
Under review as a conference paper at ICLR 2019

EXPRESSIVENESS IN DEEP REINFORCEMENT LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Representation learning in reinforcement learning (RL) algorithms focuses on
extracting useful features for choosing good actions. Expressive representations
are essential for learning well-performed policies. In this paper, we study the
relationship between the state representation assigned by the state extractor and
the performance of the RL agent. We observe that representations assigned by
the better state extractor are more scattered than which assigned by the worse
one. Moreover, RL agents achieving high performances always have high rank
matrices which are composed by their representations. Based on our observations,
we formally define expressiveness of the state extractor as the rank of the matrix
composed by representations. Therefore, we propose to promote expressiveness
so as to improve algorithm performances, and we call it Expressiveness Promoted
DRL. We apply our method on both policy gradient and value-based algorithms,
and experimental results on 55 Atari games show the superiority of our proposed
method.

1 INTRODUCTION

Deep reinforcement learning (DRL) algorithms, such as DQN (Mnih et al., 2015), A3C (Mnih et al.,
2016), DDPG (Lillicrap et al., 2015), and TRPO (Schulman et al., 2015), have been applied in a range
of challenging domains including Atari games (Mnih et al., 2015; Schaul et al., 2015; Van Hasselt
et al., 2016), robot locomotion tasks (Schulman et al., 2015; 2017) and the game of Go (Silver
et al., 2016; 2017). The combination of RL and high-capacity function approximators such as neural
networks holds the promise of automating a wide range of decision making and control tasks.

The DRL model often contains two parts. First, a deep neural network is used to extract stateful
information from raw signals, e.g, convolutional neural network for images-based games (Mnih
et al., 2015; Vinyals et al., 2017) or recurrent neural network for natural language-based games
(Narasimhan et al., 2015; Zhao & Eskenazi, 2016). Without any confusions, we call such raw signals
as observation, call the extracted stateful information as state and consider this deep neural network
as state extractor. Given the representation of state, a feedforward neural network is further used
to select different actions to maximize the potential rewards. From the above description, it is easy
to see that the performance of an RL agent depends on two parts. First, it depends on whether the
state extractor is good. With a good state extractor, the representation which is a depiction of the
observation will retain necessary information for taking actions. Second, it depends on the accuracy
of the policy: whether the feed-forward model can correctly take the optimal action given the state.

In this paper, we mainly study the relationship between representations extracted by the state extractor
and the performance of the RL agents. We observe that when agents achieve better performances,
matrices composed by their representations are approximately higher rank.1 Firstly, we study
representations assigned by state extractors in different performed RL agents over all Atari games.
We find that representations assigned by the better extractor are more scattered. Furthermore, given
different trajectories that lead to high/low rewards as inputs, matrices of representations from the
better extractor are always higher rank. Secondly, we find changes of the approximate rank are highly

1Approximately low rank means that most of the singular values for a matrix are close to zero while only little
of them have large values, and higher rank corresponds to more large singular values. In this paper, low/high
rank refer to approximately low/high rank.

1

Under review as a conference paper at ICLR 2019

consistent with changes of rewards, which also demonstrates the positive correlation between the
rank and rewards. These observations motivate us to encourage matrices of representations to be high
rank during training.

Based on our observations, we formally define expressiveness of the state extractor in reinforcement
learning. For given markov decision process (MDP) and the initialization state, we can get a realization
of the MDP, i.e., a trajectory. The state extractor extracts representations from observations in this
trajectory. Representations compose a matrix, which we call it representation matrix. For given MDP
with finite state space, expressiveness in RL for the state extractor model is defined as the rank of
the representation matrix. According to the definition, expressiveness in RL is both related to the
MDP which generates data and the state extractor model. Based on above experimental studies,
we can conclude that higher expressiveness will lead to better performances. As we can see that
expressiveness is not easy to calculate because the max operator and the infinite number of columns in
representation matrix, so we consider the rank of the representation matrix composed by a mini-batch
of representations, which is called empirical representation matrix. Empirical expressiveness in RL is
defined as the approximate rank of the empirical representation matrix, i.e., if some singular values
are approximately zero, we regard them as zero.

We further propose a novel method ExP (Expressiveness Promoted) DRL, which aims improve
the expressiveness of the state extractor, so as to promote RL algorithm performances. Based on
experimental observations and the definition, the empirical representation matrix is encouraged to be
high rank in our method. The idea is implemented by adding a regularization term to the loss, which
is computationally efficient and can be applied to multiple kinds of DRL algorithms.

We applied our method to A3C (Mnih et al., 2016) and DQN (Mnih et al., 2015). Evaluation results
on Atari games show that our method outperforms the baseline on most of games. Furthermore,
we also demonstrate that the expressiveness of the state extractor is significantly enhanced by our
proposed ExP DRL.

2 STATE EXTRACTOR EXPRESSIVENESS

2.1 EXPERIMENTAL OBSERVATIONS

In image classification tasks, many papers show that the representation of images (high-level features
from top layers) contains useful and abstract information for decision makings, e.g., predicting the
categorical labels (Coates et al., 2013). In reinforcement learning, such high-level features will be
used to find better actions in pursuit of larger reward.

However, the representation in reinforcement learning is much harder to learn compared to that in
supervised learning problems. In image classification task, e.g., ImageNet, different images with the
same label contain the same item and most of the images in different categories contain different
items. This makes the neural network can learn discriminative information effectively and the learned
features are good with intra-class compactness and inter-class separability (Liu et al., 2016). In
reinforcement learning, taking shooter games in Atari as an example, the input images which will be
fed into the neural network are similar as most of them contains a group of enemies, bullets, the agent
and different objects in the game. Based on similar observations, the neural network has to learn to
extract fine-grained local features that contain the positions of enemies, the direction of bullets, the
current position of the agent and related objects, which are essential for taking actions.

Therefore, to investigate the characteristic of good representations assigned by the state extractor,
we compare state extractors in RL models with different performances. We find that representations
generated by better state extractor are more scattered compared with worse extractors, and the matrix
composed by better representation vectors is higher rank. We observe similar phenomena during
training process, which shows that when the matrix formed by representations becomes higher rank,
the reward of the RL model become higher. Furthermore, we notice that representations are not
always getting more discriminative during training, which also motivates our proposed method.

2.1.1 COMPARISON BETWEEN BETTER AND WORSE STATE EXTRACTORS

Comparison between representations assigned by state extractors in RL models with different per-
formances is shown in Fig. 1 and Table 1. We let two models with different model size but same

2

Under review as a conference paper at ICLR 2019

Figure 1: Two-dimensional embedding of the rep-
resentations assigned by different state extractors.

Episode Data Cumulative
Percentage

Average Smallest Ordinal
Number of Different Models
Large

Trained
Model

Small
Trained
Model

Large
Random
Model

Episode from
Large Trained Model

80% 164.9 137.8 103.8
90% 247.7 213.8 197.4

Episode from
Small Trained Model

80% 135.4 116.3 83.7
90% 210.8 187.6 166.1

Episode from
Large Random Model

80% 72.1 64.7 50.9
90% 120.6 112.0 105.5

Table 1: Relationship between model performance and
the smallest ordinal number of singular values.

number of last hidden layer units play the Atari game Gravitar for 200M frames respectively. After
training, the larger model achieves 3050 for the game score, while the smaller model gets 600 points.
Besides, in order to exclude the bias of the model size, we also observe representations generated
by the large model with its randomly initialized weights, which can only gets 0 game point because
points are hard to obtained in this game. We refer to these three models with large trained model,
small trained model and large random model respectively.

Fig. 1 shows the two-dimensional embedding of the representations in the last hidden layer assigned
by three models to game observations in the trajectory played by the large trained model. Plots are
generated by using SVD dimension reduction on the matrix composed by representation vectors.
Points in the embedding figure of the model with higher final reward are more scattered overall.
Observations only have subtle differences on the existence of enemies, the position and direction of
the controlled agent. More scattered representations indicate that the better model can distinguish
these subtle differences well, and can do better in extracting these fine-grained local features. These
scattered representations can benefit policies and thus lead to better performances. In other words,
representations assigned by the better state extractor is more discriminative.

To get more accurate and solid observations, we list some statistics over all Atari games in Table 1.
For each of the Atari game, representations of a large trained model, a small trained model and a
large random model are compared. To study the relation between performances and representations,
we select games in which the large trained model performs best and the large random model performs
worst. In this way, 39 games among 55 games are picked. Then for each game, we generate
three trajectories with different final reward by interacting with the environment using three models.
Observations in these three trajectories are sent to three state extractor models respectively, and then 9
matrices composed of generated representations are obtained for every game. We sort singular values
of the matrix from largest to smallest, and calculate the smallest ordinal number while the cumulative
percentage of singular values is above a certain threshold. We list average smallest ordinal numbers
of selected 39 games for threshold 80% and 90% in Table 1. These data demonstrate that given
different trajectories and model size, the average smallest ordinal number always positively correlates
with the model performance: the smallest ordinal number of the better model is always larger then
which of the the worse model. This means that the matrix composed of representations generated by
the better model is always higher rank than which generated by the worse model, which suggests
that regardless of input trajectories and model size, states assigned by the better extractor is more
discriminative and expressive comparing with the worse model, because higher rank corresponds to
better discrimination. Representations which are not expressive enough cause troubles for decision
making. Therefore, representations should be encouraged to be more discriminative and expressive
for obtaining good policies.

2.1.2 TRENDS DURING TRAINING

In order to investigate the found phenomena extensively, and also make the observation more
convincing, we study representation changes during training in this section. We train a model to play
the Atari game WizardOfWor for 200M frames. Each time the model is updated with a mini-batch
of transitions, representation vectors in the last hidden layer are regarded as a matrix, and singular
values of this matrix are recorded. We calculate the smallest ordinal number while the cumulative
percentage of singular values is above a certain threshold (i.e., 80%) as last section. Large ordinal

3

Under review as a conference paper at ICLR 2019

number means that the matrix composed by representation vectors is high rank, and corresponding
representations are discriminative.

Figure 2: Curves tracking testing re-
wards and smallest number of singular
values during training process. Curves
are smoothed.

Two curves are plotted in Fig.2. The blue one tracks testing
rewards, and the yellow one tracks smallest ordinal numbers.
It shows that curve trends of testing rewards and smallest or-
dinal numbers are highly consistent: when smallest ordinal
numbers increase/decrease, rewards also become high/low.
Same phenomena on more games can also been seen in
Fig. 6. This consistency demonstrates that states assigned
by the better extractor, which form high rank matrices, are
more discriminative and expressive, and holding discrimina-
tive representations is necessary for learning good policies.
Besides these same conclusions mentioned in last section,
we also notice that during training, the smallest ordinal
number is not always increase. But representations which
are not expressive enough cause troubles for decision mak-
ing. Thus, the expressiveness of state extractors should be
promoted (i.e., formed matrices should be encourage to be
high rank) during training.

2.2 DEFINITION OF THE EXPRESSIVENESS

Based on previous observations, we formally define a new concept expressiveness in RL in this section.
Consider an Markov decision process (MDP)M = (S,A, p, γ, r), where S denotes the observation
space, A denotes the action space, p : S ×A → µ(S) denotes the transition probability with µ(S)
denoting the space of measures on S, γ ∈ (0, 1) denotes the discount factor and r : S ×A → R is
the reward function. The goal of reinforcement learning is to learn a policy π(x) that maximize the
average future reward function Eπ(x),p(x,a)[

∑∞
k=0 γ

kr(xk, ak)|x0].

Assume that {x1, · · · , xb} is a mini-batch of observations. We use operator h(x) : X → Rd to denote
the state extractor. For given observation xi, we obtain its the representation h(xi) = (hi1, · · · , hid).
The representations of a mini-batch of observation consist a matrix, which we call it representation
matrix and denote it as H = (h(x1), · · · , h(xb))T = {hij}i=1,··· ,b;j=1,··· ,d, where hij denotes the
j-th representation calculated using the i-th observation in the mini-batch.
Definition 1. (Expressiveness in RL) For given MDPM = (S,A, p, γ, r) with finite observation
space S and initial observation x0, the expressiveness EM(h) for extractor model h is defined as the
rank of matrix composed by h(Xt), ∀t, i.e.,

EM(h) = rank{h(X1), · · · , h(Xt), · · · }. (1)

The defined expressiveness is related to both the MDPM and the model h. For fixed MDP, the
expressiveness is similar to that is defined in supervised learning which is related to the function
approximation ability. For fixed h, the expressiveness is related to the MDPM. Consider two two
MDPM1 andM2 with |S1| = |S2|. IfM1 is ergodic andM2 is non-ergodic (i.e., it can only visit
a subset of observations), then the matrix {h(X1), · · · , h(Xt), · · · } will more possibly be low rank.

In practical, it is not easy to exactly calculate the rank for a trajectory with infinite length. Thus, we
define the following empirical expressiveness.
Definition 2. (Empirical expressiveness in RL) For given observations {x1, · · · , xb} and represen-
tation matrix Hb×d, we order singular values of H from large to small as σ1(H), · · · , σmin{b,d}(H).
The empirical expressiveness Eb,ε(h) for extractor model h is defined as

Eb,ε(h) = argminj

{
j :

∑j
i=1 σi(H)∑min{b,d}

i=1 σi(H)
> 1− ε

}
. (2)

Please note that the empirical expressiveness is related to the number of sampled observations, given
precision ε and the extractor model h. Please note that the rank of the representation matrix is full
in practical because the singular values will not be exactly equal to zero. So we introduce ε in the
definition.

4

Under review as a conference paper at ICLR 2019

3 EXP (EXPRESSIVENESS PROMOTED) DRL

Figure 3: General architecture of a DRL model
and its representation matrix H . u is the num-
ber of hidden units, and b is the mini-batch
size.

We propose our method named ExP DRL, which
intends to improve the expressiveness of the state
extractor, so as to promote DRL algorithm perfor-
mances. Based on the new concept expressiveness,
experimental observations in Sec. 2.1 can be sum-
marized as: state extractors with better expressive-
ness lead to better policies, and the expressiveness
not always becomes better during training. Hence,
in order to obtain better policies, we propose to pro-
mote the expressiveness of the state extractor, which
means encouraging matrices formed by extracted
representations to be high rank.

To be specific, the general architecture of a DRL
model and its representation matrix are shown in
Fig. 3. The state extractor extract features from the
observation x to generate the representation vector
h(x), then these representations are sent to a feed-
forward neural network to select the action a. For one observation xi, a representation vector h(xi) is
generated, and for a mini-batch of observations, {h(x1), ..., h(xb)} of size b, these vectors compose
a representation matrix H . In ExP DRL, this matrix H is encouraged to be high-rank.

To minimize computation costs, we adopt a simple way to encourage high rank representation
matrices. A regularization term is added to the policy loss, making matrix H to be high rank. Thus,
total loss is denoted as,

L = Lpolicy + α ∗R(H), (3)

where α is the coefficient. According to description in Section 2.2, R(H) should be equal to−Eb,ε(h)
in order to encourage H to be high rank. Directly optimize −Eb,ε(h) is not easy because of the
argmax operator, thus we propose three types of regularizers which can reflect the scale of −Eb,ε(h)
to some extent.

Negative Nuclear Norm Minimizing the nuclear norm is usually used as a constrain in low-rank
matrix completion problems (Cai et al., 2010). The nuclear norm of a matrix is the sum of all singular
values of this matrix, which is defined as

||H||1 =

min{b,d}∑
i=1

σi(H), (4)

where σi(H) is the ith singular value of H . Here we try to make the representation matrix to be high
rank. Hence, we add a negative nuclear norm to the loss, so R(H) = −||H||1.

Max Minus Min Besides enlarging all singular values, a more direct way to improve expressiveness
of the state extractor is to reduce the gap between the maximum and the minimum singular value.
This gap is defined as,

G(H) = σmax(H)− σmin(H), (5)

and R(H) = G(H).

Condition Number The aforementioned two kinds of rank regularization terms, ||H||1 and G(H),
are sensitive with the scale of singular values. So in order to reduce this bias, we also try to use the
condition number to be the regularization term.

Condition number is defined as the ratio of the maximum and the minimum singular value:

K(H) =
σmax(H)

σmin(H)
. (6)

The scale bias can be resolved by the division operator in the condition number. Similar with the
Max Minus Min term, the condition number should be minimized during training to improve the
expressiveness, so R(H) = K(H) here.

5

Under review as a conference paper at ICLR 2019

Figure 4: Improvements of our method ExP DRL compared to A3C, using the metric given in Eq. 7.

In summary, the key improvement in ExP DRL is that we change the loss function to Eq. 3. And we
introduce three kinds of regularization terms: the negative nuclear norm −||H||1, the max minus min
G(H) and the condition number K(H). We analyze differences among these 3 terms in experiments.

Note that ExP DRL can be applied to various kinds of DRL algorithms. The expressiveness can be
promoted by simply adding a regularization term when the RL model is updated. Excepting these
transitions used for updating the RL model, no other data are introduced for encouraging highly
expressive representations. Thus, our method can be widely applied to current DRL algorithms, with
little extra computational cost.

4 EXPERIMENTS

The experiment section is designed to answer these questions: (1) Can algorithm performances be
improved by applying our proposed expressiveness promoted method? (2) What is the difference
between 3 proposed rank regularization terms? (3) Is the expressiveness of the state extractor
promoted after using ExP DRL? (4) Can ExP DRL improve performances of multiple kinds of DRL
alogirithms? These questions are answered respectively in 4 subsetions below.

4.1 OVERALL PERFORMANCES ON A3C

4.1.1 SETTINGS

We evaluate our proposed method on 55 Atari games (Bellemare et al., 2013). Atari game learning
environment is one of the most popular and challenging RL task because of its high-dimensional and
diverse observations. Here we use OpenAI Gym (Brockman et al., 2016) package.

In this section, we use A3C (Mnih et al., 2016) as our baseline, and use the pytorch-a3c package
(Kostrikov, 2018), which is also be adopted by Peysakhovich & Lerer (2017), to implement. The
network architecture is shown in Appendix A. An environment wrapper is utilized to simplify original
visual screens, and they are processed to 42×42 gray-scale images. We use a frame-skip of 4 here.
The number of processes is set to be 16. Besides, each agent is trained for 200M game frames, and
the obtained reward is averaged over 5 runs with different random seeds.

For our proposed method, outputs of the LSTM are taken as representations generated by the state
extractor. Each time the A3C model is updated using a mini-batch of transitions, representations
of observations in these transitions form the matrix R. To improve expressiveness, this matrix is
encouraged to be high rank by adding the regularization term. Expect the coefficient α, other hyper
parameters and settings are set as same as the baseline.

4.1.2 PERFORMANCES

Following the previous work (Wang et al., 2015), we use the measure below to compare the perfor-
mance of ExP DRL over the baseline.

ScoreAgent − ScoreBaseline

max{ScoreHuman, ScoreBaseline} − ScoreRandom
× 100%. (7)

6

Under review as a conference paper at ICLR 2019

Figure 6: Testing rewards curves (left) and empirical expressiveness curves (right) on 4 Atari games
for ExP DRL (yellow) and the baseline (blue).

We summarize the improvement of our method over the A3C baseline in Fig. 4, and all raw scores
and normalized socres are listed in Table 5 in the appendix. Among 55 games, ExP DRL outperforms
the baseline for 43 games. These demonstrate that encouraging representation matrices to be high
rank promotes performances of original algorithms. Improving expressiveness of state extractors
benefits learning good policies.

4.2 THREE RANK REGULARIZATION TERMS

Figure 5: Rewards of ExP
DRL applying three regular-
ization terms. Shaded areas
depict variances.

To compare different regularization terms, we test each term on the
same game with same coefficient α. We empirically set α as 0.01
here. The way to choose α and an ablation study of α are shown in
Appendix B. Performances of UpNDown and Qbert are plotted in
Fig. 5. In general, the algorithm performance can be promoted largely
by applying ExP DRL. And improvements made by Max Minus
Min and Condition Number is larger than which made by Negative
Nuclear Norm. This is reasonable because that enlarging all singular
values may not increase the expressiveness of the state extractor. It
is not certain that which singular value gets larger when applying
the Negative Nuclear Norm. For example, the expressiveness will
decrease when only the largest singular value becomes larger. Instead,
the object of Max Minus Min and Condition Number is to reduce the
gap between the largest and the smallest singular value, which directly
enlarges the expressiveness of state extractors.

We use Max Minus Min and Condition Number with α as 0.01 to cover
results of most games in the previous section. All hyper parameters
we used are listed in Table 4 in the appendix.

4.3 EXPRESSIVENESS ANALYSIS

In this section we analysis the expressiveness of the state extractor
learned using the baseline and our proposed method. Curves tracking
testing rewards and the empirical expressiveness are plotted in Fig. 6.
From testing reward curves we can see that ExP DRL outperforms
the A3C baseline on these games. These results show that improving
expressiveness significantly benefits policy learning.

Combining testing reward figures and expressiveness figures, we can
observe that: (1) the empirical expressiveness of the state extractor is increased by adding the regu-
larization term, which demonstrate that the proposed method can really enhance the expressiveness.
(2) Curve trends of the reward and the expressiveness are highly consistent. This is same as what

7

Under review as a conference paper at ICLR 2019

we observe in Sec. 2.1.2. High rewards and high expressiveness state extractors come out together,
which imply that holding good representations is necessary for learning good policies.

4.4 PERFORMANCES ON DQN

Metrics Average Last Reward
#games perform better 20
#games perform worse 9
#games perform same 1

Table 2: Performances of 30 Atari
games. Average last reward is the
average model testing reward after
training over 5 runs.

Since our method ExP DRL does not contain any algorithm
related operations, we investigate whether it can promote per-
formances of another kind of DRL algorithm. Experiments
on policy gradient algorithms have been done based on A3C
in previous sections, so we choose Q-learning here, and use
DQN (Mnih et al., 2015) as our baseline.

We use same network architecture and hyper-parameters as
Mnih et al. (2015). We run 30 Atari games (first 30 in alphabet-
ical order) and run each game for 200M frames. All socres are
listed in Table 6 in the appendix, and we summarize the overall
performances of these 30 Atari games in Tab. 2. Results show
that ExP DRL outperforms the baseline in most of games. This demonstrates the superiority of
ExP DRL over the DQN baseline, and supports our claim that encouraging highly expressive state
extractor can promote performances of multiple kinds of DRL algorithms.

5 RELATED WORKS

State representation learning in RL has been studied in many research works. It focus on learning
features which can capture useful information for taking good actions (Lesort et al., 2018). In
some of proposed methods, auxiliary models, including variational auto-encoder (van Hoof et al.,
2016), denoising auto-encoder (Higgins et al., 2017), auto-encoder (Mattner et al., 2012), Generative
Adversarial Networks (Donahue et al., 2016; Shelhamer et al., 2016) and some other models (Oh
et al., 2017; Weber et al., 2017), are built for refining the representation learning. These models
may be designed as a part of the network architecture, and are trained end-to-end (Oh et al., 2017;
Pathak et al., 2017; Tamar et al., 2016), or they can also be trained separately and are used for helping
decision making (Weber et al., 2017). These auxiliary models help to improve representation learning
via completing some certain tasks, such as reconstructing current observation or state (Watter et al.,
2015), predicting future observations or states (Oord et al., 2018; François-Lavet et al., 2018; Munk
et al., 2016), and recovering actions given transitions (Zhang et al., 2018). Some essential information
for taking actions can be retained by completing these auxiliary tasks. Different with these methods,
none other models need to be built and trained in our method. We improve the expressiveness of the
state extractor by simply adding a regularization term.

Task specific prior knowledge or information are utilized to improve representation learning in some
proposed methods. For example, detection of moving objects is used in Goel et al. (2018) for better
learning video games. Jonschkowski & Brock (2015) proposes to use robotic prior knowledge for
robot learning. In some chatting systems (Zhao & Eskenazi, 2016), task-related information, such as
extracted named entities, are utilized for dialog state representation learning. For our method, we
focus on the expressiveness of the state extractor, which does not contain task-specific informations.

Besides, there are some works discussing expressiveness in deep learning (Raghu et al., 2016; Cohen
et al., 2016). These works focus on the power of the model, but not internal representations. In
addition, out basic setting is for DRL algorithms, which is different with these works.

6 CONCLUSIONS

In this paper, we mainly study the relationship between representations extracted by the state extractor
and the performance of the RL agents. We observe that when RL agents achieving high rewards, its
representations become discriminative, and the representation matrix goes to be high rank. Therefore,
we formally define the expressiveness of the state extractor as the rank of the representation matrix.
We then further propose a new method ExP DRL, in which algorithm performances are promoted
via improving the expressiveness. Experiments of A3C on 55 Atari games and DQN on 30 games
demonstrate that ExP DRL can promote their performances significantly.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew. Deep learning
with cots hpc systems. In International Conference on Machine Learning, pp. 1337–1345, 2013.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on Learning Theory, pp. 698–728, 2016.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

Vincent François-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined reinforcement
learning via abstract representations. arXiv preprint arXiv:1809.04506, 2018.

Vik Goel, Jameson Weng, and Pascal Poupart. Unsupervised video object segmentation for deep
reinforcement learning. arXiv preprint arXiv:1805.07780, 2018.

Irina Higgins, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot
transfer in reinforcement learning. arXiv preprint arXiv:1707.08475, 2017.

Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors. Autonomous
Robots, 39(3):407–428, 2015.

Ilya Kostrikov. Pytorch implementations of asynchronous advantage actor critic. https://
github.com/ikostrikov/pytorch-a3c, 2018.

Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-François Goudou, and David Filliat. State representa-
tion learning for control: An overview. arXiv preprint arXiv:1802.04181, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolu-
tional neural networks. In ICML, pp. 507–516, 2016.

Jan Mattner, Sascha Lange, and Martin Riedmiller. Learn to swing up and balance a real pole based
on raw visual input data. In International Conference on Neural Information Processing, pp.
126–133. Springer, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Jelle Munk, Jens Kober, and Robert Babuška. Learning state representation for deep actor-critic
control. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pp. 4667–4673. IEEE,
2016.

9

https://github.com/ikostrikov/pytorch-a3c
https://github.com/ikostrikov/pytorch-a3c

Under review as a conference paper at ICLR 2019

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based
games using deep reinforcement learning. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1–11, 2015.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural
Information Processing Systems, pp. 6118–6128, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning (ICML), volume
2017, 2017.

Alexander Peysakhovich and Adam Lerer. Consequentialist conditional cooperation in social dilem-
mas with imperfect information. arXiv preprint arXiv:1710.06975, 2017.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. arXiv preprint arXiv:1606.05336, 2016.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward:
Self-supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In
Advances in Neural Information Processing Systems, pp. 2154–2162, 2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, volume 2, pp. 5. Phoenix, AZ, 2016.

Herke van Hoof, Nutan Chen, Maximilian Karl, Patrick van der Smagt, and Jan Peters. Stable
reinforcement learning with autoencoders for tactile and visual data. In Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on, pp. 3928–3934. IEEE, 2016.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle
Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. Starcraft ii: A
new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

10

Under review as a conference paper at ICLR 2019

Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. arXiv preprint arXiv:1707.06203,
2017.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
arXiv preprint arXiv:1804.10689, 2018.

Tiancheng Zhao and Maxine Eskenazi. Towards end-to-end learning for dialog state tracking and
management using deep reinforcement learning. arXiv preprint arXiv:1606.02560, 2016.

11

Under review as a conference paper at ICLR 2019

A MODEL ARCHITECTURE

The model architecture used for A3C experiments is shown in Fig. 7. We use a relatively small model
here comparing with the original A3C paper. It is hard to train with the full architecture described in
the paper for us because of the computation resource limits.

Figure 7: Model architecture.

B HYPER PARAMETERS AND ABLATION STUDY ON α

The hyper parameter α is chosen as following: 1) we first choose the best alpha for two games from
1 to 10−6; 2) then we apply the best alpha to all games and found that it performs well in most of
the games; 3) next we fine tune the games which are not perform well. All hyper parameters used in
A3C experiments are listed in Table 4.

We conduct an ablation study on α to investigate the effectiveness of the proposed ExP DRL. We
select 10 games and fix their rank regularization term type. Then we run ExP DRL with different α
(from 10−1 to 10−6). Performances are evaluated using the metric in Eq. 7, and results are listed in
Table 3. These show that our proposed ExP DRL outperforms the baseline on most of games with
most of α, which demonstrates that ExP DRL is effective. The rank regularization term plays a major
role on performance improvements, and α is used for tuning.

Game Name α
0.1 0.01 0.001 0.0001 0.00001 0.000001

VideoPinball 10.17887 0.945665 10.94677 0 0 0
Breakout 2.027379 1.54498 2.394444 0.556113 1.964196 2.358339

UpNDown 0.143224 1.284758 1.170465 1.625934 -0.93254 0.380775
StarGunner -0.36373 0.732237 0.579887 0.173902 0.055844 -0.26138

Qbert 0.433576 0.52483 0.522963 0.66813 0.417472 0.184318
Hero 0.318271 0.322714 -0.27708 0.515133 0.002605 0.334302

Zaxxon -0.36779 0.336066 0.056127 0.72826 0.328048 -0.33572
BattleZone 0.868114 0.279946 0.230932 0.181918 0.291257 0.189458
Robotank 0.407986 0.256076 0.416667 0.351562 0.138889 0.368924

Solaris 0.255785 0.284659 -0.00198 0.002968 -0.00099 -0.00099
Average 1.390169 0.651193 1.603919 0.480392 0.226478 0.321802

Table 3: Ablation Study on α.

12

Under review as a conference paper at ICLR 2019

Game Name Rank Regularization Term α
Alien Condition Number 0.01
Asteroids Condition Number 0.01
Berzerk Condition Number 0.01
Breakout Condition Number 0.01
CrazyClimber Condition Number 0.01
DoubleDunk Condition Number 0.01
IceHockey Condition Number 0.01
Krull Condition Number 0.01
MsPacman Condition Number 0.01
NameThisGame Condition Number 0.01
Phoenix Condition Number 0.01
Pong Condition Number 0.01
RoadRunner Condition Number 0.01
Robotank Condition Number 0.01
TimePilot Condition Number 0.01
WizardOfWor Condition Number 0.01
Zaxxon Condition Number 0.01
Frostbite Condition Number 0.0001
Gopher Condition Number 0.0001
Hero Condition Number 0.0001
Bowling Condition Number 0.00001
KungFuMaster Condition Number 0.00001
Assault Max Minus Min 0.01
Asterix Max Minus Min 0.01
Atlantis Max Minus Min 0.01
BankHeist Max Minus Min 0.01
BattleZone Max Minus Min 0.01
BeamRider Max Minus Min 0.01
Boxing Max Minus Min 0.01
ChopperCommand Max Minus Min 0.01
DemonAttack Max Minus Min 0.01
Enduro Max Minus Min 0.01
FishingDerby Max Minus Min 0.01
MontezumaRevenge Max Minus Min 0.01
Pitfall Max Minus Min 0.01
Qbert Max Minus Min 0.01
Riverraid Max Minus Min 0.01
Skiing Max Minus Min 0.01
SpaceInvaders Max Minus Min 0.01
StarGunner Max Minus Min 0.01
Tennis Max Minus Min 0.01
UpNDown Max Minus Min 0.01
Venture Max Minus Min 0.01
YarsRevenge Max Minus Min 0.01
Gravitar Negative Nuclear Norm 1
Centipede Negative Nuclear Norm 0.1
Freeway Negative Nuclear Norm 0.1
Solaris Negative Nuclear Norm 0.1
VideoPinball Negative Nuclear Norm 0.1
Amidar Negative Nuclear Norm 0.001
Kangaroo Negative Nuclear Norm 0.0001
PrivateEye Negative Nuclear Norm 0.0001
Seaquest Negative Nuclear Norm 0.0001
Tutankham Negative Nuclear Norm 0.0001
Jamesbond Negative Nuclear Norm 0.00001

Table 4: Hyper Parameters Used in A3C Experiments.

13

Under review as a conference paper at ICLR 2019

C GAME SCORES

Raw scores and normalized scores in A3C and DQN experiments are listed in Table 5 and Table 6
respectively. And the normalized score is calculated as follow (Wang et al. (2015)):

ScoreAgent − ScoreBaseline

ScoreHuman − ScoreRandom
× 100%. (8)

Human scores and random scores are taken from Wang et al. (2015). We only list scores of 27 games
here, because the human score and random score of other 3 games are unavailable.

14

Under review as a conference paper at ICLR 2019

Raw Normalized
Game Name baeline rank baeline rank

Alien 999.4444444 1051.388889 14% 15%
Amidar 539.3055556 427.9722222 35% 27%
Assault 735.5277778 782.0277778 123% 133%
Asterix 4491.666667 4516.666667 59% 59%

Asteroids 2013.888889 2452.222222 3% 4%
Atlantis 3121788.889 3328544.444 23706% 25283%

BankHeist 1000.833333 1096.944444 157% 173%
BattleZone 16861.11111 25111.11111 45% 73%
BeamRider 3724.555556 3796.222222 24% 24%

Berzerk 592.7777778 598.0555556 19% 20%
Bowling 44.58333333 41.83333333 8% 6%
Boxing 97.97222222 99.5 896% 910%

Breakout 112.3888889 283.5555556 421% 1072%
Centipede 4709.083333 5180.833333 33% 39%

ChopperCommand 7202.777778 9311.111111 79% 105%
CrazyClimber 112894.4444 114741.6667 444% 452%
DemonAttack 4478.472222 5012.083333 132% 149%
DoubleDunk -1 0 938% 1000%

Enduro 0 0.833333333 10% 10%
FishingDerby 23.55555556 35.22222222 122% 137%

Freeway 6.25 8.194444444 24% 32%
Frostbite 286.1111111 270 5% 5%
Gopher 5770 6176.666667 268% 288%
Gravitar 37.5 226.3888889 -7% -1%

Hero 20781.80556 33278.47222 79% 131%
IceHockey -2.944444444 -1.527777778 66% 80%
Jamesbond 538.8888889 458.3333333 151% 127%
Kangaroo 2375 2325 86% 84%

Krull 8533.666667 8260.666667 771% 743%
KungFuMaster 36094.44444 37619.44444 175% 182%

MontezumaRevenge 0 0 -1% -1%
MsPacman 1282.777778 1578.611111 7% 9%

NameThisGame 6795 6465 100% 93%
Phoenix 5339.722222 6498.333333 76% 97%
Pitfall -14 0 5% 5%
Pong 20.83333333 21 116% 116%

PrivateEye 100 100 -1% -1%
Qbert 7697.916667 13944.44444 63% 116%

Riverraid 12343.88889 12753.05556 85% 88%
RoadRunner 58405.55556 57722.22222 872% 861%

Robotank 28 34.55555556 394% 495%
Seaquest 1789.444444 2032.777778 4% 5%
Skiing -9237.166667 -7899.916667 52% 64%
Solaris 17.77777778 2316.111111 -23% 3%

SpaceInvaders 589.1666667 661.9444444 32% 37%
StarGunner 26861.11111 46019.44444 296% 513%

Tennis -0.25 0 144% 146%
TimePilot 11513.88889 11963.88889 347% 366%

Tutankham 170.2222222 198.2777778 125% 148%
UpNDown 204897.2222 467231.9444 2222% 5077%

Venture 0 0 -2% -2%
VideoPinball 0 14362.38889 -1152% -134%
WizardOfWor 66.66666667 533.3333333 -20% -7%
YarsRevenge 16634.27778 21149.13889 33% 43%

Zaxxon 8375 11052.77778 99% 133%
Mean 596% 721%

Median 76% 88%

Table 5: Raw scores and normalized scores for all games in A3C experiments.

15

Under review as a conference paper at ICLR 2019

Raw Normalized
Game Name baeline rank baeline rank

Alien 274.0164 722.1259 2% 10%
Amidar 907.5578 794.7486 59% 51%
Assault 2555.212 2673.75 517% 543%
Asterix 1272.168 1002.487 15% 11%

Asteroids 261.4554 1061.01 -2% 1%
Atlantis 1337938 2090013 10101% 15837%

BankHeist 562.3635 615.295 87% 95%
BattleZone 24921.86 4500 72% 3%
BeamRider 14826.56 15418.49 99% 103%

Berzerk 444.1128 632.8937 12% 21%
Bowling 29.43 30 -5% -5%
Boxing -49.3083 -8.77755 -431% -66%

Breakout 262.8333 249.875 993% 944%
Centipede 1640.954 5106.617 -3% 38%

ChopperCommand 1522.015 4147.24 11% 42%
CrazyClimber 450.7576 483.6859 -38% -38%
DemonAttack 2288.795 6179.065 64% 185%
DoubleDunk -1.25 -0.75 922% 953%

Enduro 10.01563 7.32 11% 11%
FishingDerby -10.6449 15.56085 81% 113%

Freeway 32.76923 32.78659 128% 128%
Frostbite 133.3333 160 2% 2%
Gopher 2751.741 12247.29 121% 582%
Gravitar 332.663 263.7448 3% 1%

Hero 302.9514 37 -5% -6%
IceHockey -8.36886 -11.6054 13% -19%
Jamesbond 888.6883 790.4797 255% 226%

Mean 485% 732%
Median 15% 38%

Table 6: Raw scores and normalized scores for all games in DQN experiments.

16

Under review as a conference paper at ICLR 2019

Figure 8: Improvement comparison over baseline A3C between L2 norm regularizer and our method
ExP DRL.

D USING L2 NORM REGULARIZER

In this section, we run A3C with L2 norm regularizer on 10 Atari games, and performances are com-
pared with performances of our proposed ExP DRL. We tune the coefficient of L2 norm regularizer
(denoted as β here) in a similar way with what we used for α. We firstly choose best three β for 2
games from 1 to 10−8. These best three β are 10−4, 10−5 and 10−6. Then we apply these three β
to rest of 8 games, and choose the best performed one to repeat 4 times additionally. Thus the final
reward is averaged over 5 times. We keep other settings same as Sec. 4.1.1.

Using the measure in Eq. 7, we list performances of our proposed ExP DRL and L2 norm in Fig. 8.
Among 10 games, ExP DRL outperforms L2 norm regularizer in 9 games. These results demonstrate
that our method ExP DRL is more efficient than L2 norm regularizer. Besides, adding L2 norm
regularizer not always improves performances. It seems that it has an uncertain effect on final
performances. Our method and the L2 norm regularizer influence the final performance in a different
way. The L2 norm prevents overfitting, and ExP DRL improves expressiveness of the state extractor,
leading to better performed RL models.

17

	Introduction
	State Extractor Expressiveness
	Experimental Observations
	Comparison between Better and Worse State Extractors
	Trends During Training

	Definition of the Expressiveness

	ExP (Expressiveness Promoted) DRL
	Experiments
	Overall Performances on A3C
	Settings
	Performances

	Three Rank Regularization Terms
	Expressiveness Analysis
	Performances on DQN

	Related Works
	Conclusions
	Model Architecture
	Hyper Parameters and Ablation Study on
	Game Scores
	Using L2 Norm Regularizer

