
Under review as a conference paper at ICLR 2020

SOLVING SINGLE-OBJECTIVE TASKS BY PREFERENCE
MULTI-OBJECTIVE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

There ubiquitously exist many single-objective tasks in the real world that are in-
evitably related to some other objectives and influenced by them. We call such
task as the objective-constrained task, which is inherently a multi-objective prob-
lem. Due to the conflict among different objectives, a trade-off is needed. A
common compromise is to design a scalar reward function through clarifying the
relationship among these objectives using the prior knowledge of experts. How-
ever, reward engineering is extremely cumbersome. This will result in behaviors
that optimize our reward function without actually satisfying our preferences. In
this paper, we explicitly cast the objective-constrained task as preference multi-
objective reinforcement learning, with the overall goal of finding a Pareto optimal
policy. Combined with Trajectory Preference Domination we propose, a weight
vector that reflects the agent’s preference for each objective can be learned. We
analyzed the feasibility of our algorithm in theory, and further proved in experi-
ments its better performance compared to those that design the reward function by
experts.

1 INTRODUCTION

In recent years, Reinforcement Learning (RL) has achieved great success in many complex tasks,
which commonly has a well-defined reward function (Mnih et al., 2015; 2016; Silver et al., 2016).
However, there ubiquitously exists a type of task, which we call objective-constrained task, that is
quite important but has not yet been well settled. As for the objective-constrained task, though only
a single objective (denoted the primary objective in the following context) needs to be optimized,
its difference from most RL scenarios lies in that there are some additional objectives in the envi-
ronment. On one hand, in order to solve the primary objective better, it is necessary to optimize
the additional objectives simultaneously. On the other hand, the additional objectives affect the pri-
mary objective more or less, whereas it is usually not clear how these additional objectives affect
the primary objective. Take DOOM (Kempka et al., 2016) as an example, the primary objective of
the agent is to kill as many enemies as possible. Meanwhile, there are additional objectives: picking
up bullets and medicines, which may help kill more enemies in general, but their relationship with
killing is still complex and ambiguous at every specific moment.

There have been two kinds of ways to solve the objective-constrained task. The first way focuses
on the primary objective exclusively, hoping that the agent could learn more flexible policies. Take
DOOM as an example, the environment gives back a reward whenever an enemy is killed by the
agent (see Figure 1(a)). The deficiencies of this setting include: 1) Due to delayed reward (Arjona-
Medina et al., 2018), it is difficult to find the relationship among the primary objective (killing
enemies) and the additional objectives (picking up bullets and medicines). 2) Even if the agent finds
that the additional objectives can help solve the primary objective better, the direction of policy
updates may not be biased toward this behavior. The reason is that many timesteps are spent on
these additional objectives without reward. Therefore, even if the cumulative return is greater, the
cumulative discount return is even smaller. The phenomenon is called myopic policy (Bertsekas &
Tsitsiklis, 1996), where a too low discount leads to highly sub-optimal policies. The second way is
trying to clarify the relationship among these objectives using the prior knowledge of experts (see
Figure 1(b)). One of the popular methods is to design a scalar reward that properly weighs the
importance of each objective. However, this will often result in behaviors that optimize our reward
function without actually satisfying our preferences (Russell, 2016; Everitt et al., 2017).

1

Under review as a conference paper at ICLR 2020

2/50

5/100

Kill Enemies

(a) Focusing on the primary ob-
jective only

Find Ammo
And Medicine

45/50

90/100

(b) Clarifying the trade-offs
among objectives by hand

Find Medicine

Find Ammo

Kill Enemies

Kill Enemies

10/50

15/100

(c) Learning the relationship
among objectives

Figure 1: Comparison performance in DOOM between our algorithm and the other two mainstream
works. (a) Due to the reward signal from killing only, it is difficult for the agent to find other
objectives, even if they are useful for the task. (b) Trying to design the reward function using the
prior knowledge of experts. This usually leads to the agent tending to get easy rewards rather than
satisfying our preference. (c) Instead of applying excessive prior knowledge, a learnable weight
vector is introduced to weigh the reward function of each objective and let the agent understand the
purpose of the task.

Multi-objectivization (Knowles et al., 2001) is the process of transforming a single objective prob-
lem into a multi-objective problem. Recent research (Bleuler et al., 2001; Knowles et al., 2001)
indicates that the methods from Pareto-based multi-objective optimization (MOO) may be helpful
to solve single-objective optimization problems. In this paper, we reveal that transforming a single-
objective reinforcement learning (SORL) to a multi-objective reinforcement learning (MORL) is
beneficial for solving the primary problem. Rather than analyzing trade-offs of these objectives by
hand, one of the keys of multi-objectivization is letting the agent learn the relationship among these
objectives and understand the purpose of the task see Figure 1(c). It means that, instead of apply-
ing excessive prior knowledge, a learnable weight vector will be introduced to weigh the reward
function of each objective. Different from obtaining a set of policies that approximate the Pareto
front in MORL (Liu et al., 2017), we are merely interested in a Pareto optimal policy which fully
reflects our preference information. Therefore, the known method (Brys et al., 2017) is not suit-
able for solving this task. The problem which only obtains some Pareto optimal policies in MORL
is called preference MORL. The core idea underlying preference MORL is to modify the Pareto
dominance relationship, so as to enhance the selection pressure of the algorithms and guide the
algorithm to converge quickly to the preference region. Consequently, we propose a new measure-
ment to estimate the agent’s performance, which is called Trajectory Preference Domination. This
can not only improve the efficiency of the algorithms to solve the optimization problems, but also
reduce the computational complexity. In detail, instead of using a scalar return that combines all
objectives, we adopt a new method of comparing agent’s behavior where more than one measure is
provided. Combined with the Trajectory Preference Domination, a weight vector that reflects the
agent’s preference for each objective can be learned. In this way, the learned reward function is
better shaped. The weight vector assigns suitable preference to additional objectives and reduces
the return of sub-optimal trajectories, so as to make the objective function of maximizing the cu-
mulative undiscounted return consistent with the optimal policy. Through theoretical analysis, our
algorithm effectively overcomes the problems of delayed reward and myopic policy in the objective-
constrained task.

In summary, we solve the objective-constrained tasks from a completely new perspective of multi-
objectivization. Our contributions are proposing a novel method to solve the problems and proving
its feasibility in theory. Further, in order to identify the quality of our algorithm, we design a
new benchmark problem: Efficient Delivery, which contains two additional objectives besides the
primary objective. The experimental results show that our algorithm can learn the trade-off among
these three objectives effectively and outperform those RL algorithms with the reward function
designed by experts.

2 RELATED WORK

The constrained Markov Decision Process (Achiam et al., 2017; Horie et al., 2019) is a formulation
for RL with constraints, where constraints on expectations of auxiliary costs must be satisfied. How-

2

Under review as a conference paper at ICLR 2020

ever, the relationship among these additional constraints and the primary objective is assumed to be
known. The research in this field mainly focuses on acquiring policies that satisfy fixed constraints.
Although there have been attempts to learn the reward function through inverse reinforcement learn-
ing (Abbeel & Ng, 2004; Ziebart et al., 2008), it is usually difficult to provide good demonstrations
in complex tasks.

The idea of multi-objectivization has mainly been studied in the evolutionary computation works.
There mainly exist two approaches for the multi-objectivization: either by decomposing the sin-
gle objective (Handl et al., 2008; Jähne et al., 2009), or by adding extra objectives (Jensen, 2004;
Brockhoff et al., 2007). Multi-objectivization through adding objectives typically involves the in-
corporation of some heuristic information or expert knowledge on the problem. The approach we
propose in this paper falls in this category. Jensen (2004) is one of the pioneers to use what he
calls helper objectives next to the primary one. He investigated the job-shop scheduling and trav-
eling salesman problems and found that additional objectives based on time and distance-related
intuitions respectively help solve these problems faster.

3 PRELIMINARY

RL (Sutton & Barto, 1998) is a paradigm that allows an agent to optimize its policy by interacting
with a given environment. The agent is rewarded or punished for its behavior, and the aim is to
maximize the accumulated reward over time. More formally, the environment is modeled as a
Markov Decision Process (MDP) < S,A, T, γ,R >. S = {s1, s2, . . . } is the state space of a
finite set of states, and A = {a1, a2, . . . } is the action space of a finite set of actions. When the
environment is in state st, executing action at makes the agent turn to state st+1 with probability
T (st+1 | st, at), and a reward signal r(st, at) is provided. Finally, γ, the discount factor, defines
how important future rewards are. The goal of the agent is to find a policy π that maximizes the
expected cumulative discounted return J π .

J π = E
[∞∑
t=0

γtR(st, at)
]

(1)

MORL (Liu et al., 2017) is a generalization of standard SORL, with the environment formulated as a
MOMDP < S,A, T, γ, ~R >. The difference between MORL and SORL lies in the reward function.
In MORL, each objective has its own associated reward function, so the reward is not a scalar value
but a vector:

~R(s, a) =
(
R1(s, a), . . . , Rm(s, a)

)
In MORL, policies are evaluated by their expected vector returns Jπ:

Jπ =

[
E
[∞∑
t=0

γtR1(st, at)
]
, . . . , E

[∞∑
t=0

γtRm(st, at)
]]

(2)

Usually, these objectives often conflict with each other, so any policy can only maximize one of the
objectives, or realize a trade-off among these conflicting objectives. In this case, it is difficult to
order the candidate policies completely, and the concept of Pareto optimum is usually used: policy
π1 strictly Pareto dominates policy π2, only if π1 performs strictly better than π2 at least on one
objective and performs as well as π2 on the other objectives. The set of non-dominated policies
are referred to as the Pareto optimum set or Pareto front. The focus of MORL so far has been on
developing new algorithms capable of finding a set of policies that approximate the Pareto front.

The most common approach (Moffaert et al., 2013; Vamplew et al., 2011) to deriving a policy is to
optimize a linear scalarization reward function ~w(s, a) · ~r(s, a) based on a weight vector ~w. The
weight vector expresses which trade-off solutions the decision-makers prefer. However, it is often
non-intuitive (Das & Dennis, 1997) for preference elicitation through setting the weight vector, and
often requiring significant amounts of parameter tuning processes.

3

Under review as a conference paper at ICLR 2020

4 THEOREM OF PREFERENCE MORL

To perform multi-objectivization, we must add some helper-objectives to the primary single-
objective problem. More precisely, the reward function is not a scalar value rp(st, at) but a vec-
tor ~rt = [rp(st, at), rh1

(st, at), . . . , rhn
(st, at)]. Generally speaking, ri = 1 (i = p,h1,. . . ,hn) is

provided when the agent accomplishes the ith objective, otherwise ri = 0. Moreover, we should
ensure that the optimal policy of the primary SORL is one of the policies in Pareto front of the
corresponding MORL.

∀π?,∃π′ ∈ Πm, π′ = π?,

where π? is an optimal policy to the SORL problem, and Πm is the set of Pareto optimal policies.

Typically, the helper-objectives are in conflict with the primary objective, at least for some parts
of the search space. Therefore, it is necessary to design a scalar reward that properly weights the
importance of the primary objective and helper-objectives so that the intention of the task is re-
flected. In our work, a kind of measures is allowed to provide feedback on our agent’s behavior and
use this feedback to learn a weight vector in order to reflect the intention of the primary problem.
Specifically, a new domination criterion is designed to compare the agent’s behavior.

Definition 1. (Trajectory Preference Domination): A full trajectory τ1 =(
(s10, a

1
0), . . . , (s1k−1, a

1
k−1)

)
preference dominates another full trajectory τ2 =(

(s20, a
2
0), . . . , (s2t−1, a

2
t−1)

)
, denoted as τ1 �pf τ2, if and only if one of the following two

conditions is satisfied.

(1) τ1 Pareto dominates τ2:

∀i,
∑
k

ri(s
1
k, a

1
k) ≥

∑
t

ri(s
2
t , a

2
t) ∧ ∃i,

∑
k

ri(s
1
k, a

1
k) >

∑
t

ri(s
2
t , a

2
t).

(2)
∑
k rp(s

1
k, a

1
k) >

∑
t rp(s

2
t , a

2
t).

In this way, Trajectory Preference Domination can be used to evaluate the agent’s behavior quantita-
tively. Obviously, if a full trajectory τ1 is better than another full trajectory τ2 in the primary SORL
problem, then using this preference domination criterion in the corresponding MORL problem can
still ensure that τ1 is better than τ2. So optimizing the reward function produced by Trajectory Pref-
erence Domination can guide the agent to quickly converge to the preference multi-objective region,
which is also preferred by the primary problem.

More precisely, the process of learning reward function can be modeled in the following way:

if (
(s10, a

1
0), . . . , (s1k−1, a

1
k−1)

)
�pf

(
(s20, a

2
0), . . . , (s2t−1, a

2
t−1)

)
,

then
r(s10, a

1
0) + · · ·+ r(s1k−1, a

1
k−1)� r(s20, a

2
0) + · · ·+ r(s2t−1, a

2
t−1),

where r(st, at) =
∑
i wi(st, at) · ri(st, at), and without losing its generality wi(st, at) ∈ [0, 1].

The weight vector determines that which objective the agent should achieve at a specific state.

Definition 2. < s, a > is the preference state-action pair Pre(s, a) if ∃i, ri(s, a) = 1, wi(s, a) > 0.
< s, a > is the non-preference state-action pair nPre(s, a) if ∀i, if ri(s, a) = 1, then wi(s, a) = 0.
And, < s, a > is trivial state-action pair Tri(s, a) if ∀i, ri(s, a) = 0.

Obviously, from the expression, we can see that the Pre(s, a) is the state-action pair that should
be contained in the optimal trajectories. Any trajectory containing nPre(s, a) cannot complete the
tasks. Tri(s, a) is the state-action pair that does not achieve any objectives.

Definition 3. The optimal trajectory cluster T is a set of trajectories containing all preference state-
action pairs but no non-preference state-action pairs.

Lemma 1. Starting from a state s, then the accumulated reward along τ is far greater than the
accumulated reward along τ ′, where τ ∈ T , τ ′ /∈ T , s ∈ τ .

4

Under review as a conference paper at ICLR 2020

Proof by contradiction:

∀τ ∈ T, τ =
(
(s10, a

1
0), (s11, a

1
1), . . . , (s1i , a

1
i), . . . , (s

1
k−1, a

1
k−1)

)
,

∃τ ′ /∈ T, τ ′ =
(
(s10, a

1
0), (s11, a

1
1), . . . , (s1i , a

2
i), . . . , (s

2
t−1, a

2
t−1)

)
.

Suppose that Lemma 1 is false, then:

r(s1i , a
1
i) +

k−1∑
m=i+1

r(s1m, a
1
m) ≤ r(s1i , a2i) +

t−1∑
n=i+1

r(s2n, a
2
n),

i−1∑
m=0

r(s1m, a
1
m)+r(s1i , a

1
i)+

k−1∑
m=i+1

r(s1m, a
1
m) ≤

i−1∑
n=0

r(s1n, a
1
n)+r(s1i , a

2
i)+

t−1∑
n=i+1

r(s2n, a
2
n), (3)

However, τ �pf τ ′, then:

i−1∑
m=0

r(s1m, a
1
m)+r(s1i , a

1
i)+

k−1∑
m=i+1

r(s1m, a
1
m)�

i−1∑
n=0

r(s1n, a
1
n)+r(s1i , a

2
i)+

t−1∑
n=i+1

r(s2n, a
2
n). (4)

Equation 3 is in conflict with equation 4, therefore, Lemma 1 is true.

Theorem 1. Suppose that the reward function has been learned, then the policy that aims to maxi-
mize the accumulated discounted reward over time can also maximize the accumulated reward. And
the quality of the policy is independent of discount factor γ.

Proof:

Considering the computational form of the Q-function, we prove it from the terminate state.

∀τ ∈ T, τ ′ /∈ T , take the last preference state-action pair < st−1, a
τ
t−1 > from τ , and we know

from the Lemma 1:

r(st−1, a
τ
t−1) > r(st−1, a

τ ′

t−1) + r(st, a
τ ′

t) + . . .

r(st−1, a
τ
t−1) > r(st−1, a

τ ′

t−1) + γ · r(st, aτ
′

t) + . . . , 0 < γ < 1

∴ max
i
Q(st−1, a

i
t−1) = Q(st−1, a

τ
t−1)

Take the next-to-last preference state-action pair< st−i, a
τ
t−i >, i > 1 from τ . According to the

Lemma 1, starting from st−i, we know that the accumulated reward along τ is greater than the
accumulated reward along τ ′.

It is possible that < st−i, a
τ
t−i >∈ τ ′, then:

r(st−i, a
τ
t−i) ≥ r(st−i, aτ

′

t−i), if aτt−i = aτ
′

t−i

According to Definition 2, the reward value of those trivial state-action pairs and non-preference
state-action pairs is 0. Add those trivial state-action pairs between st−i and st−1, so as to complete
the reward over trajectory.

If st−1 ∈ τ ′, then:

r(st−i, a
τ
t−i) + 0 + · · ·+ 0 + r(st−1, a

τ
t−1)

> r(st−i, a
τ ′

t−i) + 0 + · · ·+ 0 + r(st−1, a
τ ′

t−1) + r(st, a
τ ′

t) + . . .

When choosing a trajectory that the time-steps from st−i to st−1 is shortest, then:

r(st−i, a
τ
t−i) + γ · 0 + · · ·+ γm−1 · 0 + γm · r(st−1, aτt−1)

> r(st−i, a
τ ′

t−i) + γ · 0 + · · ·+ γm−1 · 0 + γm · r(st−1, aτ
′

t−1) + γm+1 · r(st, aτ
′

t) + . . .

5

Under review as a conference paper at ICLR 2020

∴ max
j
Q(st−i, a

j
t−i) = Q(st−i, a

τ
t−i) (5)

Similarly, if st−1 /∈ τ ′ or < st−i, a
τ
t−i >/∈ τ ′, obviously equation 5 holds.

For the same reason, we can prove that the Q-value of any preference state-action pairs is larger than
the Q-value with other actions. And, the Q-value reaches the maximum when the corresponding
actions make the shortest timesteps from any trivial state to the next preference state. Therefore,
the policy that aims to maximize the accumulated discounted reward over time can also maximize
the accumulated reward. Moreover, we do not make any assumptions about discount factor γ in
the proof, so the quality of the policy is independent of γ in theory if exploration tends to infinite
sufficiency. In addition, the weight vector assigns preference to helper-objectives that are typically
helpful for exploring better solutions in the primary objective.

5 ALGORITHM OF PREFERENCE MORL

After converting the single-objective problem to a preference multi-objective problem, a policy π :
s→ a and a weight estimate W : s× a→ ~w are parametrized by the neural network, respectively.

The two networks are updated iteratively by three processes:

1. The policy π interacts with the environment with an exploration rate ε to produce a set of
full trajectories {τ1, . . . , τm}. Each trajectory τ i needs to evaluate its cumulative undis-
counted return for each objective and then puts the trajectory with its evaluation ei into a
trajectory buffer Dtrj .

2. Randomly select pairs of trajectories (τ i, τ j) from the buffer Dtrj , and compare their eval-
uation using Trajectory Preference Domination, then the parameters of the mapping W are
optimized via supervised learning to fit the comparisons.

3. The parameters of π are updated by a traditional reinforcement learning algorithm, in order
to maximize the discount sum of predicted rewards r(st, at) =

∑
i wi(st, at) · ri(st, at).

5.1 SETTING TRAJECTORY BUFFER

It is obvious that there must be lots of different trajectories for learning a true weight vector. An
important problem is that what kind of buffer is more suitable for learning reward function. Making
the replay buffer larger so that early trajectories obtained through random exploration are still present
is impractical for two reasons; (1) Unless the buffer is infinite, older trajectories will eventually be
erased before acquiring the true reward function. (2) Even if all past trajectories are still present,
learning from an increasing number of trajectories remains hard, because the learning speed of each
iteration will be slower and slower. Therefore, instead of retaining all past trajectories, the following
two steps are taken to ensure effective learning of weight vector: 1) retaining top K preference
optimal trajectories in the current buffer; 2) replacing the remaining M − K trajectories in the
current buffer with new trajectories sampled by the current round. The purpose of the first step is to
improve the utilization rate of preference trajectories and push reward learning towards the preferred
direction. The second step can enable the reward function to be effectively learned in the case of the
limited buffer. In addition, when there is a greater diversity of trajectories, it is more helpful for the
reward learning and larger exploration rate can be realized.

5.2 OPTIMIZING THE WEIGHT VECTOR AND THE POLICY

We can interpret the weight estimation W as a preference predictor if we view w as a latent factor
explaining which objective the agent should prefer at a specific time and state. Assume that the
probability of preferring a trajectory τ i depends exponentially on the value of the latent reward
summed over the length of the trajectory:

P [τ1 �pf τ2] =
exp

∑∑
i wi(s

1
t , a

1
t) · ri(s1t , a1t)

exp
∑∑

i wi(s
1
t , a

1
t) · ri(s1t , a1t) + exp

∑∑
i wi(s

2
t , a

2
t) · ri(s2t , a2t)

. (6)

6

Under review as a conference paper at ICLR 2020

We optimize w to minimize the cross-entropy loss:

loss(w) = −
∑

{(τ1,e1),(τ2,e2)}⊂D

[
I(e1 �pf e2) · logP [τ1 �pf τ2]

+ I(e2 �pf e1) · logP [τ2 �pf τ1]
]
,

(7)

where I(e1 �pf e2) =

{
1 if e1 �pf e2,
0 otherwise.

Equation 6 and 7 are very similar to preference learning proposed by Christiano et al. (2017).
The main difference lies in the comparison between trajectories, the latter used a large amount
of human prior knowledge, which is usually related to tasks. Instead, Trajectory Preference
Domination we proposed is agnostic to tasks. After learning weights w, the reward function
r(st, at) =

∑
i wi(st, at) · ri(st, at) can be used to optimize the policy π. We can train this policy

using any RL algorithm that is appropriate for the domain. In this paper, Deep Q-learning (DQN)
(Mnih et al., 2013) is adopted.

6 EXPERIMENTS AND RESULTS

6.1 EFFICIENT DELIVERY

To identify the quality of our algorithms, we design a new benchmark problem (Figure 2): Efficient
Delivery. In this game, the purpose of the agent is to control an unmanned aerial vehicle (UAV) to
deliver as many packages as possible in the city (represented by 10*10 grid world). When the current
delivery location is reached, the next delivery location appears at some location of the city. However,
because of its limited battery capacity, the UAV cannot fly for too long. Therefore, a charging station
is set in the upper left corner of the grid world. In this case, the agent needs to weigh the importance
of delivery and charging at every moment so as to deliver as many packages as possible in a fixed
period of time (100 timesteps). Moreover, in order to make the task more interesting and more
challenging, an accelerator appears at the same time as the current delivery location appears, but
their locations are different. Once the agent gets an accelerator, its flight speed will double in a short
time (8 timesteps) and the accelerator disappears until the next delivery location appears. In detail,
when the current delivery and accelerator locations are relatively close, even though it is a longer
distance for the agent to obtain the accelerator firstly and then fly to the current delivery location
than to reach the current delivery location directly, the continuous acceleration may make the agent
reach the next delivery location faster. However, when the current accelerator location is far away
from the delivery location, it is not worth the effort to fly through such a long distance to find the
accelerator for short-term acceleration. In summary, in order to deliver as many packages as possible
in a fixed period of time, it is necessary for the agent to weigh the importance of the three objectives
at every moment: delivery, charging and acceleration.

6.2 RESULTS

We test the performance of our algorithm in two different settings. The first is that there are only
two objectives: delivery and charging, whose importance needs to be clearly weighed. The second
is that preferences for all three objectives need to be optimized. Except for the number of objectives,
all hyper-parameters are the same in two settings. The configuration of these hyper-parameters is as
follows: γ = 0.9, the size of trajectory buffer M = 300. The baseline is DQN optimized by the
reward function which is provided only from the primary objective–delivery.

Algorithm Effectiveness Testing. To solve the delivery task, the agent must learn to weigh the
importance of the three objectives at every moment. However, the existing methods require the
task-specific prior knowledge such as a well-defined reward function (Mnih et al., 2015; 2016) or
demonstration samples (Abbeel & Ng, 2004). To our knowledge, our work is the first one to solve
such tasks through a learning method. As shown in Figure 3(a), our algorithm can make full use of
the objectives of charging and acceleration to boost up the performance of the delivery task. The
number of delivery is obviously the most in the situation with all three objectives, compared to the
situation with two objectives or with the reward of delivery only. This result not only shows the

7

Under review as a conference paper at ICLR 2020

Charging

Speed up

Delivery

(a) Three objectives

Efficient

(b) Efficient delivery

Inefficient

(c) Inefficient delivery

Figure 2: A sketch of Efficient Delivery. The purpose of the agent is to control the UAV to delivery
as many packages as possible. When the current delivery location is reached, the next delivery
location appears. In order to accomplish the delivery task more efficiently, it is necessary for the
agent to weigh the importance of delivery, charging and acceleration at every moment.

(a) (b)

Figure 3: Performance comparison on Efficient Delivery games. (a) We compare our algorithm us-
ing all three objectives (delivery, charging and acceleration) with that using two objectives (delivery
and charging), as well as DQN, which uses the reward function from delivery only. (b) We compare
the performance of our algorithm under different discount factor γ.

importance of acceleration to the task, such as helping the agent charge and deliver faster, but also
identifies that our algorithm can effectively learn the trade-off among multiple objectives. No matter
using two or three objectives, our algorithm performs significantly better than DQN, which is simply
optimized through a reward from delivery only. There are mainly two reasons. One reason is the
delayed reward in DQN. Although the agent is charged, it does not receive any rewards. Therefore,
it is difficult to find the relationship among these objectives, which is essential to understanding
the task. The other reason is the myopic policy in DQN. Because of misalignment between the
behavior and the cumulative discount return, the agent focuses mainly on high but short-term return.
However, through multi-objectivization, the learned reward function is better shaped. The learning
procedure of weight vector assigns preferences to additional objectives that are typically helpful for
more delivery and corrects the relationships between the behavior and discount return.

Algorithm Robustness Testing. Some evidence (Prokhorov & Wunsch, 1997; Bertsekas & Tsitsik-
lis, 1996) show that the discount factor γ has a great influence on the performance of RLs. Smaller γ
may lead to faster convergence, but poorer sub-optimal policy. However, in our framework, as The-
orem 1 proves, different γs induce the common optimal policy. Figure 3(b) shows the performance
of our algorithm under different discount factors γ. The performances under three different settings
are proximately the same, even though there is subtle fluctuation. The change of γ by∼ 20% results
in the change of the algorithm performance by ∼ 15%. Compared to the work of Xu et al. (2018),
where the change of γ by only ∼ 5% results in a large change of performance by ∼ 30%, our
algorithm is highly robust against γ. Therefore, the difficulty of myopic policy can be effectively
alleviated in our framework.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1. ACM, 2004.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 22–31.
JMLR. org, 2017.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. arXiv preprint
arXiv:1806.07857, 2018.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Scien-
tific Belmont, MA, 1996.

Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zitzler. Multiobjective genetic program-
ming: Reducing bloat using spea2. In Congress on Evolutionary Computation Cec, 2001.

Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein, Frank Neumann, and Eckart
Zitzler. Do additional objectives make a problem harder? In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, pp. 765–772. ACM, 2007.

Tim Brys, Anna Harutyunyan, Peter Vrancx, Ann Nowé, and Matthew E Taylor. Multi-
objectivization and ensembles of shapings in reinforcement learning. Neurocomputing, 263:48–
59, 2017.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, pp. 4299–4307, 2017.

Indraneel Das and John E Dennis. A closer look at drawbacks of minimizing weighted sums of ob-
jectives for pareto set generation in multicriteria optimization problems. Structural optimization,
14(1):63–69, 1997.

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement
learning with a corrupted reward channel. arXiv preprint arXiv:1705.08417, 2017.

Julia Handl, Simon C Lovell, and Joshua Knowles. Multiobjectivization by decomposition of scalar
cost functions. In International Conference on Parallel Problem Solving from Nature, pp. 31–40.
Springer, 2008.

Naoto Horie, Tohgoroh Matsui, Koichi Moriyama, Atsuko Mutoh, and Nobuhiro Inuzuka. Multi-
objective safe reinforcement learning: the relationship between multi-objective reinforcement
learning and safe reinforcement learning. Artificial Life and Robotics, pp. 1–8, 2019.

Martin Jähne, Xiaodong Li, and Jürgen Branke. Evolutionary algorithms and multi-objectivization
for the travelling salesman problem. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pp. 595–602. ACM, 2009.

Mikkel T Jensen. Helper-objectives: Using multi-objective evolutionary algorithms for single-
objective optimisation. Journal of Mathematical Modelling and Algorithms, 3(4):323–347, 2004.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, 2016.

Joshua D Knowles, Richard A Watson, and David W Corne. Reducing local optima in single-
objective problems by multi-objectivization. In International conference on evolutionary multi-
criterion optimization, pp. 269–283. Springer, 2001.

Chunming Liu, Xin Xu, and Dewen Hu. Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017.

9

Under review as a conference paper at ICLR 2020

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

K Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforcement
learning: Novel design techniques. In IEEE Ssci, 2013.

Danil V Prokhorov and Donald C Wunsch. Adaptive critic designs. IEEE transactions on Neural
Networks, 8(5):997–1007, 1997.

Stuart Russell. Should we fear supersmart robots? Scientific American, 314(6):58–59, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. IEEE Transactions on
Neural Networks, 9(5):1054–1054, 1998.

Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Empirical
evaluation methods for multiobjective reinforcement learning algorithms. Machine Learning, 84
(1-2):51–80, 2011.

Zhongwen Xu, Hado Van Hasselt, and David Silver. Meta-gradient reinforcement learning. 2018.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. 2008.

10

	Introduction
	Related Work
	Preliminary
	Theorem of Preference MORL
	Algorithm of Preference MORL
	Setting Trajectory Buffer
	Optimizing the weight vector and the policy

	EXPERIMENTS AND RESULTS
	Efficient Delivery
	RESULTS

