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ABSTRACT

With the proliferation of models for natural language processing (NLP) tasks, it is
even harder to understand the differences between models and their relative merits.
Simply looking at differences between holistic metrics such as accuracy, BLEU,
or F1 do not tell us why or how a particular method is better and how dataset
biases influence the choices of model design. In this paper, we present a general
methodology for interpretable evaluation of NLP systems and choose the task of
named entity recognition (NER) as a case study, which is a core task of identifying
people, places, or organizations in text. The proposed evaluation method enables
us to interpret the model biases, dataset biases, and how the differences in the
datasets affect the design of the models, identifying the strengths and weaknesses
of current approaches. By making our analysis tool available, we make it easy for
future researchers to run similar analyses and drive the progress in this area.

1 INTRODUCTION

The development of deep neural networks has greatly sped the evolution of NLP systems. However,
these advances have also come with a plethora of design decisions: should we choose a CNN-based
(Kalchbrenner et al., 2014; Kim, 2014), RNN-based (Sutskever et al., 2014; Bahdanau et al., 2014) or
Transformer-based (Vaswani et al., 2017; Dai et al., 2018) architecture? What variety of pre-training
method should we use (Le & Mikolov, 2014; Peters et al., 2018; Devlin et al., 2018; Akbik et al.,
2018)? The proliferation of model variants pose a great challenge for current evaluation methodology,
which are usually opaque and simply give a single holistic score (Papineni et al., 2002; Banerjee &
Lavie, 2005; Popovi¢ & Ney, 2011).

To alleviate this problem, researchers have made efforts, mainly focusing in two directions. First, some
works (Farrds Cabeceran et al., 2010; Popovi¢ & Ney, 2011; Lommel et al., 2014) have attempted to
shift the granularity of evaluation from holistic to fine-grained by conducting error analysis. Despite
its effectiveness, the process of error analysis usually requires manual examination and depends on
some pre-existing assumptions, suffering from confirmation bias, and risking ignoring new types of
errors (Neubig et al., 2019). Additionally, this evaluation method based on error analysis is usually
applied to only a single dataset (Karpathy et al., 2015; Kummerfeld & Klein, 2013; Kummerfeld
et al., 2012), lacking discussion of fine-grained analysis in a multi-dataset setting. As a result, many
important questions remain unclear: how to characterize the factors that influence the tasks for
different datasets? how do the different choices of datasets influence the models’ performance?

Another way to improve the evaluation strategy is common in our routine experimental design. That
is to evaluate our models on multiple datasets with a holistic metric (Peters et al., 2018; Devlin et al.,
2018). Currently, researchers are making efforts along this direction by setting up general evaluation
benchmarks, such as GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019), which involve
a diverse set of datasets. Although it enables us to gain a more comprehensive assessment of the
models, the influence of different datasets on models is simply reflected by a holistic metric, which
is not interpretable, and consequently, we are not clear about how different datasets influence the
choices of model architectures.

In this paper, we argue that a complete evaluation method should not only reflect the individual
performance of the model on one dataset or multiple datasets but also be able to interpret the model
biases, dataset biases, and their correlation (how the difference in the datasets affects the design
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of the models). We draw on the complementary strengths of the fine-grained evaluation and multi-
dataset evaluation, driving fine-grained analysis to the multi-dataset setting. To this end, we devise a
generalized evaluation methodology and choose the NER task as a case study. More specifically, we
introduce the notion of attribute, which can be defined flexibly as the evaluation task needs. Here, we
utilize the attribute to describe the property of each test entity for the NER task (i.e., entity length).
Then, the test set will be divided into a set of buckets by different attributes of test entities. This
makes it possible to evaluate recognition accuracy of different varieties of entities, achieving much
more fine-grained analysis than standard corpus-level measures.

Additionally, the proposed attribute-aided evaluation method-

ology encourages us to introduce multiple attributes to find Attributes

more potential factors which affect the NER models on differ-

ent datasets. We further propose three analytical approaches g %

as shown in Fig. 1: attribute-wise, model-wise, and bucket- S, A
wise analyses that have the following characteristics accord- ¥ %,

. . . Tab. 5

ingly: Attribute-wise (Sec. 3.3.2) analysis could instruct us Bucket-wise

to find which factors matter for the NER tasks and figure E——

out the commonality of factors across different NER datasets; Models ~ Tab. 3 Datasets

Model-wise (Sec. 3.3.1) analysis aims to investigate how dif-
ferent attributes influence the performance of models with dif-
ferent architectures and pre-trained knowledge; Bucket-wise
(Sec. 3.3.3) analysis diagnoses the strengths and weaknesses of
existing models and helps us understand how different choices
of datasets influence the model performance.

Figure 1: Relation chart among at-
tributes, models, and datasets. The
attribute-aimed method could bridge
the gap between the model biases
and dataset biases.

Our contributions can be precisely summarized as:

1) We draw on the complementary strengths of the fine-grained evaluation and multi-dataset evaluation,
proposing a generalized evaluation methodology to interpret model biases, dataset biases, and their
correlation. 2) We choose the NER task as a test case, the observations based on the extensive
experiments (twelve models, ten attributes and six datasets) suggest directions for improvement
and can drive the progress of this area. 3) Although some attributes defined in this paper are
task-dependent, we claim our methodology is general since: a) for sequence labeling tasks (i.e., Part-
of-Speech, text chunking, and extractive summarization), this evaluation method could be transferred
without much modification. b) for other types of NLP tasks, we could re-define the attributes and
our proposed bucketization strategies, as well as three analytic approaches, are task-agnostic. For
example, in machine translation, the attribution could be sentence length (Luong et al., 2015), word
itself (n-gram) in the reference file (Kumar & Tsvetkov, 2018); In question answering, the attribution
could be answer length/type/position (Seo et al., 2016), document length (Joshi et al., 2017), and
query length/type (Chen et al., 2016b). Once we have determined related attributes, we could make
similar analyses based on our proposed measures.

2 PRELIMINARIES

We first summarize and compare past evaluation methodologies and then describe the NER task and
its current evaluation strategy.

2.1 PROPERTIES OF EVALUATION METHODOLOGIES

Evaluation is gaining increasing interest in NLP, Methodology Interp.  Conform.  Supple-exam
especially on text generation t.asks as exempli- Holistic metric « « «
fied by machine translation (Fishel et al., 2012; Multi-dataset x X v
Irvine et al., 2013; Daems et al., 2014). Gener- Error analysis v v x

; . Diagnostic test V4 Vv v
ally, different evaluation methods can be charac- Interpretable metric V. % V.

terized by the following three main properties:

Table 1: Evaluation methodologies characterized

Interpretability: Evaluation method could give : .
by different properties.

interpretable results to help us understand where
the weaknesses and strengths are. For example, “error analysis”(Kummerfeld et al., 2012;
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Kummerfeld & Klein, 2013; Karpathy et al., 2015) is an interpretable evaluation method since we
could figure out detailed limitations of the evaluated systems.

Confirmation bias: It represents a tendency to make tests consistent with the beforehand hypothesis.
For example, Mudrakarta et al. (2018) assume that deep learning model are sensitive to question
words in question answering tasks and verify it by carefully-designed adversarial examples, and Chen
et al. (2016a) pre-defined six error to classify error cases.

Supplementary exam: It is an additional exam (require extra test sets ) for more comprehensive
observations. i.e. multi-dataset evaluation (Devlin et al., 2018) on GLUE. Recently, there is a trend
going from traditional evaluation to diagnostic test, in which a supplementary test set is required. For
example, Jia & Liang (2017) propose an adversarial test for reading comprehension task and Naik
et al. (2018) present a stress test method to diagnose natural language inference systems.

2.2 NER TASK AND CURRENT EVALUATION STRATEGY

Task Description Named entity recognition (NER) is usually formulated as a sequence labeling
problem (Huang et al., 2015; Ma & Hovy, 2016). Formally, let X = {x1, x5, ..., 27} be an input
sequence and Y = {y1,92,...,yr} be the output tags. The goal of this task is to estimate the
conditional probability: P(Y|X) = P(y:| X, y1, -+ ,¥t—1)

Evaluation Strategy for NER Existing NER systems are commonly evaluated by corpus-level
metrics (F'1-score) (Sang & De Meulder, 2003) and a small amount of work will conduct some
manual error analysis (Ichihara et al., 2015; Derczynski et al., 2015). With the increasing improve-
ment in network architectures and pre-trained knowledge, the NER systems are quickly reaching a
performance plateau (Akbik et al., 2018; Akbik et al.). Therefore, fine-grained evaluation is required
to identify the specific issues of existing NER systems. On the other hand, with the emergence of
more and more NER datasets (Sang & De Meulder, 2003; Collobert et al., 2011; Weischedel et al.,
2013), the time is ripe for us to bridge the gap between the insufficient understanding of the nature of
datasets itself and model designs. In this paper, we choose the NER task as a test case, interpreting
model biases, dataset biases, as well as their correlation under a general framework. This work also
takes a step towards interpretable architecture searching.

3 ATTRIBUTE-AIDED EVALUATION METHODOLOGY

Our proposed evaluation methodology involves three key elements: attribute definition (Sec. 3.1),
bucketization (Sec. 3.2) and the analytical approach (Sec. 3.3). Specifically, we first introduce the
notion of attribute and define it in NER task as some property of the test entity, bywhich the test
set will be divided into different sub-sets and the overall performance could be broken down into
interpretable categories. Below, we will detail the three key elements.

3.1 DEFINITION OF ENTITY ATTRIBUTES

Entity Attributes refer to the properties that can be used to characterize a given entity. Generally,
different types of entity attributes provide different observation angles of system’s performances.

Next, we will introduce entity attributes we explored in this paper in terms of token level, span level
and sentence level. We take them into consideration since they are general features and could be
transferred to other tasks.

Token-level 1) Token itself: it denotes the words of an entity. 2) Morphology: morphological features
plays an essential role in many NLP tasks. Here, we define five cases for each entity token: including
token, is upper case, lower case, digit, beginning with a capital letter, and others (such as punctuation).

Span-level 1) Entity itself: each entity is regarded as a unique identifier. 2) Entity length: the number
of tokens in an entity. 3) Entity tag: the NER tag of an entity.

Sentence-level 1) Sentence length; 2) Entity density: it is the number of entity tokens divided by
sentence length. 3) OOV density: it is the number of oov word divided by sentence length.
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3.2 BUCKETIZATION STRATEGIES

Bucketization is an operation that breaks down the holistic performance into different interpretable
categories based on the attribute values. This can be achieved by dividing the set of test entities into
different subsets of test entities (for span- and sentence-level attributes) or test tokens (for token-level
attributes). Without loss of generality, we describe the entity-based bucketization strategies while
it can be easily applied to token-based. To legibly describe the studied problem, we follow the
commonly used notations throughout the paper. We refer to F, P, K as the sets of entities, entity
attributes and attributes values, respectively.

The bucketization process can be formulated in a general form: Ei¢,---  E' = Bucket(E*|E', p),
where E'", Et¢ represent the sets of training and test entities, respectively, p denotes a type of the
attribute. The basic idea is that the test entity set is divided into m buckets based on the attribute p and
corresponding training set. where E'", E*¢ represent the sets of training and test entities, respectively,
p denotes a type of the attribute.

Specifically, each subset of test entities can be Bucketization Strategies
: . te __ .
obtained as 1Zollows. Ej¢ = {e|Atr(e,p) € Attributes g p T et ME-Bucket
. e 1
K;,Ve € FE'}, where Atr(e,p) is to query Token ftself (F-tok) 7
out the value of attribute p for entity e. Kj; Token Morphology (R-mor) v
is a set of attribute values, with which enti- Entity itself (F-ent) Vv
ties should be put into the i-th bucket: K; = Span E“‘?ty len. (FR'eLe“) v
{k|f(k) = 1i,Vk € K}. Above equation shows ity tag (Fag) v
the key part for bucketization: how do we build S Sent length (R-sLen) v/
. . . ent  Entity dens. (R-eDen) vV
the relationship between the value of entity at- OOV dens. (R-00v) v
) ) .
tributes and th? bucket. nu.mber. . That is, we Entity & tag (MF_e0) N
need to determine a criterion f, which guides Multi Token & tag (MF-tt) Vv

us to put test entities according to its attribute
values into suitable buckets. Here we explore Table 2: Entity attributes we used in this paper and
three types of strategies for bucketization. their corresponding bucketization strategies.

Strategy-I: Range division of attribute val-

ues (R-Bucket) An intuitive strategy is to bucketize the test entities based on their attribute values
directly. Specifically, we could divide the range of attribute values into m discrete parts. For exam-
ple, the sentence length withrange [1,--- ,6] could be divided into [1,2], [3,4], [5, 6] three
buckets. Tab. 2 shows which attributes are matched to this bucketization strategy.

Strategy-II: Familiarity of attribute values (F-Bucket) The aim of the evaluation is to quantify
the generalization errors of the system on the unseen samples. Therefore, by taking into account the
degree to which the testing entities (or their attributes) have been seen in the training set, we can
better figure out the impact of this attribute on model performance.

To achieve this, here we introduce a notion of familiarity to quantify the degree to which the attribute
of a test entity has been seen in the training set.

_ {elAtr(e,p) = k,Ve € E'"}|
B [{e € B}

Fi(p) (1)

Here, Fj,(p) € [0, 1] denotes the degree to which the test entity attribute p with value &k have been
seen in the training set. Then we can define the following criterion to achieve the bucketization:
Fg (p) € (5> £t1] The basic idea behind the criterion is that test entities could be put into the i-th
bucket when the familiarity of their attribute values meets the above condition. Tab. 2 shows which
attributes we used for F-Bucket.

Strategy-II1: Multi-attribute Familiarity (MF-Bucket) The benefit of our general methodology
for interpretable evaluation is that we can easily define new valuable measures based on old measures
already defined. Here, we can adapt our F-Bucket strategies to multi-attribute version and modify the
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Eq.1 as follows:

_ HelAtr(e, p1) = k1 A Atr(e,p2) = kg, Ve € E'"}|

Fiprop2) = [{Atr(e,p1) = k1,Ve € EtT}| @

For example, when we instantiate the two entity attributes p;, ps as M)
entity itself and tag respectively, the familiarity Fy(p1,p2) oy 2

is a measure with intriguing explanation: for each test entity with tag 061 Romor
k, this measure quantifies its category ambiguity: the probability that - 2
this entity is labeled as k in the training set. 50 ggr‘f( \Fom

0.88
R-eDen)
0.25 R-eLen

To give a more intuitive understanding of the two processes: attribute
definition and bucketization, Fig. 2 shows a concrete example, in fLen 5
which a set of attributes are defined for the target entity New York, 5 -
with corresponding values.
Figure 2: The attribute defini-
3.3 ANALYTIC APPROACHES tion of the entity New York
in the sentence: “No new
To better characterize the relation among attributes, models and fixtures reported from New
datasets, we propose three analytical approaches: attribute-wise, York .
model-wise, and bucket-wise, which can be used to interpret the
model biases, dataset biases, and their correlation.

Formally, we refer to M = my,--- ,m 5 as a set of models and
P =p1,---,pp| as aset of attributes. As describe above, the test set £ could be split into different
buckets £ = E, -, E|]E\ based on a attribute p;. We introduce the notion of performance table

T € RIMIXIPIXIE in which 7Tij, represents the performance of ¢-th model on the k-th sub-test set
(bucket) generated by j-th attribute. Next, we will show how these approaches are defined based on

3.3.1 MODEL-WISE

The model-wise analysis aims to investigate how different attributes influence the performance of
models with different architectures and pre-trained knowledge. For example, “does the lengths
of entities influence the performances of CNN-LSTM-CRF-based NER system?”

Here we adopt two types of statistical variables S/ ; and S ; to characterize how the j-th attribute
influences the 7-th model.

S ; = Spearman(T[i, j 3, ;) )
S7, = Std(TTi,j 1)) X

where Spearman is a function to calculate Spearman’s rank correlation coefficient (Mukaka, 2012)
and R; is the rank values of buckets based on j-th attribute. Std(-) is the function to compute
standard deviation.

Intuitively, S? ; reflects the degree to which the i-th model positively (or negatively) correlates with

j-th attribute while S7 ; indicates the degree to which this attribute influences the model.

3.3.2 ATTRIBUTE-WISE

The attribute-wise analysis aims to quantify the degree to which each attribute influences the NER
task. To achieve this, we introduce four measures: task-independent variable (; and task-dependent
variables p% p? and o; based on Eq.3 and Eq.4:

D¢ = ﬁ ZLN‘ Atr(e;, j), where N is the number test entities and Atr(e;, j) represents the value
of attribute j for entity e;.

For example, when j represents the attribute of sentence length, (; is the average sentence length of
the whole dataset.
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1_ 1 M| qp 2 _ 1 M| qp _ 1 | M] :
2 pj =nni ISU;hei = @i Sij0i = nmm2i  S7;. where [M]is the number of
evaluated models. Compared with pjl, p? can reflect whether the correlation is positive or negative.

Intuitively, a higher absolute value of p} or p? suggests that attribute j is a crucial factor, greatly
influencing the performance of NER systems.

3.3.3 BUCKET-WISE

The bucket-wise analysis diagnoses the strengths and weaknesses of existing models. Moreover,
based on attribute-wise analysis, we could understand how different choices of datasets influence the
models’ performance.

To this end, we introduce the following measures:

8, = {man(T[a,j, Kl =TIb.j.k]) (Tla,j,k] > TIb, j, k], for Vk) 5)
=

ming (7 [a, j, k] — T[b,j, k]) otherwise

Usually where a, b represent two different models and usually model a has a higher performance (by
dataset-level metric).

Intuitively, a negative value of /3; suggests that a worse-ranked model (b) outperform the best-ranked
model (a) in some aspect (attribute j); By contrast, a positive value shows the largest margin on the
attribute j.

4 EXPERIMENTAL SETTINGS

4.1 MODELS AND ATTRIBUTES

Model Settings To evaluate the importance of different components of the NER systems, we varied
our models mainly in terms of three aspects: different choices of character- (ELMo (Peters et al.,
2018), Flair (Akbik et al., 2018; Akbik et al.)), subword- (BERT (Peters et al., 2018; Devlin et al.,
2018)), word- (G1oVe(Pennington et al., 2014)), and sentence-level encoders (LSTM (Hochreiter &
Schmidhuber, 1997), CNN (Kalchbrenner et al., 2014)) and decoders (MLP or CRF (Lample et al.,
2016; Collobert et al., 2011)). Detailed setting are shown in Tab.3. Totally, we study 12 NER models
based on deep neural networks and one traditional method utilizing CRF Lafferty et al. (2001). The
hyper-parameter settings of our evaluated models are shown in appendix section.

Character Word Sentence Decoder Overall F1
Models

£sfs58%28 5 ¢ 2

E53E& 22 ™2 § 5 E CoNLLWNUT BN BC MZ WB
CnonWrandlstmCrf \/ Vv Vv v 78.13  17.24 80.36 66.17 73.89 49.80
CennWnonelstmCrf Vv Vv Vv Vv 77.01 2273 77.96 65.01 79.05 47.31
CennWrandlstmCrf Vv VA Vv VA 83.80 22.57 83.59 71.57 78.85 52.14
CennWglovelstmCrf Vv v v v 90.48  40.61 86.78 76.04 85.39 60.17
CennWglovecnnCrf V4 V4 v v 90.14 3621 86.42 76.74 88.10 49.10
CcnnWglovelstmMIp Vv v v v/ 88.05 32.84 84.07 70.00 81.09 56.61
CelmWnonelstmCrf vV v v Vv v 91.64 44.56 89.75 77.10 86.32 60.51
CelmWglovelstmCrf V4 Vv vV 9222  45.33 89.35 78.71 85.70 63.26
ChertWnonelstmMIp v Vv Vv v 91.11 4250 89.64 81.03 86.90 66.35
CflairWnonelstmCrf 4 Vv Vv Vv 89.98 4149 87.98 77.46 84.11 56.71
CflairWglovelstmCrf vV Vv V4 v 93.03 4596 87.92 77.23 85.56 63.38

Table 3: Neural NER systems with different architectures and pre-trained knowledge studied in this
paper. Overall F1 shows the performances of corresponding systems on different datasets. For
the model name, “C” refers to “Character” and “W”’ refers to “Word”. Intuitively, the models are
named based on their constituents. For example, CnonWrandlstmCrf is a model without character
feature. Its word embedding is randomly initialized, and sentence encoder, as well as the decoder, are
LSTM and CRE, respectively.
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Attributes In our evaluation methodology, entity attributes can be defined flexibly and attribute
values can be continuous or discrete. In this paper, although we investigate 10 types of attributes (or
their combinations) as listed in Tab.2, others can be easily introduced.

4.2 NER DATASETS FOR EVALUATION

We conduct experiments on three benchmark datasets: the CoONLL2003 NER dataset, the WNUT16
dataset, and Ontonotes 5.0 dataset. The CoNLL2003 NER dataset (Sang & De Meulder, 2003) is
based on Reuters data (Collobert et al., 2011). WNUT16 dataset is provided by the second shared task
at WNUT-2016. The Ontonotes 5.0 dataset (Weischedel et al., 2013) is collected from newsgroups,
broadcast news (BN), broadcast conversation (BC) and weblogs (WB) and magazine genre (MZ).

5 ANALYSIS

5.1 HOLISTIC ANALYSIS

Before giving a fine-grained analysis, we present the results of different models on different datasets
in the way that traditional multi-dataset evaluation does. As shown in Fig. 3, we observe that
there is no one-size-fits-all model, and the models with the best results on different datasets are
different. Naturally, the following questions are raised: 1) What factors of the datasets can distinguish
themselves and influence the NER task? 2) How do these factors influence the choices of models? 3)
Does a worse-ranked model outperform the best-ranked model in some aspect and how the datasets
influence the choices of models? The following analyses will be conducted around these questions.

5.2 ATTRIBUTE-WISE ANALYSIS

Attribute-wise measures enable us to characterize the

dataset biases quantitatively. Here we utilize a radar i A7 Ky )
chart in Fig. 4 to strikingly display the commonality 05— < |
and speciality between different datasets based on ol N |
three measures ¢, p!, o defined in Sec. 3.3.2. And VAN oot 1R

we also illustrate measure p? in Fig. 3. Detailed 08 ’ OntoNote-BC .
observations are listed as follows: Ll ’ T oo -
Category ambiguity and entity length have more e o e A e ek e

consistent influence on NER performance. The
common parts of the radar chart Fig. 4 (b-c) illustrate
that no matter which datasets are, the performance of
NER task is highly correlated with these attributes:
MF-tt (token-tag with MF-buck), MF—-et (entity-tag with MF-buck), R—eLen (entity length with
R-bucket). Fig. 3 shows the same result. This suggests that the prediction difficulty of named entity
is commonly influenced by category ambiguity (MF-tt, MF—et), entity length (R—eLen).

Figure 3: Illustration of task-dependent mea-
sure p2.

Occurence and sentence length matters but are minor factors. The outliers in radar chart show the
peculiarities of different datasets. Intutively, on attributes: R-sLen, F-token, R-oov, the extent
to which different datasets are affected varies greatly. Typically, as observed from Fig. 4-(a), a sorted
sequence could be obtained according to the attribute F—t ok: BN > MZ > WNUT > CoNLL > BC >
WB. The reason why the Spearman correlations p' of BC and WB are smaller is that performance on
test entities with higher-frequency tokens are lower than entities with lower-frequency tokens. This
suggests that F—t ok is not a decisive attribute and higher-frequency token can not guarantee a better
performance since other crucial factors such as category ambiguity also matter.

Entity density is a swing factor and CoNLL dataset is an outlier. As shown in Fig. 3, the measure
p? enables us to know the correlation is positive or negative. We observe that most datasets except
CoNLL 2003 have negative Spearman values p? on the attribute of R—eDen, which suggests that a
sentence with more entities is relatively harder to process. We can explain the unusual behavior on
CoNLL 2003 from its intrinsic value ( of eDen, the largest one as shown in Fig. 4(a). The dataset
of CoNLL contains a lot of short sentences, such as “Chicago 8,674 484,018 and “ SOFIA
1996-12-06". That’s why it distinguishes itself from other datasets.



Under review as a conference paper at ICLR 2020

[ OntoNote-WB
[ OntoNote MZ
R-sLen R-sLen R-sLen O:tZN:t:rBC
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Figure 4: Illustration of dataset biases characterized by task-independent measure (, task-dependent
measures p* and o.

The intrinsic differences in datasets can help us to understand how different datasets influence the
different choices of models, which will be explained later (Sec. 5.4).

Spearman Standard Deviation
=] = [=] = =} [=]
L > Q K > a3 1) b
384 5 5 84 5 ¥
Model Fl & = S & Om
CRF++ 80.74 60 72 -71 80 80 100 96 -50 7.4 7.7 3.4 12 93 9.0 48 7.0 6.3 19

CnonWrandlstmCrf 78.13 67 53 -86 100 100 89 89 -50 7.3 7.0 45 15 17 12 9.7 7.8 4.8 12
CennWnonelstmCrf  77.01 67 70 -64 60 80 100 82 -50 8.3 9.2 6.0 11 7.1 6.5 2.5 6.3 6.9 16
CennWrandlstmCrf  83.80 67 68 -89 100 90 89 61 -50 6.1 5.8 2.6 10 9.8 6.9 3.4 7.3 4.7 22

CennWglovelstmCrf 90.48 60 40 -75 80 90 71 14 -50 293516 6.7 7.13306585215
CcennWglovecnnCrf  90.14 55 48 -82 80 90 71 -7.1 -100 3.4 42 1.7 7.1 7.1 32 09 59 53 15

CcnnWglovelstmMIp 88.05 57 42 -71 80 90 96 -39 -50 3.2 49 2.0 82943909 536.7 12
CelmWnonelstmCrf 91.64 40 30 50 80 90 96 57 -50 2.729 1.055 4427 0.74.05510
CelmWglovelstmCrf 92.22 45 27 11 80 90 68 -32 -100 2.2 3.5 09 5.1 43 25 1.0 3.7 5.8 15
ChertWnonelstmMIp 91.11 38 5.0 29 80 90 46 14 -50 293516594532 13255610
CflairWnonelstmCrf 89.98 19 47 0.0 60 90 100 46 -50 3.1 29 1462 493312436215
CflairWglovelstmCrf 93.03 26 22 -14 80 90 79 29 -100 2.1 3.2 0.9 49 4.0 23 0.6 3.5 48 11
Table 4: Model-wise measures Sp and S¢ ; on CoNNL-2003. attributes are used to characterize
category ambzguzty of entities whlle attrlbutes can measure the degree to which test entities have

been seen in training set.
5.3 MODEL-WISE ANALYSIS

Based on two model-wise measures: S’ . ;,; and S7 ; defined in Eq.3 and Eq.4, we investigate how
different attributes influence the performance of the models with different architectures and pre-
trained embeddings. Fig. 4 illustrates the case on CoNLL (other datasets are included in appendix),
and we have observed that:

1) Char-unaware models are more sensitive to the degree of category ambiguity and occurrence
of entities. We observe that “CnonWrandlstmCrf” is negatively related to MF-et, MF-tt, F-ent
and F-t ok with high values of p and o, suggesting the importance of the character-level encoder,
which plays a major role in generalization to rare entities and entities with multiple categories. More
importantly, this observation still holds on other datasets. (See appendix)

2) Sentence length is a swing factor, whose contribution depends on what types of pre-trained
embeddings are used. There is a strong negative correlation between models with context-
independent embeddings and the attribute R-sLen (sentence length). The relationship is reversed
when contextualized embeddings are used. The reason we believe is that long sentences could provide
sufficient context information for contextualized models. It is noticeable, however that flair-related
models “CflairWnonelstmCrf” behave differently compared with other contextualized models, which
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we will explain later in Sec 5.4 (Flair performs worse than ELMo when dealing with long sentences
due to its structural bias).

3) Character encoders favor the sentences with high entity-density. Only using character-level
CNN is easy to overfit the feature of capital letters. As a result, more non-entities are mis-predicted
as entities. Based on the understanding of the previous analysis (Sec. 5.2) of the entity density’s
influence on CoNLL, we could better explain why “CcrnnWnonelstmCrf” achieves the highest value
of p and o in “R-eDen (entity density) attribute in Tab.4.

5.4 BUCKET-WISE ANALYSIS

In this section, we choose several typical models (others are shown in the appendix) as analyzed cases,
aiming to seek answers to the following questions: 1) What are the strengths and weakness of different
architectural designs? In other words, does a worse-ranked model outperform the best-ranked model
in some aspect? 2) How do the different choices of datasets influence model performance? Tab. 5
illustrates the bucket-wise measure /3, which is computed based on any pair of models M1 and M2.
Next, we list some of our observations. Others are illustrated in the appendix.

CNN v.s. LSTM The sentence encoder of CNN is better at dealing with short sentences, which
holds in all datasets we evaluated in this paper. Strikingly, CNN outperforms LSTM by a large
margin (dataset-level F1) on MZ dataset while is significantly worse than LSTM on WB (refer to the
appendix.). We attempt to explain these discrepancies based on above attribute-wise metric ¢ in
Fig. 4(a): sentence lengthandentity density are two major factors for the choices of
CNN and LSTM. CNN is better than LSTM when the dataset with higher value of (1., and (.pen.-
By contrast, when a dataset with lower (. pep, LSTM is a priority (The (. pen, of WB is the lowest).

CRF v.s. MLP The benefits of using CRF on short sentences are very stable, and improvement
can be seen in all datasets. Similarly, based on attribute-wise metric  in Fig. 4, we find category
ambiguity (MF—et, MF-tt) is a major factor for the choices of CRF and MLP: if a dataset with
higher (s r—et, in which longer entities can benefit more from CRF-based models. In comparison,
introducing CRF will lead to more errors on long entities once the dataset (i.e. BN, MZ) has a lower

CJWF—et-

CcnnWrand v.s. CennWnone The question has been little studied whether we need an extra word-
level method (i.e., word-level look-up table) to get word representations when we have already used
CNN to obtain word representations. Here, we show that CcnnWrand is not always better than
CcnnWnone and entity length matters for the choice. Specifically, CcnnWnone could achieve better
performance on on the WNUT and MZ datasets. With the help of Fig. 4-(a), we find the two datasets
share a property of much higher value of (r_.;. (entity length). Additionally, another commonality
between the two datasets can be observed from Tab. 5: the gain of CcnnWnone mainly comes from
the entities with the longer length.

ELMo v.s GloVe ELMo consistently outperforms GloVe on all datasets using the holistic F1 score,
but it is worse than GloVe when modeling short sentences. Another interesting finding is that
for those sentences containing more OOV tokens, GloVe could achieve better performance on all
datasets. These phenomena indicate the complementarity between ELMo and GloVe, and our further
combination of these two embeddings (CelmWglovelstmCrf in Tab. 3) indeed works better.

Flair v.s. ELMo While the current state-of-the-art NER model Flair has achieved the best perfor-
mance in terms of dataset-level F1 score, a worse-ranked model (ELMo) could outperform it in
some aspects. Typically, Flair performs worse when dealing with long sentences. The reason can be
attributed to the its structure design, which adopts a LSTM-based encoder for character language
modeling, suffering from long-term dependency problem (especially for character-level language
model). A promising improvement is to use the Transformer-based architecture for character language
model.

6 CONCLUSION

To bridge the gap between the insufficient understanding of the nature of datasets and model designs,
this paper proposes a generalized evaluation methodology to interpret model biases, dataset biases,
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Table 5: Illustration of the bucket-wise measure 3. Each histogram is obtained based on subtracting
the performance of Modell (M1) from Model2 (M2) on a bucket. For ease of presentation, we
roughly classify some attribute values into three categories: small(S), middle(M) and large(L.). For
example, the first column of the top left histogram represents M2 outperforms M1 when the attribute
R-eDen takes the small (S) values.

and their correlation, drawing on the complementary strengths of the fine-grained evaluation and
multi-dataset evaluation. We choose the NER task as a test case, the observations based on the
extensive experiments suggest directions for improvement and can drive the progress of this area.
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A  HYPER-PARAMETERS

Character- / Word-Level Sentence-

Level and Training

Hyper-parameters Value Hyper-parameters Value
Character emb. size 25 LSTM layer 1
CNN layer 1 LSTM hidden size 100
CNN kernel size 3 CNN layer 2
ELMo model Original CNN kernel size 3
BERT model bert-base-cased Learning rate 0.01
Flair model forward & backward Learning rate decay  0.05
GloVe emb. size 100 Batch size 10
Word random emb. size 100 Optimizer sgd

Table 6: Hyper-parameters for our evaluated models.

MODEL-WISE ANALYSIS ON THE OTHER DATASETS

Spearman

Standard Deviation

R-eDen
R-oov
MEF-tt
F-tok
R-eLen
R-eDen

Model

-100 6.3
-100 4.9
-100 6.2
-100 5.6
-100 9.5
-50 9.3
-50 94
13
12

-75
-61
-69
-68
-80 86
-86 21
-81 75
-70 68
-79 43
-84 79
-74 39
-81 86

100 50
100 30
100 20
100 30
100 -60
100 -60
100 -60
100 -70 -100
100 -70 -100
100 -70 -50
100 -70 -100
100 -70 -100

CRF++

CnonWrandlstmCrf
CennWnonelstmCrf
CennWrandlstmCrf
CennWglovelstmCrf
CcnnWglovecnnCrf
CcnnWglovelstmMIp
CelmWnonelstmCrf
CelmWglovelstmCrf
ChertWnonelstmMlp -47
CflairWnonelstmCrf -50
CflairWglovelstmCrf -32

-33
-80
-37
-48
-48
-43
-62
-52
-47

20 7 12
24 6.8 10
22 7.8 10
2272 9.1
21 94 94
21 7.4 89
19 8 8.8

Table 7: Model-wise measures Sf ; and S7;

on Wnut-16.

Spearman

Standard Deviation

R-eDen
R-oov
R-sLen
MF-et
F-ent
F-tok
R-eLen
R-eDen
R-oov

Model

R-sLen
MF-et
F-ent
F-tag
R-mor

40
20
-40
40
-40
-40 0.0
40 0.0
0.0 -11
-40 -14
-20 7.1

86 -100 2.3
86 -100 2.1 5.7
75 -100 2.3 3.5
86 -100 2.5 4.3
86 -100 2.3 2.5
54 -100 2.6 2.8
75 -100 2.7 3.5
71 -100 1.8 2.9
79 -100 2.0 4.3
86 -100 2.1 3.8

-18 3.8
-21
0.0
0.0

11

100 90
100 86
80 98
100 71
100 76
100 62
100 90
100 24
100 40
100 29

CRF++ 43
CnonWrandlstmCrf -70
CennWnonelstmCrf 5.0
CennWrandlstmCrf 15
CennWelovelstmCrf -12
CcnnWglovecnnCrf -27
CcnnWglovelstmMIp -82
CelmWnonelstmCrf 43
CelmWglovelstmCrf 30
CbertWnonelstmMlp 17

25
18

7.3
9.0
25173
18 5.8
17 6.3
18 4.9

39
1.8

13 8.6
18 12
35 14 10
2.8 14 8.9
2794 60
4694 6.1 11 2.0 8.2
35 12 7.8 1335582276
23 6.8 4.7 8.0 2.1 55 16 6.6
42 74 4.6 86 2054 12 6.1
2.6 7.7 4.6 8.0 2.0 3.4 15 4.7

CflairWnonelstmCrf -18
CflairWglovelstmCrf -13

40 -21
-40 21

100 76
100 55

18 7.1
17 6.0

93 -100 2.4 3.2 3.0 8.8 5.6 10 2.6 6.8
86 -100 1.5 3.5 238952922363

Table 8: Model-wise measures Sﬁ j and Sg" ;jon OntoNote-BN.

C BUCKET-WISE ANALYSIS
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Spearman Standard Deviation

S = = 5 = =
L > Q@ B o = 2 2 > Q3 o = ) 5
82454 % 288245228 ¢
Model A A > - - R~ = - PR - R A A7
CRF++ -30 14 -46 100 71 95 29 -100 2.6 4.9 3.9 19 13 18 5.7 83 26 14
CnonWrandlstmCrf -55 1.3 -57 80 43 93 67 -100 3.5 52521 1423 867225 17

CennWnonelstmCrf  -52 37 -71 80 89 98 57 -100 3.6 5.5 3.7 18 13 19 59 83 26 12
CennWrandlstmCrf  -63 24 -86 80 75 98 52 -100 3.6 54 4.6 17 12 18 5.8 10 25 11
CennWglovelstmCrf -48 52 -89 100 61 98 0 -100 3.7 56 5 13 9.1 16 5.1 8.8 24 11
CennWglovecnnCrf -8.3 39 -96 80 64 93 -12 -100 2.9 45 49 12 94 16 5.6 8.6 25 11
CcennWglovelstmMIp -35 43 -96 100 50 100 -7.1 -50 4.3 5.7 5.8 15 12 19 84 7.7 24 13
CelmWnonelstmCrf 67 64 -96 60 46 98 12 -100 1.7 5.6 4.5 15 9.2 14 43 6.6 18 11
CelmWglovelstmCrf 18 48 -89 60 39 98 -38 -100 1.7 4.7 3.4 13 83 13 53 63 17 93
CbertWnonelstmMIp 23 32 -82 8043 98 -7.1 -50223731137913 54319 9
CflairWnonelstmCrf -85 33 -89 80 54 100 12 -100 2.2 43 1.2 11 87 13 526922 6
CflairWglovelstmCrf -43 22 -43 80 64 88 19 -100 2.2 42 27 12971555 7229.1

Table 9: Model-wise measures Sﬁ j and SZ ;jon OntoNote-BC.

Spearman Standard Deviation
= =} =} = = =
L > 3@ g o = QL > O 7 o o= Q 5
589 4 54% 3387 5L 58 ¢
Model R A D - - - =T - TR - s R4
CRF++ -44 -42 14 80 100 93 64 -100 6.2 10 5.5 15 10 17 10 3.5 31 7.9
CnonWrandlstmCrf  -27 -25 11 100 89 88 93 -100 4.7 14 4.1 21 12 25 11 5.5 28 9.1

CcennWnonelstmCrf  -10 -32 21 80 77 93 64 -50 5.1 8.1

CennWrandlstmCrf  -53 -43 71 80 94 90 74 -100 4.3 8.3 139215 8 6.8 30 49
CennWglovelstmCrf  -60 0 64 80 89 95 71 -100 4.6 5.1 8.8 58 15 4.3 7.6 28 8.6
CennWglovecnnCrf  -38 -23 68 100 77 90 71 -100 42 54 3795212416427 5
CcennWglovelstmMIp -43 -45 64 100 60 95 64 -100 4.9 7.7 29 13 7.3 13 52 2.5 29 54
CelmWnonelstmCrf  -17 -37 57 100 94 95 71 -100 4.6 6.5 2.4 9.6 5.6 12 4.6 4.6 28 5.7
CelmWglovelstmCrf -37 -50 11 100 100 95 75 -100 5.1 7.3 5.4 10 5.7 13 4.1 4.9 26 6.6
ChertWnonelstmMlp -6.7 -4.5 21 80 83 8379 -5045563.6 11 6 1049 2.1 26 4.6
CflairWnonelstmCrf 15 -30 14 80 100 90 71 -100 4 7 5.1 13 6.5 13 5.6 3.6 26 5.5
CflairWglovelstmCrf -6.7 -37 61 80 100 86 71 -100 4.4 6.8 3.9 12 6.1 12 5.6 4.4 26 5.2

5
1
6 13751668 6330 5
5
7

Table 10: Model-wise measures Sﬁ j and SZ ;jon OntoNote-MZ.

Spearman Standard Deviation
S = s S = =
L2z 88 o = 8 2 2 88 = = a g
S 8FLEL € 38 8FLELERY E
Model R A A A T R A~ A= R A - -1
CRF++ -20 43 -21 80 50 90 8.6 -100 8.1 11 9.3 22222212 520 8.2

CnonWrandlstmCrf -55 0 54 80 54 98 -26 -100 13 11 9.5 27 21 27 16 12 21 8.7
CennWnonelstmCrf  -37 -4.8 -11 80 64 93 -29 -50 11 6.1 8.5 20 20 21 13 9.2 21 8.5
CennWrandlstmCrf =33 7.1 3.6 80 61 93 -37 -100 11 12 4.6 24 20 27 15 13 23 8.7
CennWglovelstmCrf -32 40 -86 80 50 98 -37 -100 11 11 5.6 18 14 22 12 9.9 23 9.9
CcennWglovecnnCrf  -32 -2.4 -63 80 54 81 -43 -50 11 13 5.1 22 18 26 17 13 24 13
CcennWglovelstmMIp -40 33 -71 80 68 95 -14 -50 11 9.2 5.2 21 17 26 16 11 23 13
CelmWnonelstmCrf -37 29 -39 80 64 98 -43 -50 11 9.9 5.8 17 14 23 10 8.4 24 9.2
CelmWglovelstmCrf -27 45 -14 80 71 98 -26 -50 9.7 10 3.1 17 13 21 11 8.8 26 9.5
CbertWnonelstmMlp -25 2.4 -54 80 71 98 -2.9 -50 8.7 5.1 5.7 16 13 20 12 7.1 28 10
CflairWnonelstmCrf -30 24 -79 80 71 95 -26 -50 10 11 7 18 16 21 10 8.9 24 89
CflairWglovelstmCrf -28 50 -61 80 61 98 8.6 -50 10 6.2 5.8 16 14 21 10 9.2 24 11

Table 11: Model-wise measures Sﬁ j and S§’7 ; on OntoNote-WB.
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Table 12: A supplement bucket-wise analysis results to Tab. 5. Each histogram is obtained based on
subtracting the performance of Modell (M1) from Model2 (M2) on a bucket. For ease of presentation,
we roughly classify some attribute values into three categories: small(S), middle(M) and large(L). For
example, the first column of the top left histogram represents M2 outperforms M1 when the attribute
R-eDen takes the small (S) values.
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Overall F1

M1:60.54; M2:60.17

M1:63.38; M2:63.26

M1:63.26; M2:60.54

M1:63.26; M2:66.35
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Table 13: Illustration of the bucket-wise measure 3 on OntoNote-BN and OntoNote-WB. Each
histogram is obtained based on subtracting the performance of Modell (M1) from Model2 (M2) on
a bucket. For ease of presentation, we roughly classify some attribute values into three categories:
small(S), middle(M) and large(L).
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