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Abstract

Unsupervised learning of meaningful disentanglement remains an open challenge. This
problem has roughly two perpendicular objectives: dimensionality reduction of high-dimensional
data (such as images) to a low-dimensional latent space, and enforcing a disentanglement
structure on the obtained latent space. It has been shown that improved performance in
one can potentially hurt the other i.e. increased disentanglement can reduce reconstruction
quality. Previous works have developed various reformulations to better decouple these ob-
jectives but there is always still a connection which often requires hyperparameter search
/ tuning to find the right trade-off. In this work, we propose a systematic approach that
automatically adapts the relative weights of both components to obtain the right trade-off.
Based on the Factor VAE approach, our method can adaptively increase or decrease the
weight of disentanglement objective as a function of the discriminator performance. This
makes the unsupervised learning process insensitive to the initial choice of hyperparameters
and dataset-agnostic. Our approach also enables a learning curriculum that initially places
focus on the reconstruction and adaptively shifts emphasis to learning disentanglements.
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1. Introduction

Much of machine learning has focused on learning relevant transformations which encour-
age meaningful representations of the data for the task at hand. Disentanglement learning
stands in contrast to these methods by proposing approaches to learn relevant factors of
variations within the data which gives useful information about the structure of the data.
This learned low-dimensional representation of the data presents meaningful features that
can be use for subsequent tasks. Despite significant progress being made in the field of dis-
entanglement learning, a major tradeoff between disentanglement and image reconstruction
still persist. Higgins (2017) proposed beta Variational AutoEncoders (beta-VAE) which
provide an unsupervised approached to learning disentangled generative factors. The beta
hyper-parameter encourages more factorized representations of the latent variables, but this
is done at the cost of reconstruction quality. Factor VAE (Kim and Mnih (2018)), an aug-
mentation to beta-VAE attempts to minimize the tradeoff between disentanglement and
reconstruction by introducing a discriminator which to minimize the dependence across di-
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mension of the latent space and prevents penalizing total correlation unnecessarily in order
to retain adequate information in the latent representation. Relevance Factor VAE (Kim
et al. (2019)) builds on this approach to introduce the notion of meaningful and nuisance
factors. Nuisance factors often lead to considerable drop in disentanglement performance.
Thus the key idea is to learn relevance-indicator variables, which are used to drive the total
correlation loss, thereby achieving superior performance in multiple metrics.

Although strong disentanglement may be achieved, poor image reconstruction suggests
that the latent factors contain little information about the data of interest. Ideally, a
representation which maximizes both parameters, would hold the most disentangled infor-
mation about the data. Our approach, thus proposes a way to encourage both good image
reconstruction and a disentangled representation. We leverage the gains made through rel-
evance factor VAE and propose an approach to adjust the relative weights of reconstruction
and disentanglement, such that the learning process is less susceptible to hyper-parameter
choice. Thus our unique contributions are:

1. Leveraging discriminator performance to tune relative weights between reconstruction
and disentanglement to better maximize both objectives.

2. Improving model robustness to hyper-parameter choice.

3. Adaptive method of shifting relative importance of reconstruction versus disentangle-
ment during training.

2. Background

Variational autoencoder (vae) is a competitive generative approach to unsupervised learning
from which most state-of-art approaches for disentangled learning are derived. Equation
(1) gives a general version of the vae objective, commonly referred to as ELBO (evidence
lower bound).

Eqφ(z|x)
[
Ep(x)[log pθ(x|z)]− βDKL(qφ(z|x)||p(z))

]
(1)

where P (z) is a selected prior distribution, qφ(z|x) is the encoder and pθ(x|z) is the decoder.
The encoder and decoder are neural network functions that are learned from this objective.
The vanilla vae has β = 1.

The first term of ELBO is the reconstruction objective while the second term is the
regularizer that imposes structure on the latent space, making the latent state distribution
similar to the specified prior. In disentanglement learning, most methods focus on adjusting
the scale and form of the second term to achieve less correlation between the dimensions of
the latent space.

2.1. Factor VAE

In this work, we consider the factorization approach which decomposes the second term into
two subcomponents: mutual information and total correlation. So equation (1) becomes:

Eqφ(z|x)
[
Ep(x)[log pθ(x|z)]− I(x; z)− βDKL(q(z)||p(z))

]
(2)
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Kim and Mnih (2018) showed that this reformulation (2) prevents loss in reconstruction
quality during disentanglement learning. The last term can be approximated by a discrim-
inator that measures the level of disentanglement in the latent space. The discriminator
tries to distinguish between the latent space obtained from passing the data through the
encoder, and a shuffled version. The key idea is that if the disentanglement is good, the dis-
criminator should struggle to identify the shuffled encoding as fake; shuffling the underlying
factor of variation would still result in point within the data distribution.

We adopt a modified version of Factor-VAE called Relevance Factor-VAE Kim et al.
(2019). It is a recent follow-up work that also learns to streamline redundant latent space
dimension to a minimum– closer to the number of underlying factors of variation in the
data.

3. Progressive Disentanglement for Factor VAEs

This work focuses on an automatic way to tune the regularization weight β in equation
2 that trades off reconstruction quality and level of disentanglement. To achieve this, we
make β a function of the discriminator performance (eq(3)). This approach makes learning
behavior robust to the initial choice of parameter beta β and it also makes the parameter
choices dataset-agnostic. Previous work Mathieu et al. (2016) proposed an adversarial
training method to disentanglement learning. In contrast to theirs, our approach is fully
unsupervised; we do not use any knowledge of class/factor labels.

β′ =

{
β ∗ scale if discriminator accuracy is high

β/scale otherwise
(3)

scale is a scale constant that determines how much to adapt β at each update step. We
found that scale = 0.9, 0.99, 0.999 all work well.

During training, we measure the current performance of the discriminator and determine
whether to increase/decrease the weight of the disentanglement objective. In the factor-vae
setting, we expect that a very low beta places more emphasis on reconstruction quality and
result in a high discriminator performance; since less effort is spent on disentanglement. So
if the discriminator accuracy is high (e.g. > 0.90), we increase β; conversely if the discrim-
inator accuracy is low (e.g. < 0.55), we decrease β to focus more on the reconstruction
quality. Implementation-wise, we set a single target discrimination (e.g. 0.75) and a win-
dow around it (0.05) such that the acceptable accuracy is in this range 0.75± 0.05 and we
apply (3) whenever it is outside this range. We found that this makes the algorithm achieve
stable and smooth adaptive behaviour. Another variation we implemented sets the target
accuracy high (0.85) early in training and then gradually anneals it to a small value (0.60).
This has the effect of focusing on reconstruction quality early on and gradually improving
disentanglement level. Preliminary analysis shows this has similar performance to the single
target accuracy version.

Our proposed approach achieved a top ten ranking in the disentanglement challenge;
the codes for the proposed method are available here: https://gitlab.aicrowd.com/

iretiayo_akinola/neurips2019_disentanglement_challenge_starter_kit.
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