to reproduce results from the paper. First, we produce the data on
which we will be training our HNN and test the results. To produce the data, we model the dynamics
system of a friction-less mass-spring system using the Hamiltonian equation of the system.

H =
1

2
kq2 +

p2

2m
(4)

As in the paper, for simplicity we keep k = m = 1. We make the dataset of trajectories of the ideal
mass-spring system. For each trajectory, we randomly decide the total energy of the system uniformly
distributed between [0.2, 1]. We use a differential equation to get the trajectory of the system and
calculate differentials of state defining parameters (q, p) with respect to time. Each trajectory has
around 30 observations and we make a dataset of around 50 samples. We train the models on this
dataset. After training, we use these models to predict (∂q/∂t, ∂p/∂t) given (q, p), and use this to
approximate the trajectory of the system using our differential equation given by equation [1]. We
then plot results of trajectories, MSE between coordinates, energy comparisons etc. to compare the
learnings of the two models.
Training details - We used Adam optimizer [2] with a learning rate of 0.001 to train the models. We
trained models for 2000 iterations with a batch size equal to the size of the dataset. We use MSE loss
to train our models.

Results - We were able to reproduce the results of claimed by the authors for this system.

Figure 1: Analysis of models trained for ideal mass-spring system.

The first plot is the trajectory followed by each of the models. As we can see, the baseline slowly
drifts away from the ground truth, whereas the HNN follows ground truth with high accuracy, which
is also evident from the second plot of coordinate comparisons. In the second graph, baseline
coordinates diverge rapidly from ground truth, whereas for HNN it is almost perfect. Third and fourth
graphs suggest that H learned by HNN resembles the total energy of the system and hence learns the
conservation law pretty well, whereas the baseline does a terrible job at conserving the energy.

Measuring the energy MSE more quantitatively we get -
Baseline NN energy MSE: 3.8732e-02 +/- 1.12e-02
Hamiltonian NN energy MSE: 9.3688e-05 +/- 1.15e-05

3.2 Ideal Pendulum system

This was the second system we tried to reproduce results from the paper. First, we produce the data on
which we will be training our HNN and test the results in a similar fashion as for the last system. The
system is a little non-trivial one as, unlike the ideal mass-spring system, it is a non-linear dynamics
system. The Hamiltonian equation of the system is given by.

H = 2mgl(1− cos q) + l2p2

2m
(5)

Again we keep l = m = 1. For each trajectory, we randomly decide the total energy of the system
uniformly distributed between [1.3, 2.3] and g = 3 as suggested in the paper. After, this all the steps
remain the same as in the mass-spring system.
Training details - Training procedure and details remain the same as in ideal mass-spring system.
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Figure 2: Analysis of models trained for ideal pendulum system.

Results - We were able to reproduce the results of claimed by the authors for this system.

Similar to the ideal mass-spring system, the first plot is the trajectory followed by each of the models.
The baseline model slowly drifts away from the ground truth, whereas the HNN follows ground
truth with high accuracy. In the second graph, baseline coordinates diverge rapidly from ground
truth whereas for HNN it is almost perfect. Third and fourth graphs suggest that H learned by
HNN resembles the total energy of the system, except it is negative in direction, same as in ideal
mass-spring system. Measuring the energy MSE more quantitatively we get -
Baseline NN energy MSE: 2.9537e-01 +/- 6.63e-02
Hamiltonian NN energy MSE: 3.6364e-02 +/- 6.77e-03

3.3 Real Pendulum system

This was the third system given in the paper. The data used in the task was from Science paper
by Schmidt Lipson, which also tackled the problem of learning conservation laws from data. The
data was much noisier and did not exactly follow any conservation law due to energy loss due to air
resistance.

The training steps remain the same as in the ideal mass-spring system.
Training details - Training procedure and details remain the same as in ideal mass-spring system.

Results - We were able to reproduce the results claimed by the authors for this system.

Figure 3: Analysis of models trained for real pendulum system.

In the first plot, we can see that the ground truth itself is not following conserved energy path but is
rather collapsing very slowly. Although our HNN model cannot replicate this trajectory change due
to energy loss but the loss is very slow, HNN gives a fine enough approximation. On the other hand
baseline collapses too rapidly from its initial trajectory and hence does a very poor job at replicating
the motion of a real pendulum. In the second graph, baseline coordinates diverge rapidly from ground
truth, whereas for HNN it is still nearly perfect. Third and fourth graphs suggest that H learnt by
HNN resembles total energy of the system and that the ground truth is losing some energy over time
whereas baseline loses is pretty rapidly making a large drift between baseline and ground truth.

Measuring the energy MSE more quantitatively we get -
Baseline NN energy MSE: 3.4670e-01 +/- 7.20e-02
Hamiltonian NN energy MSE: 1.2575e-02 +/- 4.23e-03
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3.4 Two-body system

This is a much more complex system compared to the ones presented till now as it involves the
dynamics of two separate bodies in 2-dimension. In this system, the two bodies interact with each
other due to a force such as gravitational force and influence each others’ trajectory. The Hamiltonian
for this system is given by.

H =
|pCM |2

m1 +m2
+
|p1|2 + |p2|2

2µ
+ g

m1m2

|q1 − q2|2
(6)

Here µ is the reduced mass of the system, pCM is the momentum of the center of mass of the system.
In this system, each observation is of 8 dimensions, 2 for q of each body as it is 2 dimensional and
similarly 2 for p of each body. For simplicity we keep m1 = m2 = g = 1 and pCM as zero as
suggested in the paper. For each trajectory, we start the system with the center of mass and total
momentum as zero and distance between the two bodies randomly chosen uniformly chosen between
[0.5, 1.5]. We add Gaussian noise to the trajectories with a variance of 0.05. We prepare a dataset of
200 trajectories with 50 observations each.

The training steps remain same as in the ideal mass-spring system.
Training details - Training procedure and details remain the same as in the ideal mass-spring
system, although paper suggests to decrease the batch size and increase the gradient steps but our old
procedure produces the same results as well.

Results - We were able to reproduce the results of claimed by the authors for this system.

Figure 4: Analysis of models trained for two-body system. First row shows the trajectories followed
by each model and second row shows the potential, kinetic and total energies of each system.

From the plots, we can see that HNN follows the trajectory of the two bodies and their energy trends
quite accurately, whereas the baseline gives a completely unrecognizable plot of energies.

Measuring the energy MSE more quantitatively we get -
Baseline NN energy MSE: 1.3686e-01 +/- 5.59e-02
Hamiltonian NN energy MSE: 2.8087e-05 +/- 8.76e-06

3.5 Three-body system

In this experiment, two-body system is generalized to three bodies interacting with each other. Most
of the assumptions and hyper-parameters remain same as in two-body system.
Training details - Training procedure and details remain the same as two-body system.

Results - We were able to reproduce the results of claimed by the authors for this system.
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Figure 5: Analysis of models trained for three-body system. First row shows the trajectories followed
by each model and second row shows the potential, kinetic and total energies of each system.

From the plots, we can see that although both the models do not have a very accurate replication
of the ground truth but still HNN follows the trajectory of the two bodies and their energy trends
somewhat satisfactorily whereas baseline gives a completely unrecognizable plot of energies and
trajectories.

Measuring the energy MSE more quantitatively we get -
Baseline NN energy MSE: 5.4413e+07 +/- 1.44e+07
Hamiltonian NN energy MSE: 1.0903e+02 +/- 9.75e+01

3.6 Pixel pendulum system

Firstly we generate data using the OpenAI5 Gym’s Pendulum-v0 environment. We generate 200
trajectories with 100 frames per trajectory, by down-sampling the original 400x400x3 images to
28x28x1 images. Then to get an estimate of velocity from the images, we concatenate 2 consecutive
images together to make each data point of size 28x28x2.

The task tackled in the paper is that given an image pair of 2 frames we need to output the next pair
of frames. To use HNN and baseline model we first need to find a way to convert these pixel images
to our known state variables (q, p). To do this the paper uses an auto-encoder. Both the encoder and
decoder of the auto-encoder were composed of four fully-connected layers with tanh activations and
residual connections. There were 200 hidden units in each layer of both encoder and decoder and the
output of encoder and input of decoder were of 2 units. The HNN and baseline models remain same.
The idea was to encode the pixels to vector of size two and feed to our models and then decode the
output of our models into pixel images again.

Failures and modifications - We encountered a number of problems while reproducing the results
for pixel pendulum. We tried changing the smaller hyper-parameters like decreasing the learning rate,
changed batch-size, increased number of iterations. After which we moved on to bigger changes, we
changed the architecture a little, removed the residual part of the auto-encoder but we did not get the
desired results.

After all these failures we turned to changing the training procedure. We tried to train auto-encoder
separately and then use it as a separate entity to train HNN on it but it didn’t work. Finally, we tried
something very non-intuitive which actually worked. There are three types of losses used to train pixel
HNN - auto-encoder loss is the loss in which given input, encode and decode it using auto-encoder

5https://gym.openai.com/
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and then take MSE, HNN loss is the loss in which it takes the input to encode it, run HNN on it and
take MSE with the encoded next frames and the third one is the canonical coordinate loss which
makes latent space look like (x, v) coordinates. In their implementation, they use a summation of all
the three losses with HNN loss multiplied by 0.1. We found out that to train the models correctly,
keep batch size 200 and do initial training for 25 epochs with learning rate 10−3. Then start with only
AE loss, start from a learning rate of 10−3 and divide it by 10 every time fluctuation in losses start
till learning rate gets to 10−5, then add CC loss multiplied with 0.1 and train using similar pattern
of learning rate, then increase multiplier to 0.5 and then later to 1. After this, add HNN loss with a
multiplier of 0.1 and train in a similar fashion then change the multiplier to 0.5 and then finally to 1
at which stage do a final training for 25 epochs.

Results - We were able to reproduce the results of claimed by the authors for this system.

Figure 6: Analysis of models trained for pixel pendulum system.

The plot shows how well the HNN models the ground truth while baseline starts losing energy and
finally almost stops oscillating.

Measuring the energy MSE more quantitatively we get -
Baseline NN energy MSE: 1.6498e-01 +/- 4.78e-02
Hamiltonian NN energy MSE: 2.3617e-03 +/- 1.74e-04

4 Real mass-spring system

We planned to experiment with HNN on another real-world data and an obvious choice was real
mass-spring system. We did an extensive search to find an available dataset that would be of use but
unlike real pendulum system we couldn’t find any. So, we modeled our own dataset with help from
the Physics Department of our college. We have a mass-spring system similar to the ideal mass-spring
system except that we also consider the damping effect of air resistance due to which slowly the
system loses energy and motion of the system stops after a while. The force of air resistance is
proportional to the velocity of the object. The force balance equation of the system is given by.

ma+ βv + kx = 0 (7)
where a is acceleration of object, v is the velocity of the object, β is damping coefficient of air and x
is the displacement from the position of equilibrium (where mg is balanced by spring force alone).

To prepare the dataset, till now we used the differential equations involving energy to predict the
future state of the system. Here we cannot model the energy so easily as the energy is getting lost due
to air resistance. Instead, we use a different method to predict the displacement, momentum and their
time derivatives. It is similar to a Damped Harmonic Oscillator system. Hence we use the following
equation to get the displacement of the object at any time.

x(t) = eαt(c1cos ωt+ c2sin ωt) (8)

where α = β
2m , ω =

√
|β2−4mk|

2m and c1 and c2 are derived based on the initial conditions such
as initial displacement and initial velocity of the object. Then this equation is differentiated to get
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velocity and momentum, which are then differentiated to get the time derivatives which are required
to train our models.

For simplicity we keep k = m = 1 and β is kept constant for each experiment. For each trajectory
we randomly decide initial displacement from equilibrium position uniformly between [-5, 5]. We
predict (q, p) and (∂q/∂t, ∂p/∂t) for each observation using the differentials and double-differential
of the equation [8]. Each trajectory has around 200 observations and we make a dataset of around 50
samples. We further add Gaussian noise to the data with a variance of 0.1. The training procedure
remains same as in ideal mass-spring system.
Training details - Training procedure and details remain the same as in ideal mass-spring system.

Results - We experimented on multiple values of β and found some interesting insights.

Figure 7: Analysis of models trained for real mass-spring system.

The above plots are for β = 0.01, the plots might be very interesting at first sight because although
HNN performs better on coordinate prediction even though it is limited by constant energy constraint
but surprisingly baseline does a much better work at replicating energy trends. We expect that the
model which models energy better should also do better on coordinate prediction. We specifically
chose to present plots with this β, as this result is range specific.

Some interesting observations from experimenting the models with varying β.

• At very low values of β, HNN performs better in both the tasks, of modelling coordinates
and total energy as the system behaves much like an ideal mass-spring system where energy
is almost conserved. At very high values β, baseline performs better in both the tasks as not
only HNN is unable to replicate the loss in energy but also because baseline is very good at
learning the pattern of loss.

• At the range close to 0.01 we see phenomenon similar to the one described above.

• Probably the most interesting of the observations is how accurately the baseline learns the
pattern in energy loss. In the plot three (rightmost plot) we can not only see baseline and
ground truth are close but also their periodicity is exactly the same (about 5 seconds) which
is the same as the periodicity of the mass-spring system as well. Furthermore, in a single
period, if we notice carefully the biggest dip in baseline comes when there is a dip in the
ground truth and the smaller one comes along with a slight peak in the ground truth.

5 Conclusion

The results in the paper suggest that HNN is a solution to all the problems that are governed by
physical laws. Although HNN is visibly better than a simple neural network when it comes to an
ideal situation where energy is conserved but in real world, as we have seen in our experiment, most
of the systems we know have an energy loss component and because of this, there is only a limited
use of HNN, whereas baseline is much more general method and can even model real-world systems
and also replicate energy loss with high precision which is not possible in HNN, especially when the
loss is significant enough such that it cannot be ignored. Still the idea is pretty novel and can be built
upon for further research. In addition to learning the conserved quantity, we can learn the trends in
loss of the conserved quantity which can be much more useful tool for modeling real-world systems.
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