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ABSTRACT

We propose using active learning based techniques to further improve the state-
of-the-art semi-supervised learning MixMatch algorithm. We provide a thorough
empirical evaluation of several active-learning and baseline methods, which suc-
cessfully demonstrate a significant improvement on the benchmark CIFAR-10,
CIFAR-100, and SVHN datasets (as much as 1.5% in absolute accuracy). We also
provide an empirical analysis of the cost trade-off between incrementally gather-
ing more labeled versus unlabeled data. This analysis can be used to measure the
relative value of labeled/unlabeled data at different points of the learning curve,
where we find that although the incremental value of labeled data can be as much
as 20x that of unlabeled, it quickly diminishes to less than 3x once more than
2,000 labeled example are observed.

1 INTRODUCTION

Sophisticated machine learning models have demonstrated state-of-the-art performance across many
different domains, such as vision, audio, and text. However, to train these models one often needs
access to very large amounts of labeled data, which can be costly to produce. Consider, for example,
laborious tasks such as image annotation, audio transcription, or natural language part-of-speech
tagging. Several lines of work in machine learning take this cost into account and attempt to reduce
the dependence on large quantities of labeled data. In semi-supervised learning (SSL), both labeled
and unlabeled data (which is often much cheaper to obtain) are leveraged to train a model. Unla-
beled data can be used to learn properties of the distribution of features, which then allow for more
sophisticated and effective regularization schemes. For example, enforcing that examples close in
feature space are labeled similarly. Another, different, approach for address costly labeled data is
that of active learning (AL). Here, a model is still trained using only labeled data, but extra care
is taken when deciding which unlabeled data examples are to be labeled. Often, the data will be
labeled iteratively in batches, where at each iteration an update is made to a current view of the
distribution over labels and the next batch of points is selected from regions where the distribution is
least certain. As discussed in depth in the following section, the approaches of semi-supervised and
active learning can be complementary and used in conjunction to help solve the problem of costly
in labels.

Our Contributions: In this paper, we take MixMatch, the leading semi-supervised learning tech-
nique, and thoroughly evaluate its performance when combined with several active learning meth-
ods. We find very encouraging results, which show that state-of-the-art performance is achieved in
the limited label setting on CIFAR-10, CIFAR-100, and SVHN datasets, demonstrating that combin-
ing active learning techniques with MixMatch provides a significant improvement. Furthermore, we
perform an analysis, exploring the incremental benefits of labeled versus unlabeled data at different
points in the learning curve. Given the relative costs of labeled and unlabeled data, such an analysis
aids us in deciding how to best spend a given budget in acquiring labeled versus unlabeled data.

The remainder of the paper is organized as follows: We first give a high-level review of active
learning related work and the MixMatch algorithm in Sections 2 and 3, respectively. The evalu-
ated methods and experimental setup are described in Section 4, while the experimental results are
presented and analyzed in Section 5. Finally, we conclude in Section 6.
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2 ACTIVE LEARNING AND RELATED WORK

Active learning (or active sampling) methods are designed to answer the question: Given a limited
labeling budget, which examples should I expend my budget on? Like semi-supervised learning,
active learning is particularly is useful when labeled data is costly or scarce for any host of reasons.
Generally, an active learning algorithm iteratively selects samples to label, based on the data labeled
thus far as well as the model family being trained. Once the labels are received, they are added
to the labeled training set and the process continues to the next iteration, until the budget is finally
exhausted. Thus, active learning can be considered to be part of the model training process, where
classical model training is interleaved with data labeling. Here we give a very brief introduction to
a few classes of active learning algorithms, and their use with semi-supervised learning.

There are several active learning algorithms with strong theoretical guarantees, which either explic-
itly or implicitly define a version space that maintains the set of “good” candidate classifiers based
on the data labeled thus far. The algorithms then suggest labeling points that would most quickly
shrink this version space (Cohn et al., 1994; Dasgupta et al., 2008; Beygelzimer et al., 2009). In
practice, tracking this version space can be computationally inefficient for all but the simplest (e.g.
linear) model families. Another, related approach, is that of query-by-committee, where points are
selected for labeling based on the level of disagreement between a committee of classifiers, which
have been selected using the currently labeled pool. Query-by-committee methods benefit from
theoretical guarantees (Abe & Mamitsuka, 1998), as well as practical implementations based on
bagging (Seung et al., 1992). These methods, along with uncertainty sampling that we introduce
next, are only a few prototypical examples of active learning algorithms. For a broader introductory
survey of algorithms and techniques, please see Settles (2009) and the references therein.

Arguably, the most popular and practically effective active learning technique is that of uncertainty
or margin sampling (Lewis & Gale, 1994; Lewis & Catlett, 1994). At each iteration, this approach
first trains a model using the currently labeled subset, then it makes predictions on all unlabeled
points under consideration and, finally, it queries labels for those points where the confidence in the
models’ prediction is the smallest. The notion of confidence can be defined several different ways,
as will be detailed in Section 4.2. In this light, we can see that active learning methods and semi-
supervised learning methods can work in a complementary fashion. At a high level, active learning
methods seek to find training examples for which we have least confidence in the underlying labels
in order to query for those labels, while semi-supervised learning algorithms can focus on training
examples where there is strong confidence in the label distribution and reasonable assumption con-
clusions can be made regarding unlabeled examples. It is no surprise that combining active learning
and semi-supervised learning has been investigated previously (Hoi et al., 2009; Muslea et al., 2002).
We highlight a few of these examples below (also see Section 7.1 of Settles (2009)).

One of the earliest lines of work combining the two techniques is that of McCallum & Nigam
(1998), where the query-by-committee framework is combined with an expectation maximization
(EM) approach that is used to provide pseudo-labels to those examples that have not been queried
for true underlying labels by the active learning method. They show that, on a text classification
task, the improvement in label complexity of the combined method is better than what either of
semi-supervised or active learning method alone can provide. In the work of Zhu et al. (2003),
the two approaches are combined using a Gaussian random field model. Given a model trained on
the union of currently labeled and unlabeled datasets, the expected reduction in the estimated risk
due to receiving the label of a particular example can be computed and greedily optimized. Tur
et al. (2005) and Tomanek & Hahn (2009) both combine uncertainty sampling to label uncertain
points with machine labeling of confident examples and show their effectiveness in applications to a
spoken language understanding and sequence labeling tasks, respectively. In this work, we combine
uncertainty-sampling based active learning method and demonstrate that the already state-of-the-art
semi-supervised performance of the MixMatch algorithm can be significantly further improved.

3 MIXMATCH

We only focus on deep learning based semi-supervised learning (SSL) in this work. We use the
framework from Oliver et al. (2018) to perform a realistic evaluation of the results (same splits of
the labeled/unlabeled initial data, same network architecture). Recent popular techniques are built
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around two concepts: Consistency Regularization (Mean Teacher (Tarvainen & Valpola, 2017),
Π-model (Laine & Aila, 2017),Virtual Adversarial Training (VAT) (Miyato et al., 2018)) which
enforces that two augmentations of the same image must have the same label and Entropy Mini-
mization (Pseudo-Label Lee (2013), Entropy Minimization (EntMin) (Grandvalet & Bengio, 2005))
which states that a prediction should be confident. These two concepts are sometimes combined,
for example the technique VAT EntMin is a combination of VAT and Entropy Minimization and
MixMatch is also using both of these concepts.

MixMatch, a recent state-of-the-art semi-supervised learning (SSL) technique, is designed around
the idea of guessing labels for the unlabeled data followed by using standard fully supervised training
(Berthelot et al., 2019). Consider a classification task with classes C. The input of MixMatch are a
batch of B (images, labels) pairs X = {(xb, pb)}1≤b≤B , where each label pb is an one-hot vector
over the class C, and a batch of unlabeled examples (images) U = {ub}1≤b≤B . Note, in this section,
a “batch” is in reference to the subset of points used in the iterative optimization procedure that is
used to train the model, while elsewhere in the paper “batch” refers to a set of newly labeled points
that are added to the training set during the iterative active learning process.

Label Guessing. Label guessing is done by averaging the training model’s own prediction on
several augmentation ûb,i of a same image ub. This average prediction is then sharpened to
produce a low-entropy soft label qb for each image ub. Formally, the average is defined as
q̄b = 1

K

∑K
i=1 pmodel(y|ûb,k; θ) where pmodel(y|x; θ) is the model’s output distribution over class

labels y on input x with parameters θ. A sharpening is applied to the average prediction: qb =
Sharpen(q̄b). In practice, MixMatch uses a standard softmax temperature reduction computed as
Sharpen(p)i := p

1/T
i /

∑|C|
j=1 p

1/T
j where T = 1/2 is a fixed hyper-parameter.

Data Augmentation. MixMatch only uses standard (weak) augmentations. For the SVHN dataset,
we use only random pixel shifts, while for CIFAR-10 and CIFAR-100 we also use random mirroring.

Fully supervised. Finally, MixMatch uses fully supervised techniques. In practice, it use weight
decay and MixUp across the labeled and unlabeled data (Zhang et al., 2017). In essence, MixUp gen-
erates new training examples by computing the convex combination of two existing ones. Specifi-
cally, it does a pixel level interpolation between images and pairwise interpolation between probabil-
ity distribution. The resulting interpolated label is a soft label. Such examples encourage the model
to make smooth transitions between classes. Let X̂ = {(x̂b, pb)}1≤b≤B and Û = {(ub, qb)}1≤b≤B
be the results of data augmentation and label guessing. MixMatch shuffles the union of the two
batches X̂ ∪ Û into a batch W of size 2B and performs MixUp to produce the output:

• X ′ = MixUp(X̂,W[1,...,B]) (mixing up X̂ with the first half of W ) and

• U ′ = MixUp(Û ,W[B+1,...,2B]) (mixing up Û with the second half of W ).

Given two examples (x1, p1) and (x2, p2) where x1, x2 are feature vectors and p1, p2 are one-hot
encoding or soft label, depending on whether the corresponding feature vector is labeled or not,
MixMach performs MixUp as follows:

(1) Sample λ ∼ Beta(α, α) from a Beta distribution parameterized by the hyper-parameter α;
(2) For λ′ = max(1− λ, λ), compute x′ = λ′x1 + (1− λ′)x2 and p′ = λ′p1 + (1− λ′)p2.

Loss function. Similar to other SSL paradigms, the loss function of MixMatch consists of a sum of
two terms: (1) a cross-entropy loss between a predicted label distribution with the ground-truth label
and (2) a Brier score (L2 loss) for the unlabeled data which is less sensitive to incorrectly predicted
labels. On a MixMatch batch (X ′, U ′), the loss function is L = LX + λULU where

LX =
1

|X ′|
∑

(x,p)∈X′

CrossEntropy(p, pmodel(y|x; θ)), (1)

LU =
1

|C||U ′|
∑

(u,q)∈U ′

‖q − pmodel(y|u; θ)‖2 . (2)

Here λU is the hyper-parameter controlling the importance of the unlabeled data to the training
process. We set λU to be 75 for CIFAR-10, 150 for CIFAR-100, and 250 for SVHN. We also fix the
MixUp hyper-parameter α = 0.75.
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4 PROPOSED METHOD AND ANALYSIS

In this section, we describe our proposed method for introducing active learning into MixMatch,
we then review several specific active learning strategies which we will be evaluated, and finally we
also describe our methodology for analyzing the relative value of labeled versus unlabeled data.

4.1 PROPOSED METHOD

In the standard semi-supervised learning setting, a classifier is trained with n samples where only
m of them are labeled (m � n). The m labeled samples are usually considered to be a fixed and
uniformly sampled subset from the n samples. This is also the setting that the original MixMatch
algorithm considers (Berthelot et al., 2019). In this section, we propose MMA, a combination of
MixMatch and active learning as well as define a method for comparing the relative value of labeled
and unlabeled samples.

Direct gains from active learning A natural extension is to consider whether using active learning
in place of uniform sampling can improve MixMatch results. In practice, instead of randomly sam-
pling m samples to be labeled all at once, we incrementally grow the labeled set as the training pro-
cess goes on. Starting with a fixed pool of n unlabeled sample, we first randomly sample a small la-
beled set of L0 of sizem0. This set is grown k times as the training progresses L0 ⊂ L1 ⊂ . . . ⊂ Lk
with respective sizesm0 < m1 < . . .mk. The selection process to determine what labels Li−1−Li
to add at step i is done using active learning. For example, from a fixed set of n samples, we start
with a set L0 formed by labeling 250 randomly selected samples. After training for some time,
we can grow by 50 unlabeled examples that the current model considers “hardest” (i.e., the most
uncertain ones).

Determining the worth of labels Both labeled data and unlabeled data have a cost. It is commonly
the case that labeled data is much more expensive than unlabeled data. From a joint active learning
and semi-supervised learning perspective, two datasets can be grown: the labeled set L and the
unlabeled set U. In this context, the question to be answered is this: with the goal to reach a target
accuracy accuracy target , at a time step t is it better to grow the labeled set or the unlabeled set? As
a corollary question, how do various accuracy targets relate to each other? In other words, can the
model response to data be predicted from lower accuracy targets?

4.2 COMPARISON OF POPULAR AL METHODS

It is a common strategy in active learning to select the samples that the current model, trained on the
data that is available thus far, is most uncertain about. However, directly selecting the most uncertain
samples can result in a large number of similar samples. Existing methods avoid this issue by picking
uncertain yet diverse samples. See Settles (2009) for a survey of these and several other active
learning techniques. The design of MMA’s active learning strategies considers two components: (1)
uncertainty measure and (2) diversification.

Measuring uncertainty. Following previous active learning frameworks, MMA gathers labels of the
samples that the current model is most uncertain about. Intuitively, the uncertain samples are often
the most helpful for improving the model. The first question we ask is how should we measure
uncertainty? We consider two approaches.

For a sample x, the current model predicts its label as a probability vector pmodel(y|x; θ) ∈ [0, 1]|C|

where the c-th dimension pmodel(y|x; θ)c is the probability of assigning x to class c. Let s(x) be the
uncertainty of sample x. Common ways of measuring uncertainty include

• max: Measuring the maximum confidence that the model has in any one label
s(x) := 1−maxc{pmodel(y|x; θ)c} .
• diff2: Measuring the gap margin between the two most likely classes,
s(x) := 1− (pmodel(y|x; θ)c1 − pmodel(y|x; θ)c2(x)), where c1 and c2 are the classes with
the 1st and 2nd highest probabilities.

Additionally, we can reuse a MixMatch technique to make the uncertainty measurement more robust.
Instead of using the model prediction on the original sample, we can average its predictions from
K different augmented versions of the example. We call this method aug and combine it with max
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and diff2. It results in two more measurement methods: max.aug and diff2.aug. We choose
K = 2 to stay consistent with the setting of MixMatch.

Diversification. Always simply sampling the most uncertain samples (which we will call the
direct method) can cause the problems that the sampling targets specific subsets of the data
(typically those larger classes). In such cases, it is helpful to add a form of regularization to ensure
diversity within our sampled batch. MMA considers two commonly used diversification methods:

• kmeans: We first cluster all unlabeled samples using the k-means clustering algorithm (Lloyd,
1982). At each sampling step, we select the top-n uncertain samples from each cluster where the
sample size n is proportional to the cluster size. We fix the number of clusters to be 20.
• infoD: the information density framework adds an additional term that measures how represen-

tative the sample is, i.e., for a sample x, we calculate s′(x) = s(x)×
(

1
|U|
∑
x′∈U sim(x, x′)

)β
for some uncertainty measure s(·), similarity measure sim(·, ·) and some user-defined value β.
Note, if |U| is prohibitively large, s′(·) can be computed using a uniform random subsample.
The infoD method picks the samples with highest s′ values. In our experiment, we set β = 1
and set sim(·, ·) to be the cosine similarity.

In both methods, we need some representation of samples to measure the distance or similarity of
samples. Instead of using the original feature vector, in our experiments, we use the output the
second from the last layer of the neural network as the embedding representation of the input.

Other active learning methods. Although other families of active learning algorithms exist (such
as those found in Settles (2009)), we find that they are not easily adapted to this setting complex
and costly to train neural networks. Ensemble-based methods, such as query-by-committee (Seung
et al., 1992), require training many copies of a model resulting in a resource and potentially time
bottle-neck. Version-space based approaches, such as IWAL (Beygelzimer et al., 2009) or DHM
(Dasgupta et al., 2008) are not readily applicable in a setting with a complex hypothesis space,
where either explicitly or implicitly tracking the version space becomes a complex optimization
problem itself. Perhaps expected model change (Settles et al., 2008) or expected error reduction
(Roy & McCallum, 2001) are the baseline methods that are the next most amenable to the setting,
however, even in these cases one would need to compute gradients/predictions for each individual
example and each possible labeling. In cases where the number of labels is large, e.g. CIFAR-100,
the direct use of such methods become impractical.

4.3 COST ANALYSIS MODEL FOR LABELED VS UNLABELED DATA

In this section, we formalize how we propose to perform the cost analysis of adding labeled vs
unlabeled data. Let cl and cu be the costs of obtaining a new labeled sample and a new unlabeled
sample respectively. For desired accuracy accuracy target , we can obtain several groups of (labeled,
unlabeled) samples that allow the trained model to reach this accuracy. In a realistic setting, as long
as accuracy target is less than the model best accuracy, such groups can be created by removing data
from U and L until the model reaches the desired accuracy. Formally, let’s consider an ordered
series of training sets Ti,j = (Li, Ui,j) where ∀i < k, Li ⊂ Lk and ∀j < h, Ui,j ⊂ Ui,h. Given
two contiguous training sets Ti,j and Ti+1,k reaching accuracy target , we can estimate under what
condition it is better to add labeled data by solving: cl|Li|+ cu|Ui,j | > cl|Li+1|+ cu|Ui+1,k|. In
doing so, we obtain the cost ratio cratio(i) of unlabeled data over labeled data:

cratio(i) = (|Ui,j | − |Ui+1,k|)/ (|Li+1| − |Li|) .

If cratio(i) > cl/cu, we can conclude it is better to collect labeled data and otherwise it is better to
collected unlabeled data.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of MMA by applying it to image classification tasks under
the standard semi-supervised and active learning setting. We compare the performance of different
active learning variants of MMA with the non-active MixMatch. As an additional contribution, we
conduct an extensive cost analysis of active data labeling under varied dataset sizes.
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5.1 DATASETS, EXPERIMENT SETTINGS, AND IMPLEMENTATION DETAILS

We evaluate the effectiveness of MMA on three semi-supervised learning benchmarks: CIFAR-10,
CIFAR-100 (Krizhevsky et al. (2009)), and SVHN (Netzer et al. (2011)). CIFAR-10 and CIFAR-
100 each consists of 50000 images classified into 10 and 100 classes. SVHN consists of 73257
images of street view house number, classified into 10 classes. An extra set of 531131 samples
exists for SVHN; we call the combination of the two, which is a dataset with 604388 examples,
SVHN+Extra.

Our implementation is primarily based on that of MixMatch (see Berthelot et al. (2019) and GitHub
repo referenced therein). The implementation uses the wide ResNet-28 model in Oliver et al. (2018).
We also utilize weight decay and exponential moving averaging, again following the settings in
MixMatch. All hyper-parameters related to MixMatch are the same as in (Berthelot et al., 2019).
Details can be found in Appendix A.1. We report the median of the last 20 checkpoints’ accuracy
where a checkpoint is computed every 1024 training iterations. Each experiment is repeated 5 times
with different random initial sets, and we report the mean and standard deviation.

Each run of the experiment is given a fixed labeling budget. The training process proceeds as follows.
MMA first starts training the model with the initial labeled examples. After a fixed number of training
steps, MMA grows the labeled set by querying the labels of some unlabeled examples; this is repeated
until the labeling budget is used up. Finally, the model is trained futher until convergence.

To save computational resources, when we vary the budget size for the same active learning algo-
rithm, we store the model checkpoint at the end of each labeling interval and resume from it when
we increase the budget size.

Baselines: We compare MMA with two baselines: MixMatch and random. MixMatch essen-
tially considers the passive setting: the set of labeled data is sampled uniformly at random in the
beginning and is fixed throughout the entire training process. The random baseline is under the
MMA framework, and selects randomly as set of samples to query each time.

5.2 EFFECTIVENESS OF MMA

We test the effectiveness of the different active learning strategies used in MMA. Recall that MMA
considers two uncertainty measurements: diff2 and max. Each has its data augmentation vari-
ant which we denote as diff2.aug and max.aug. Moreover, we consider using the uncertainty
measurement directly (direct) and with diversification strategies infoD and kmeans. Due to
space constraints, we present the accuracy of a subset of representative AL methods (diff2.aug-
direct and diff2.aug-kmeans) which are consistently the best performers (see comparison
with MMA (best) in Tables 1, 2, and 3 with full tables available in Appendix A.2.

Several of the MMA variants improve significantly upon MixMatch, which is the state-of-the-art
semi-supervised learning algorithm. With the same labeling budget MMA outperforms the original
MixMatch by up to 1.47% for CIFAR-10, by up to 1.16% for CIFAR-100, and by 0.43% for SVHN.

CIFAR-10. We evaluate MixMatch and all variants of MMA on CIFAR-10 with 500, 1000, 2000
and 4000 labeling budget. We first train the model for 262144 steps with 250 randomly selected
labeled samples. Then we grow the labeled set by 50 examples at each active learning iteration.
Each time after obtaining more labeled samples, we continue training the model for 32768 steps.

Table 1: Performance of MMA on 5 repeated runs on CIFAR-10.

Label Budgets 500 1000 2000 4000 16000

MixMatch 90.58± 0.83 91.61± 0.54 93.20± 0.11 93.70± 0.16 94.99± 0.15

random 90.54± 0.82 91.85± 0.67 92.97± 0.29 93.73± 0.18 -
diff2.aug-direct 91.69± 0.52 92.79± 0.41 94.11± 0.14 95.17± 0.13 -
diff2.aug-kmeans 91.46± 0.38 92.62± 0.32 93.98± 0.14 95.06± 0.19 -

Table 1 shows the results for CIFAR-10. All the active learning methods outperforms the random
or the MixMatch baselines (see details from Table 5 in Appendix A.1). The improvement is consis-
tently about 1% across different label budgets. It is clear that acquiring labels actively is beneficial
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in the semi-supervised setting. MMA is also significantly more label-efficient. Even with only 2000
labels, MMA outperforms MixMatch with 4000 (2×) labels (94.11% vs. 93.7%). With 4000 labels,
MMA outperforms MixMatch with 16000 (4×) labels (95.17% vs. 94.99%). This is only 0.66%
lower than the same model trained on all the 50000 (12.5×) examples in the supervised setting
(95.17% vs. 95.83%, number is from Berthelot et al. (2019)).

Comparing the different active learning strategies, we found that diff2.aug-direct consistently
ranks top-2 among all active learning variants for CIFAR-10, with other active learning strategies
performing roughly equally well. Additionally, we observe that diff2 outperforms max on average
and it is usually beneficial to use aug (see Tabel 5 in Appendix A.2). We therefor consider only
diff2 as the uncertainty meaurement for the other datasets.

CIFAR-100. We evaluate MixMatch and variants of MMA that uses diff2 as uncertainty mea-
surement on CIFAR-100 with 4000, 5000, 8000 and 10000 labeling budget. We first train the model
for 262144 steps with 2500 randomly selected labeled samples. Then we grow the labeled set by
500 examples at each active learning iteration and train the model for 32768 additional steps. Note
that since CIFAR-100 has 10× more classes than the other 2 datasets, we increase proportionally
both the # initial examples and the # examples per query so that the number of samples per class
remains unchanged. We also increase the label budgets to a range of 4000 to 10000. Following
Berthelot et al. (2019), we increase the size of the ResNet-28 model to 128 filters per layer for a
more reasonable comparison.

Table 2 shows the results for CIFAR-100. Again, we found that active learning helps. The perfor-
mance gain compared to the passive MixMatch ranges from 0.11% (4000 labels) to 1.16% (10000
labels). We found that methods with diversification (kmeans or infoD) consistently outperform
their variants without diversification (direct). We conjecture that this is because given a large
number of classes, diversifying the queried examples helps keep the sampled data class distribution
more balanced. Besides, as in CIFAR-10, this is no significant difference between different active
learning strategies, so we do not dismiss their effectiveness as well.

Table 2: Performance of MMA on 5 repeated runs on CIFAR-100.

Label Budgets 4000 5000 8000 10000

MixMatch1 67.72± 0.79 69.41± 0.19 72.87± 0.32 74.00± 0.10

random 67.56± 0.50 69.12± 0.33 72.27± 0.28 73.62± 0.24
diff2.aug-direct 67.72± 0.50 69.45± 0.50 72.80± 0.28 74.66± 0.19
diff2.aug-kmeans 67.82± 0.48 69.60± 0.30 73.16± 0.29 75.10± 0.12

SVHN. We evaluate MixMatch and variants of MMA with diff2 as uncertainty measurement on
SVHN with 500, 1000, 2000 and 4000 labeling budget. We first train the model for 131072 steps
with 250 randomly selected labeled samples. Then we grow the labeled set by 50 examples each
time and continue training the model for 16384 steps. An adjustment made to MMA here is that we
select the initial set of samples such that the class distribution is the same as that of the whole training
set. This is because unlike CIFAR-10 and CIFAR-100, SVHN has unbalanced classes, where the
largest class has 2.8 times more samples than the smallest. We note that MixMatch (Berthelot et al.,
2019) selects the labeled samples in the same way.

Table 3 shows the results for SVHN. MMA outperforms MixMatch in all labeling budgets. MMA
with 4000 examples is only 0.02% less accurate (97.39% vs. 97.41% according to Berthelot et al.
(2019)) than the same model trained on all the 73257 examples (18.31× more) in the training set.
We also found that diversification is useful, with kmeans method performing the best. We believe
that diversification helps prevent under-sampling less popular classes, which can be beneficial when
the classes are unbalanced.

1The discrepancy between the value for MixMatch and the values in Berthelot et al. (2019) for 10000
labels (which is 74.12 ± 0.30) can be explained by the fact that MixMatch selects samples uniformly at
random while Berthelot et al. (2019) samples the same number from each class.
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Table 3: Performance of MMA on 5 repeated runs on SVHN (no extra data).

Label Budgets 500 1000 2000 4000

MixMatch 96.36± 0.46 96.73± 0.31 96.96± 0.13 97.11± 0.06

random 96.44± 0.18 96.73± 0.11 96.83± 0.07 97.01± 0.11
diff2.aug-direct 96.59± 0.09 96.82± 0.08 97.03± 0.05 97.32± 0.03
diff2.aug-kmeans 96.69± 0.07 96.90± 0.08 97.14± 0.06 97.39± 0.08

5.3 COMPARATIVE ADVANTAGE OF ADDING LABELED VS. UNLABELED DATA

In this section, we compare the accuracy improvements offered by adding labeled data and unlabeled
data. As proposed in Section 4.3, we measured the accuracy obtained by our model for various
amounts of labeled and unlabeled data (see tables in Appendix A.2). To perform the analysis, we
need to estimate the number of unlabeled samples ui required to achieve a targetaccuracy for a fixed
amount of labeled data. For practical computational constraints, we approximate this process by
using a linear interpolation between consecutive accuracy measurements when growing the amount
of unlabeled data for a fixed amount of labeled data (see Appendix A.3 for details).

We plot the cost ratio cratio(i) as a function of the number of labeled examples for CIFAR-10 and
SVHN+Extra in Figure 1. For example, we can see that for CIFAR-10 with 500 labeled samples, it
is cost efficient to label an image when the cost of labeling an image is less than 20 times the cost of
obtaining new unlabeled image. We make the following observations:

• The more labeled samples are present, the more the value of labeling additional samples drops.
• Intriguingly, for SVHN, the ratio drops below 0 in some cases. This means that it is always better

to add unlabeled data regardless of the labeling cost. This usually occurs when the assumption
|L| � |U | is violated, while MixMatch is tuned to operate under this assumption. Re-tuning of
the parameters may be necessary to counter this effect.
• Generally, the highest cost ratio we observed was 20× and frequently less than 3× which makes

labeling data a costly alternative with sample efficient techniques such as MixMatch.
• Likely, there exists a critical mass below which labeled data is always needed, but we did not

observe it in our experiments. We conjecture that this number is below 50 samples per class.
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Figure 1: Plot of cratio as a measure of relative cost of labeling vs. obtaining unlabeled data.

6 CONCLUSION

In this work we have demonstrated that the state-of-the-art SSL MixMatch algorithm can be signif-
icantly improved when combined with various active learning methods, pushing the state-of-the-art
even further. We found that generally, uncertainty sampling (via the diff2 definition) performs ro-
bustly across several baseline datasets. We furthermore, provided an analysis to measure the relative
value of labeled an unlabeled data and, interestingly, see that in certain regimes labeled data provide
only a small constant factor (i.e. < 3x) additional value of unlabeled data. Future directions for this
line of work include evaluating a trade-off aware algorithm, which dynamically adjusts the number
of labeled and unlabeled examples that are gathered given the costs of each.
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A APPENDIX

A.1 HYPER-PARAMETERS

Table 4 shows the hyper-parameters used throughout the paper.

Table 4: A summary of hyper-parameters. λU is the hyper-parameter controlling the importance of
the unlabeled data to the training process.

CIFAR-10 CIFAR-100 SVHN SVHN+Extra

# filters 32 128 32 32
λU 75 150 250 250
MixUp 0.75 0.75 0.75 0.25
weight decay 0.02 0.04 0.02 0.0001

A.2 FULL RESULTS

A.2.1 EFFECTIVENESS OF MMA

Table 5, 6, 8 are the full versions of Table 1, 2, 3 respectively, presenting the results of different MMA
variants for CIFAR-10, CIFAR-100 and SVHN.

Figure 2 show the plots of accuracy achieved versus the number of labeled samples for CIFAR-10,
CIFAR-100 and SVHN.
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Table 5: This is the full version of Tabel 1. Performance of MMA on CIFAR-10. Each entry is
the average of 5 repeated runs with standard deviation. The highlighted entries are the two best
performing methods within each column. The best methods for 500 is max-kmeans and for the
rest is diff2.aug-direct.

Label Budgets 500 1000 2000 4000 16000

Supervised 60.72± 1.04 71.64± 0.80 80.26± 0.76 86.37± 0.19 -
MeanTeacher 61.95± 6.80 81.57± 2.49 87.28± 0.84 89.37± 0.14 -
VAT 73.69± 2.34 81.12± 0.76 85.88± 0.47 88.56± 0.24 -
PiModel 56.67± 1.63 68.77± 0.82 77.29± 0.39 84.23± 0.80 -
PseudoLabel 57.56± 1.03 68.96± 1.66 77.94± 0.55 83.84± 0.28 -
MixMatch 90.58± 0.83 91.61± 0.54 93.20± 0.11 93.70± 0.16 94.99± 0.15

random 90.54± 0.82 91.85± 0.67 92.97± 0.29 93.73± 0.18 -
diff2.aug-direct 91.69± 0.52 92.79± 0.41 94.11± 0.14 95.17± 0.13 -
diff2-direct 91.32± 1.24 92.89± 0.24 93.97± 0.15 95.04± 0.23 -
diff2.aug-kmeans 91.46± 0.38 92.62± 0.32 93.98± 0.14 95.06± 0.19 -
diff2-kmeans 91.24± 0.71 92.66± 0.62 93.99± 0.09 95.09± 0.11 -
diff2.aug-infoD 91.52± 0.67 92.78± 0.28 93.97± 0.09 95.12± 0.13 -
diff2-infoD 90.18± 1.90 92.76± 0.25 94.07± 0.18 95.10± 0.11 -
max.aug-direct 90.87± 1.65 92.12± 0.44 93.72± 0.22 94.98± 0.10 -
max-direct 91.02± 0.55 92.09± 0.51 93.62± 0.20 95.03± 0.05 -
max.aug-kmeans 91.05± 0.42 92.06± 0.50 93.61± 0.21 94.90± 0.21 -
max-kmeans 91.78± 0.42 92.55± 0.46 93.94± 0.11 95.00± 0.09 -
max.aug-infoD 90.94± 0.59 92.20± 0.33 93.55± 0.36 95.06± 0.09 -
max-infoD 90.60± 0.82 92.25± 0.44 93.75± 0.22 95.07± 0.07 -

Table 6: This is the full version of Tabel 2. Performance of MMA on CIFAR-100. Each entry is the
average of 5 repeated runs with standard deviation. The highlighted entries are the two best perform-
ing methods within each column. Methods with diversification (kmeans or infoD) consistently
outperform their variants without diversification (direct).

Label Budgets 4000 5000 8000 10000

MixMatch2 67.72± 0.79 69.41± 0.19 72.87± 0.32 74.00± 0.10

random 67.56± 0.50 69.12± 0.33 72.27± 0.28 73.62± 0.24
diff2-direct 67.37± 0.26 68.95± 0.35 72.61± 0.18 74.54± 0.18
diff2.aug-direct 67.72± 0.50 69.45± 0.50 72.80± 0.28 74.66± 0.19
diff2-kmeans 67.83± 0.32 69.99± 0.18 73.47± 0.15 75.16± 0.13
diff2.aug-kmeans 67.82± 0.48 69.60± 0.30 73.16± 0.29 75.10± 0.12
diff2-infoD 67.76± 0.57 69.84± 0.16 73.32± 0.23 75.03± 0.22
diff2.aug-infoD 67.78± 0.61 69.56± 0.57 72.95± 0.33 74.94± 0.30

A.2.2 COMPARATIVE ADVANTAGE OF ADDING LABELED VS.UNLABELED
DATA

A.3 LINEAR INTERPOLATION COST RATIO MEASUREMENT

To efficiently find the number of unlabeled examples needed in order to reach a target accuracy at
a fixed number of labeled training examples, consider the measurements in a table such as Table 9.
For each column, we bisect the row values to find row r such that accuracy i,r ≤ accuracy target ≤

2The discrepancy between the value for MixMatch and the values in Berthelot et al. (2019) for 10000
labels (which is 74.12 ± 0.30) is due to the fact that MixMatch selects samples uniformly at random while
Berthelot et al. (2019) samples the same number from each class. The difference becomes more significant
when the number of classes grows.

3The 5 runs reaches accuracy 97.26, 97.39, 97.26, 93.42, 97.40 and the variance is due to the oscillations
in the training process.
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Table 7: CIFAR-100. Starting from 2500 random samples trained for 262144 steps, querying 100
and training for 16384 steps each time. Each entry is the average of 5 repeated runs with standard
deviation. The highlighted entries are the two best performing methods within each column. The
accuracy is not significant different from that when query 500 each time (Table 6).

Label Budgets 4000 5000 8000 10000

MixMatch 67.72± 0.79 69.41± 0.19 72.87± 0.32 74.00± 0.10

random 66.84± 0.43 68.72± 0.34 72.18± 0.31 73.70± 0.41
diff2-direct 67.47± 0.29 69.25± 0.27 72.79± 0.26 74.68± 0.33
diff2.aug-direct 67.46± 0.43 69.35± 0.37 72.91± 0.25 74.50± 0.35
diff2-kmeans 67.89± 0.27 69.83± 0.45 73.10± 0.33 74.80± 0.13
diff2.aug-kmeans 67.64± 0.61 67.78± 3.79 73.07± 0.20 74.82± 0.26
diff2-infoD 68.06± 0.58 70.18± 0.52 73.90± 0.21 75.26± 0.23
diff2.aug-infoD 68.00± 0.76 70.04± 0.41 73.70± 0.30 75.45± 0.27

Table 8: This is the full version of Tabel 3. Performance of MMA on SVHN (no extra data). Each
entry is the average of 5 repeated runs with standard deviation. The highlighted entries are the
two best performing methods within each column. Methods with kmeans diversification generally
outperforms the other methods.

Label Budgets 500 1000 2000 4000

MixMatch 96.36± 0.46 96.73± 0.31 96.96± 0.13 97.11± 0.06

random 96.44± 0.18 96.73± 0.11 96.83± 0.07 97.01± 0.11
diff2.aug-direct 96.59± 0.09 96.82± 0.08 97.03± 0.05 97.32± 0.03
diff2-direct 96.56± 0.15 96.85± 0.03 97.01± 0.06 97.33± 0.03
diff2-kmeans 96.59± 0.06 96.91± 0.07 97.09± 0.04 97.36± 0.03
diff2.aug-kmeans 96.69± 0.07 96.90± 0.08 97.14± 0.06 97.39± 0.08
diff2-infoD 96.51± 0.13 96.76± 0.12 97.02± 0.03 97.29± 0.05
diff2.aug-infoD 96.51± 0.15 96.73± 0.10 96.28± 1.60 97.37± 0.04

accuracy i,r+1. We then compute the interpolation factor

λi =
accuracy target − accuracy i,r+1

accuracy i,r − accuracy i,r+1

.

Finally the number of unlabeled samples can be linearly approximated as

ui = λi · accuracy i,r + (1− λi) · accuracy i,r+1 .
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Figure 2: Test accuracy (y-axis) under different number of labeled samples (x-axis, log scale). MMA
(best) refers to the highest accuracy that any MMA variants achieves (with full results listed in
tables found in Appendix A.2). Note, the AL methods are essentially overlapping.
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Table 9: CIFAR-10. Accuracy of MMAwith diff2.aug-directusing different amounts of labeled
and unlabeled data. The first column indicates the total number of datapoints (labeled + unlabeled).

Labeled

Total 500 1000 2000 4000

5000 64.45± 0.98 66.69± 1.15 71.71± 1.27 80.33± 0.71
10000 72.79± 2.02 74.81± 1.57 78.78± 0.79 84.65± 0.36
15000 77.65± 2.13 79.57± 1.93 83.26± 1.09 87.87± 0.62
20000 80.80± 1.48 83.16± 1.47 87.20± 1.31 90.98± 0.52
25000 85.29± 1.24 87.96± 0.67 90.40± 0.53 93.12± 0.22
30000 87.61± 0.59 89.89± 0.79 92.31± 0.32 93.95± 0.19
35000 89.32± 0.60 91.04± 0.67 93.10± 0.28 94.55± 0.12
40000 89.97± 0.99 91.83± 0.70 93.37± 0.11 94.59± 0.15
45000 91.14± 0.46 92.60± 0.30 94.05± 0.12 95.08± 0.04
50000 91.69± 0.52 92.79± 0.41 94.11± 0.14 95.17± 0.13

Table 10: CIFAR-100. MMAwith diff2.aug-kmeans. Values at (5000, 5000) and (10000, 10000)
are computed with fully supervised learning on the same model.

Labeled

Total 4000 5000 8000 10000

5000 48.40± 0.50 55.42± 0.30 - -
10000 53.12± 0.55 55.39± 0.56 60.21± 0.27 65.93± 0.34
20000 59.78± 0.21 61.67± 0.27 65.11± 0.11 67.01± 0.21
50000 67.82± 0.48 69.60± 0.30 73.16± 0.29 75.10± 0.12

Table 11: SVHN+Extra. MMA with diff2.aug-kmeans.

Labeled

Total 500 1000 2000 4000

5000 91.04± 0.27 90.93± 0.30 90.50± 0.42 89.66± 0.25
10000 93.71± 0.13 93.70± 0.17 93.54± 0.14 93.35± 0.19
20000 95.28± 0.23 95.32± 0.22 95.27± 0.21 95.37± 0.19
50000 96.48± 0.06 96.61± 0.08 96.75± 0.09 96.83± 0.07
100000 97.07± 0.07 97.17± 0.04 97.40± 0.07 97.56± 0.08
200000 3 96.55± 1.56 97.44± 0.08 97.66± 0.04 97.87± 0.04
604388 97.38± 0.19 97.53± 0.18 97.80± 0.08 97.98± 0.05
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