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ABSTRACT

The quality of the representations achieved by embeddings is determined by how
well the geometry of the embedding space matches the structure of the data. Eu-
clidean space has been the workhorse for embeddings; recently hyperbolic and
spherical spaces have gained popularity due to their ability to better embed new
types of structured data—such as hierarchical data—but most data is not struc-
tured so uniformly. We address this problem by proposing learning embeddings
in a product manifold combining multiple copies of these model spaces (spherical,
hyperbolic, Euclidean), providing a space of heterogeneous curvature suitable for
a wide variety of structures. We introduce a heuristic to estimate the sectional cur-
vature of graph data and directly determine an appropriate signature—the number
of component spaces and their dimensions—of the product manifold. Empiri-
cally, we jointly learn the curvature and the embedding in the product space via
Riemannian optimization. We discuss how to define and compute intrinsic quan-
tities such as means—a challenging notion for product manifolds—and provably
learnable optimization functions. On a range of datasets and reconstruction tasks,
our product space embeddings outperform single Euclidean or hyperbolic spaces
used in previous works, reducing distortion by 32.55% on a Facebook social net-
work dataset. We learn word embeddings and find that a product of hyperbolic
spaces in 50 dimensions consistently improves on baseline Euclidean and hyper-
bolic embeddings, by 2.6 points in Spearman rank correlation on similarity tasks
and 3.4 points on analogy accuracy.

1 INTRODUCTION

With four decades of use, Euclidean space is the venerable elder of embedding spaces. Recently,
non-Euclidean spaces—hyperbolic (Nickel & Kiela, 2017; Sala et al., 2018) and spherical (Wilson
et al., 2014; Liu et al., 2017)—have gained attention by providing better representations for certain
types of structured data. The resulting embeddings offer better reconstruction metrics: higher mean
average precision (mAP) and lower distortion compared to their Euclidean counterparts. These three
spaces are the model spaces of constant curvature (Lee, 1997), and this improvement in represen-
tation fidelity arises from the correspondence between the structure of the data (hierarchical, cycli-
cal) and the geometry of non-Euclidean space (hyperbolic: negatively curved, spherical: positively
curved). The notion of curvature plays the key role.

To improve representations for a variety of types of data—beyond hierarchical or cyclical—we seek
spaces with heterogeneous curvature. The motivation for such mixed spaces is intuitive: our data
may have complicated, varying structure, in some regions tree-like, in others cyclical, and we seek
the best of all worlds. We expect mixed spaces to match the geometry of the data and thus provide
higher quality representations. However, to employ these spaces, we face several key obstacles. We
must perform a challenging manifold optimization to learn both the curvature and the embedding.
Afterwards, we also wish to operate on the embedded points. For example, analogy operations for
word embeddings in Euclidean vector space (e.g., a− b+ c) must be lifted to manifolds.
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Figure 1: Three component spaces: sphere S2, Euclidean plane E2, and hyperboloid H2. Thick lines
are geodesics; these get closer in positively curved (K = +1) space S2, remain equidistant in flat
(K = 0) space E2, and get farther apart in negatively curved (K = −1) space H2.

We propose embedding into product spaces in which each component has constant curvature. As
we show, this allows us to capture a wider range of curvatures than traditional embeddings, while
retaining the ability to globally optimize and operate on the resulting embeddings. Specifically, we
form a Riemannian product manifold combining hyperbolic, spherical, and Euclidean components
and equip it with a decomposable Riemannian metric. While each component space in the product
has constant curvature (positive for spherical, negative for hyperbolic, and zero for Euclidean), the
resulting mixed space has non-constant curvature. However, selecting appropriate curvatures for
the embedding space is a potential challenge. We directly learn the curvature for each component
space along with the embedding (via Riemannian optimization), recovering the correct curvature,
and thus the matching geometry, directly from data. We show empirically that we can indeed recover
non-uniform curvatures and improve performance on reconstruction metrics.

Another technical challenge is to select the underlying number of components and dimensions of the
product space; we call this the signature. This concept is vacuous in Euclidean space: the product of
Er1 , . . . ,Ern is identical to the single space Er1+...+rn . However, this is not the case with spherical
and hyperbolic spaces. For example, the product of the spherical space S1 (the circle) with itself is
the torus S1 × S1, which is topologically distinct from the sphere S2. We address this challenge by
introducing a theory-guided heuristic estimator for the signature. We do so by matching an empirical
notion of discrete curvature in our data with the theoretical distribution of the sectional curvature, a
fine-grained measure of curvature on Riemannian manifolds that is amenable to analysis in products.
We verify that this approach recovers the correct signature on reconstruction tasks.

Standard techniques such as PCA require centering so that the embedded directions capture compo-
nents of variation. Centering in turn needs an appropriate generalization of the mean. We develop
a formulation of mean for embedded points that exploits the decomposability of the distance and
has theoretical guarantees. For T = {p1, . . . , pn} in a manifoldM with dimension r, the mean is
µ(T ) := argminp

∑
i d

2
M(p, pi). We give a global existence result: under symmetry conditions on

the distribution of the points in T on the spherical components, gradient descent recovers µ(T ) with
error ε in time O(nr log ε−1).

We demonstrate the advantages of product space embeddings through a variety of experiments;
products are at least as good as single spaces, but can offer significant improvements when applied to
structures not suitable for single spaces. We measure reconstruction quality (via mAP and distortion)
for synthetic and real datasets over various allocations of embedding spaces. We observe a 32.55%
improvement in distortion versus any single space on a Facebook social network graph. Beyond
reconstruction, we apply product spaces to skip-gram word embeddings, a popular technique with
numerous downstream applications, which crucially require the use of the manifold structure. We
find that products of hyperbolic spaces improve performance on benchmark evaluations—suggesting
that words form multiple smaller hierarchies rather than one larger one. We see an improvement of
3.4 points over baseline single spaces on the Google word analogy benchmark and of 2.6 points
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in Spearman rank correlation on a word similarity task using the WS-353 corpus. Our results and
initial exploration suggest that mixed product spaces are a promising area for future study.

2 PRELIMINARIES & BACKGROUND

Embeddings For metric spaces1 U, V equipped with distances dU , dV , an embedding is a mapping
f : U → V . The quality of an embedding is measured by various fidelity measures. A standard
measure is average distortion Davg. The distortion of a pair of points a, b is (|dV (f(a), f(b)) −
dU (a, b)|)/dU (a, b), and Davg is the average over all pairs of points.

Distortion is a global metric; it considers the explicit value of all distances. At the other end of
the global-local spectrum of fidelity measures is mean average precision (mAP), which applies
to unweighted graphs. Let G = (V,E) be a graph and node a ∈ V have neighborhood Na =
{b1, . . . , bdeg(a)}, where deg(a) is the degree of a. In the embedding f , defineRa,bi to be the small-
est ball around f(a) that contains bi (that is, Ra,bi is the smallest set of nearest points required to
retrieve the ith neighbor of a in f ). Then, mAP(f) = 1

|V |
∑
a∈V

1
deg(a)

∑|Na|
i=1 |Na∩Ra,bi |/|Ra,bi |.

Note that mAP does not track explicit distances; it is a ranking-based measure for local neighbor-
hoods. Observe that mAP(f) ≤ 1 (higher is better) while davg ≥ 0 (lower is better).

Riemannian Manifolds We briefly review some notions from manifolds and Riemannian geom-
etry. A more in-depth treatment can be found in standard texts (Lee, 2012; do Carmo, 1992). Let
M be a smooth manifold, p ∈ M be a point, and TpM be the tangent space to the point p. If M is
equipped with a Riemannian metric g, then the pair (M, g) is called a Riemannian manifold. The
shortest-distance paths on manifolds are called geodesics. To compute distance functions on a Rie-
mannian manifold, the metric tensor g is integrated along the geodesic. This is a smoothly varying
function (in p) g : TpM × TpM → R that induces geometric notions such as length and angle by
defining an inner product on the tangent space. For example, the norm of v ∈ TpM is defined as
‖v‖g := gp(v, v)

1
2 . In Euclidean space Rd, each tangent space TpRd is canonically identified with

Rd, and the metric tensor gE is simply the normal inner product.

Product Manifolds Consider a sequence of smooth manifolds M1, M2, . . . ,Mk. The product
manifold is defined as the Cartesian product M = M1 ×M2 × . . . ×Mk. Notationally, we write
points p ∈ M through their coordinates p = (p1, . . . , pk) : pi ∈ Mi, and similarly a tangent vector
v ∈ TpM can be written (v1, . . . , vk) : vi ∈ TpiMi. If the Mi are equipped with metric tensor gi,
then the product M is also Riemannian with metric tensor g(u, v) =

∑k
i=1 gi(ui, vi). That is, the

product metric decomposes into the sum of the constituent metrics.

Geodesics and Distances Optimization on manifolds requires a notion of taking a step. This
step can be performed in the tangent space and transferred to the manifold via the exponential
map Expp : TpM → M . In a product manifold P , for tangent vectors v = (v1, . . . , vk) at p =

(p1, . . . , pk) ∈M , the exponential map simply decomposes, as do squared distances (Ficken, 1939;
Turaga & Srivastava, 2016):

Expp(v) = (Expp1(v1), . . . ,Exppk(vk)), d2P(x, y) =

k∑
i=1

d2i (xi, yi). (1)

In other words, the shortest path between points in the product travels along the shortest paths in
each component simultaneously. Note the analogy to Euclidean products Rd ≡ (R1)d.

Hyperbolic and Spherical Model We use the hyperboloid model of hyperbolic space, with points
in Rd+1. Let J ∈ R(d+1)×(d+1) be the diagonal matrix with J00 = −1 and Jii = 1 : i > 0. For
p, q ∈ Rd+1, the Minkowski inner product is 〈p, q〉∗ := pTJq = −p0q0 + p1q1 + . . . + pdqd, and

the corresponding norm is ‖p‖∗ = 〈p, p〉
1
2
∗ . For any K > 0, the hyperboloid HdK is defined on the

1In this paper, we use the language of graphs; note that any discrete metric space can be identified with a
weighted graph, and all of our algorithms operate on weighted graphs.
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subset {p ∈ Rd+1 : ‖p‖∗ = −K1/2, p0 > 0}. When the subscript K is omitted, it is taken to be 1.
The hyperbolic distance on Hd is dH(p, q) = acosh(−〈p, q〉∗).
Similarly, spherical space SdK is most easily defined when embedded in Rd+1. The manifold is
defined on the subset {p ∈ Rd+1 : ‖p‖2 = K1/2}, with metric gS induced by the Euclidean metric
on Rd+1. The spherical distance on Sd is dS(p, q) = arccos(〈p, q〉) .

3 PRODUCT SPACES AND CONSTRUCTIONS

We now tackle the challenges of mixed spaces. First, we introduce a product manifold embedding
space P composed of multiple copies of simple model spaces, providing heterogeneous curvature.
Next, in Section 3.1, given the signature of P (the number of components of each type and their
dimensions), we describe how to simultaneously learn an embedding and the curvature for each
component through optimization. In Section 3.2, we provide a heuristic to choose the signature by
estimating a discrete notion of curvature for given data. Finally, in Section 3.3, given an embedding
in P , we introduce a Karcher-style mean which can be recovered efficiently.

Let SdK and HdK be the spherical and hyperbolic spaces of dimension d and curvature K,−K, re-
spectively, and Ed the Euclidean space of dimension d.2 We describe our main embedding space:
for sequences of dimensions s1, s2, . . . , sm, h1, . . . , hn, and e, we write

P = Ss1 × Ss2 × · · · × Ssm ×Hh1 ×Hh2 × · · · ×Hhn × Ee,
a product manifold with m+ n+ 1 component spaces and total dimension

∑
i si +

∑
j hj + e. We

refer to each Ssi ,Hhi ,Ee as components or factors. We refer to the decomposition, e.g., (H2)2 =
H2×H2, as the signature. For convenience, letM1, . . . ,Mm+n+1 refer to the factors in the product.

Distances on P As discussed in Section 2, the product P is a Riemannian manifold defined by the
structure of its components. For p, q ∈ P , we write dMi

(p, q) for the distance dMi
restricted to the

appropriate components of p and q in the product. In particular, the squared distance in the product
decomposes via (1). In other words, dP is simply the `2 norm of the component distances dMi

.

We note that P can also be equipped with different distances (ignoring the Riemannian struc-
ture), leading to a different embedding space. Without the underlying manifold structure, we can-
not freely operate on the embedded points such as taking geodesics and means, but some sim-
ple applications only interact through distances. For such settings, we consider the `1 distance
dP,`1(p, q) =

∑sm
i=1 dSi

(p, q) +
∑hn

i=1 dHi
(p, q) + dE(p, q) and the min distance dP,min(p, q) =

min {dS1
(p, q), . . . , dH1

(p, q), . . . , dE(p, q)}. These distances provide simple and interpretable em-
bedding spaces using P , enabling us to introduce combinatorial constructions that allow for embed-
dings without the need for optimization. We give an example below and discuss further in the Ap-
pendix. We then focus on the Riemannian distance, which allows Riemannian optimization directly
on the manifold, and enables full use of the manifold structure in generic downstream applications.

Example Consider the graph G shown on the right of Figure 2. This graph has a backbone cycle
with 9 nodes, each attached to a tree; such topologies are common in networking. If a single edge
(a, b) is removed from the cycle, the result is a tree embeddable arbitrarily well into hyperbolic
space (Sala et al., 2018). However, a, b (and their subtrees) would then incur an additional distance
of 8 − 1 = 7, being forced to go the other way around the cycle. But using the `1 distance, we can
embed Gtree into H2 and Gcycle into S1, yielding arbitrarily low distortion for G. We give the full
details and another combinatorial construction for the min-distance in the Appendix.

3.1 OPTIMIZATION & COMPONENT CURVATURES

To compute embeddings, we optimize the placement of points through an auxiliary loss function.
Given graph distances {dG(Xi, Xj)}ij , our loss function of choice is

L(x) =
∑

1≤i≤j≤n

∣∣∣∣∣
(
dP(xi, xj)

dG(Xi, Xj)

)2

− 1

∣∣∣∣∣ , (2)

2We write E for our Euclidean embedding space component to distinguish it from R, since our models of
hyperbolic and spherical geometry also use R as an ambient space.
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Algorithm 1 R-SGD in products

1: Input: Loss function L : P → R
2: Initialize x(0) ∈ P randomly
3: for t = 0, . . . , T − 1 do
4: h← ∇L(x(t))
5: for i = 1, . . . ,m do
6: vi ← projS

x
(t)
i

(hi)

7: for i = m+ 1, . . . ,m+ n do
8: vi ← projH

x
(t)
i

(hi)

9: vi ← Jvi
10: vm+n+1 ← hm+n+1

11: for i = 1, . . . ,m+ n+ 1 do
12: x

(t+1)
i ← Exp

x
(t)
i
(vi)

13: return x(T )

G

Gtree Gcycle

Figure 2: Left: Riemannian SGD decomposes per component. Subscripts i index components in the
product. Right: Ring of trees graph G. Neither hyperbolic nor spherical space is suitable for G, but
the product H× S captures it with low distortion. Note the decomposition into tree and cycle.

which captures the average distortion. (2) depends on hyperbolic distance dH (for which the gradient
is unstable) only through the square d2H , which is continuously differentiable (Sala et al., 2018).

In any Riemannian manifold, a loss function can be optimized through standard Riemannian opti-
mization methods such as RSGD (Bonnabel, 2013) and RSVRG (Zhang et al., 2016). We write down
the full RSGD specialized to our product spaces in Algorithm 1. This proceeds by first computing
the Euclidean gradient ∇L(x) with respect to the ambient space of the embedding (Step 4), and
then converting it to the Riemannian gradient by applying the Riemannian correction (multiply by
the inverse of the metric tensor g−1P ). This overall strategy has been detailed in previous work in the
hyperboloid model (Nickel & Kiela, 2018; Wilson & Leimeister, 2018), and the same calculations
apply to our hyperbolic components.

Since gP is block diagonal on a product manifold, it suffices to apply the correction and perform
the gradient step in each component Mi independently. In the spherical and hyperboloid models,
which have smaller dimension than the ambient space, this is performed by first projecting the
gradient vector h onto the tangent space TxM via projSx (h) = h− 〈h, x〉x (Step 6) and projHx (h) =
h+ 〈h, x〉∗x (Step 8). In the hyperboloid model, a final rescaling by the inverse of the metric J is
needed (Step 9). This is not required in the spherical model since it inherits the same metric from
the ambient Euclidean space.

Learning the Curvature There exists a spherical model for every curvature K > 0 (for example,
the sphere SdK of radius K−1/2) and a hyperbolic model for every K < 0 (the hyperboloid Hd−K).
We jointly optimize the curvature Ki of every non-Euclidean factor Mi along with the embeddings.

The idea is that distances on the spherical and hyperboloid models of arbitrary curvature can be
emulated through distances on the standard models S,H of curvature 1. For example, given p, q
on the sphere S1/R2 of radius R, then d(p, q) = R · dS1(p/R, q/R) where p/R, q/R lie on the
unit sphere. Therefore the radius R, which is monotone in the curvature K, can be treated as a
parameter as well, so that we can optimize K and implicitly represent points lying on the manifold
of curvature K, while explicitly only needing to store and optimize points in the standard model of
curvature 1 via Algorithm 1. The hyperboloid model is analogous. Moreover, the loss (2) depends
only on squared distances on the product manifold, which are simple functions of distances in the
components through (1), so we can optimize the curvature of each factor in P .
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Figure 3: Geodesic triangles in differently curved spaces: compared to Euclidean geometry in which
it satisfies the parallelogram law (Center), the median am is longer in cycle-like positively curved
space (Left), and shorter in tree-like negatively curved space (Right). The relative length of am can
be used as a heuristic to estimate discrete curvature.

3.2 ESTIMATING THE SIGNATURE

To choose the signature of an appropriate space P corresponding to given data, we again turn to
curvature. We use the sectional curvature, a finer-grained notion defined over all two-dimensional
subspaces passing through a point. Unlike coarser notions like scalar curvature, this is not constant
in a product of basic spaces. Given linearly independent u, v ∈ TpM spanning a two-dimensional
subspace U , the sectional curvature Kp(u, v) or Kp(U) is defined as the Gaussian curvature of the
surface Exp(U) ⊆ M . Intuitively, this captures the rate that geodesics on the surface emanating
from p spread apart, which relates to volume growth. In Appendix C.2, we show that the sectional
curvature of P interpolates between the sectional curvatures of the factors, enabling us to better
capture a wider range of structures in our embeddings:

Lemma 1. Let M = M1 ×M2 where Mi has constant curvature Ki. For any u, v ∈ TpM , if
K1,K2 are both non-negative, the sectional curvature satisfies K(u, v) ∈ [0,max{K1,K2}]. If
K1,K2 are both non-positive, the sectional curvature satisfies K(u, v) ∈ [min{K1,K2}, 0]. If
Ki < 0 and Kj > 0 for i 6= j, then K(u, v) ∈ [Ki,Kj ].

Our estimation technique employs a triangle comparison theorem following from Toponogov’s the-
orem and the law of cosines, which characterizes sectional curvature through the behavior of small
triangles (note that a triangle determines a 2-dimensional submanifold). Let abc be a geodesic tri-
angle in manifold (or metric space) M and m be the (geodesic) midpoint of bc, and consider the
quantity

ξM (a, b, c) := dM (a,m)2 + dM (b, c)2/4−
(
dM (a, b)2 + dM (a, c)2

)
/2. (3)

This is non-negative (resp. non-positive) when the curvature is non-negative (resp. non-positive).
Note that consequently the equality case occurs exactly when the curvature is 0, and equation 3
becomes the parallelogram law of Euclidean geometry (Figure 3).

Analogous to sectional curvature, which is a function of a point p and two directions x, y from p,
in an undirected graph G we define an analog for every node m and two neighbors b, c. Given
a reference node a we set: ξG(m; b, c; a) = 1

2dG(a,m)ξG(a, b, c). This is exactly the expression
from equation 3, normalized suitably so as to yield the correct scaling for trees and cycles. Our
curvature estimation is then a simple average ξG(m; b, c) = 1

|V |−1
∑
a 6=m ξG(m; b, c; a).

Importantly, ξG recovers the right curvature for graph atoms such as lines, cycles, and trees
(Appendix C.2, Lemma 4,5), and the correct sign for other special discrete objects like polyhe-
dra (Thurston, 1998). The curvature is zero for lines, positive for cycles, and negative for trees.

For a generic graph G, we use this to generate a potential product manifold to embed in. An em-
pirical sectional curvature of G is estimated via Algorithm 3, which is based off the homogeneity of
product manifolds (i.e. isometries act transitively), implying that it suffices to analyze the curvature
at a random point. In particular, we moment-match the distributions of sectional curvature through
uniformly random 2-planes in the graph and in the manifold through Algorithms 3,2 (Appendix C.2).

3.3 MEANS IN THE PRODUCT MANIFOLD

A critical operation on manifolds is that of taking the mean; it is necessary for many downstream
applications, including, for example, analogy tasks with word embeddings, for clustering, and for
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centering before applying PCA. Even in simple settings like the circle S1, defining a mean is non-
trivial. A classic approach is to take the Euclidean mean (in E2) of the points and to project back
onto S1—but this operation fails in the case where the points are uniformly spaced on S1. A further
roadblock is the varying curvature of P . Fortunately, we can exploit the decomposability of the
distance on P , reducing the challenge to breaking symmetries in the component spaces. To do so,
we introduce the following Karcher-style weighted mean. Let T = {p1, p2, . . . , pn} be a set of
points in P and w1, . . . , wn be positive weights satisfying

∑n
i=1 wi = 1. Then the mean µ(T ) is

argminp∈P
∑n
i=1 wid

2
P(p, pi). In special cases, this matches commonly used means (the centroid

in the Euclidean case Ed, the spherical average for S2 in Buss & Fillmore (2001)). We further note
that when wi ≥ 0, the squared-distance components above are individually convex: this is trivial in
the Euclidean term, holds in the hyperbolic case (cf. Theorem 4.1 (Bishop & O’Neill, 1969)), and
holds in the spherical case under certain restrictions, e.g., when the points in T lie entirely in one
hemisphere of Sr (Buss & Fillmore, 2001). Moreover, in this case, peforming the optimization on
the mean with gradient descent via the exponential map offers linear rate convergence:

Lemma 2. Let P be a product of model spaces of total dimension r, T = {p1, . . . , pn} points in
P and w1, . . . , wn weights satisfying wi ≥ 0 and

∑n
i=1 wi = 1. Moreover, let the components of

the points in P , pi|Sj restricted to each spherical component space Sj fall in one hemisphere of Sj .
Then, Riemannian gradient descent recovers the mean µ(T ) within distance ε in timeO(nr log ε−1).

This is a global result; with weaker assumptions, we can derive local results; for example, in the
case where some of the wi are negative, which is useful for analogy operations.

In summary, we offer the following key takeaways of our development:

• Product manifolds of model spaces capture heterogeneous curvature while providing
tractable optimization,

• Each component’s curvature can be learned empirically through a reparametrization,

• A signature for the product can be found by matching discrete notions of curvature on
graphs with sectional curvature on manifolds,

• There exists an easily-computed formulation of mean with theoretical guarantees.

4 EXPERIMENTS

We evaluate the proposed approach, comparing the representation quality of synthetic graphs and
real datasets among different embedding spaces by measuring the reconstruction fidelity (through
average distortion and mAP). We expect that mixed product spaces perform better for non-
homogeneous data. We consider the curvature of graphs, reporting the curvatures learned through
optimization as well as the theoretical allocation from Section 3.2. Beyond reconstruction, we eval-
uate the intrinsic performance of product space embeddings in a skip-gram word embedding model,
by defining tasks with generic manifold operations such as means.

4.1 GRAPH RECONSTRUCTION

Datasets We examine synthetic datasets—trees, cycles, the ring of trees shown in Figure 1, con-
firming that each matches its theoretically optimal embedding space. We then compare on several
real-world datasets with describable structure, including the USCA312 dataset of distances between
North American cities (Burkardt); a tree-like graph of computer science Ph.D. advisor-advisee rela-
tionships (De Nooy et al., 2011) reported in previous hyperbolics work (Sala et al., 2018); a power-
grid distribution network with backbone structure (Watts & Strogatz, 1998); and a dense social
network from Facebook (McAuley & Leskovec, 2012). For the former two graphs with well-defined
structure, we expect optimal embeddings in spaces of positive and negative curvature, respectively.
We hypothesize that the backbone network embeds well into simple products of hyperbolic and
spherical spaces as in Figure 2, and the dense graph also benefits from a mixture of spaces.

Approaches We minimize the loss (2) using Algorithm 1. We fix a total dimension d and consider
the most natural ways to construct product manifolds of the given dimension, through iteratively
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Table 1: Matching geometries: Average distortion on canonical graphs (tree, cycle, ring of trees)
with 40 nodes, comparing four spaces with total dimension 3. The best distortion is achieved by the
space with matching geometry.

Cycle Tree Ring of Trees

|V | = 40, |E| = 40 |V | = 40, |E| = 39 |V | = 40, |E| = 40

(E3)1 0.1064 0.1483 0.0997
(H3)1 0.1638 0.0321 0.0774
(S3)1 0.0007 0.1605 0.1106

(H2)1 × (S1)1 0.1108 0.0538 0.0616

doubling the number of factors. These models include the products consisting of only a constant-
curvature base space, ranging to various combinations of Sd/22 ,Hd/22 comprising factors of dimen-
sion 2.3 For a given signature, the curvatures are initialized to the appropriate value in {−1, 0, 1}
and then learned using the technique in Section 3.1. We additionally compare to the outputs of
Algorithms 2,3 for heuristically selecting a combination of spaces in which to embed these datasets.

Quality We focus on the average distortion—which our loss function (2) optimizes—as our main
metric for reconstruction, and additionally report the mAP metric for the unweighted graphs. As
expected, for the synthetic graphs (tree, cycle, ring of trees), the matching geometries (hyperbolic,
spherical, product of hyperbolic and spherical) yield the best distortion (Table 1). Next, we report
in Table 2 the quality of embedding different graphs across a variety of allocations of spaces, fixing
total dimension d = 10 following previous work (Nickel & Kiela, 2018). We confirm that the struc-
ture of each graph informs the best allocation of spaces. In particular, the cities graph—which has
intrinsic structure close to S2—embeds well into any space with a spherical component, and the tree-
like Ph.D.s graph embeds well into hyperbolic products. We emphasize that even for such datasets
that theoretically match a single constant-curvature space, the products thereof perform no worse.
In general, the product construction achieves high quality reconstruction: the traditional Euclidean
approach is often well below several other signatures. We additionally report the learned curvatures
associated with the optimal signature, finding that the resulting curvatures are non-uniform even for
products of identical spaces (cf. Ph.D.s). Finally, Table 3 reports the signature estimations of Algo-
rithms 2, 3 for the unweighted graphs. Among the signatures over two components, the estimated
curvature signs agree with best distortion results from Table 2.

4.2 WORD EMBEDDINGS

To investigate the performance of product space embeddings in applications requiring the underlying
manifold structure, we learned word embeddings and evaluated them on benchmark datasets for
word similarity and analogy. In particular, we extend results on hyperbolic skip-gram embeddings
from Leimeister & Wilson (2018) (LW), who found that hyperbolic embeddings perform favorably
against Euclidean word vectors in low dimensions (d = 5, 20), but less so in higher dimensions
(d = 50, 100). Building on these results, we hypothesize that in high dimensions, a product of
multiple smaller-dimension hyperbolic spaces will substantially improve performance.

Setup We use the standard skip-gram model (Mikolov et al., 2013) and extend the loss function
to a generic objective suitable for arbitrary manifolds, which is a variant of the objective proposed
by LW. Concretely, given a word u and target w, with label y = 1 if w is a context word for u and
y = 0 if it is a negative sample, the model is P (y|w, u) = σ

(
(−1)1−y(− cosh(d(αu, γw)) + θ)

)
.

Training followed the setup of LW, building on the fastText skip-gram implementation. Euclidean
results are reported directly from fastText. Aside from choice of model, the training setup including
hyperparameters (window size, negative samples, etc.) is identical to LW for all models.

Word Similarity We measure the Spearman rank correlation ρ between our scores and annotated
ratings on the word similarity datasets WS-353 (Finkelstein et al., 2001), Simlex-999 (Hill et al.,

3Note that S1 and H1 are metrically equivalent to R, so these are not considered.
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Table 2: Graph reconstruction: fidelity measures for graph embeddings using d = 10 total dimen-
sions, with varying allocations of spaces and dimensions. Our loss function (2) targets distortion,
and for each dataset the best model reflects the structure of the data. Even on near-perfectly spherical
or hierarchical data, products of S (resp. H) perform no worse than the single copy.

Cities CS PhDs Power Facebook

|V |=312 |V |=1025, |E|=1043 |V |=4941, |E|=6594 |V |=4039, |E|=88234

Davg Davg mAP Davg mAP Davg mAP

E10 0.0735 0.0543 0.8691 0.0917 0.8860 0.0653 0.5801
H10 0.0932 0.0502 0.9310 0.0388 0.8442 0.0596 0.7824
S10 0.0598 0.0569 0.8329 0.0500 0.7952 0.0661 0.5562

(H5)2 0.0756 0.0382 0.9628 0.0365 0.8605 0.0430 0.7742
(S5)2 0.0593 0.0579 0.7940 0.0471 0.8059 0.0658 0.5728
H5 × S5 0.0622 0.0509 0.9141 0.0323 0.8850 0.0402 0.7414
(H2)5 0.0687 0.0357 0.9694 0.0396 0.8739 0.0525 0.7519
(S2)5 0.0638 0.0570 0.8334 0.0483 0.8818 0.0631 0.5808

(H2)2×E2×(S2)2 0.0765 0.0391 0.8672 0.0380 0.8152 0.0474 0.5951

Best model S5
1.0×S5

1.1 H2
.3×H2

.6×H2
1.5×(H2

1.2)
2 H5

3.4 × S5
12.6 H5

0.3 × S5
3.5

Davg improvement
over single space 0.8% 28.89% 16.75% 32.55%

Table 3: Heuristic allocation: estimated signatures for embedding unweighted graphs from Table 2
into two factors, using Algorithms 2,3 to match the empirical distribution of graph curvature. The
resulting curvature signs agree with results from Table 2 for choosing among two-component spaces.

CS PhDs Power Facebook

Estimated Signature H5
1.3 ×H5

0.2 H5
1.8 × S51.7 H5

0.9 × S51.6

2015) and MEN (Bruni et al., 2014). The results are in Table 4. Notably, we find that hyperbolic
word embeddings are consistently competitive with or better than the Euclidean embeddings, and
the improvement increases with more factors in the product. This suggests that word embeddings
implicitly contain multiple distinct but smaller hierarchies rather than forming a single larger one.

Analogies In manifolds, there is no exact analog of the “word arithmetic” of conventional word
embeddings arising from vector space structure. However, analogies can still be defined via intrinsic
product manifold operations. In particular, note that the loss function depends on the embeddings
solely through their pairwise distances. We thus define analogies a : b :: c : d by matching the
distances d2(a, b) = d2(c, d) and d2(a, c) = d2(b, d) through constructing an analog of the parallel-
ogram, by geodesically reflecting a through the geodesic midpoint (i.e. mean) m of b, c. Note that
this defines both the loss function and the intrinsic tasks purely in terms of distances and manifold
operations. Hence, unlike traditional word embeddings, this formulation is generic to any space.

Our evaluation, shown in Table 5, uses the standard Google word analogy benchmark (Mikolov
et al., 2013). We observe a 22% accuracy improvement over single-space hyperbolic embeddings in
50 dimensions and similar improvements over a single hyperbolic space in 100 dimensions. As with
similarity, accuracy on the analogy task consistently improves as the number of factors increases.

5 CONCLUSION

Product spaces enable improved representations by better matching the geometry of the embedding
space to the structure of the data. We introduced a tractable Riemannian product manifold class that
combines Euclidean, spherical, and hyperbolic spaces. We showed how to learn embeddings and
curvatures, estimate the product signature, and defined a tractable formulation of mean. We hope
that our techniques encourage further research on non-Euclidean embedding spaces.

9
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Table 4: Spearman rank correlation on similarity datasets. Top: Previous results from embeddings
into spaces of fixed curvature. Bottom: Embeddings into products of H with fixed total dimension.

Dim 50 Dim 100

WS-353 Simlex MEN WS-353 Simlex MEN

Euclidean 0.6628 0.2738 0.7217 0.6986 0.2923 0.7473
Hyperbolic 0.6787 0.2784 0.7117 0.6846 0.2832 0.7217

2 Hyperbolics 0.6955 0.2870 0.7246 0.7297 0.3168 0.7450
5 Hyperbolics 0.7048 0.2837 0.7270 0.7379 0.3212 0.7530

Table 5: Accuracy on the Google word analogy dataset. Taking products of smaller hyperbolic
spaces significantly improves performance. Unlike conventional embeddings, the operations in hy-
perbolic and product spaces are defined solely through distances and manifold operations.

Total Dim d / Model Rd (Hd)1 (Hd/2)2 (Hd/5)5 (H2)d/2

50 0.3866 0.3424 0.3928 0.4181 0.4209
100 0.5513 0.3738 0.4310 0.4731 0.5216
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The Appendix starts with a glossary of symbols and a discussion of related work. Afterwards,
we provide the proof of Lemma 2. We continue with a more in-depth treatment of the curvature
estimation algorithm. We then introduce two combinatorial constructions—embedding techniques
that do not require optimization—that rely on the alternative product distances. We give additional
details on our experimental setup. Finally, we additionally evaluate the interpretability of these
embeddings (i.e., do the separate components in the embedding manifold capture intrinsic qualities
of the data?) through visualizations of the synthetic example from Figure 1.

A GLOSSARY OF SYMBOLS

We provide a glossary of commonly-used terms in our paper.

Symbol Used for

mAP(f) the mean average precision fidelity measure of the embedding f
D(f) the distortion fidelity measure of the embedding f
Dwc(f) the worst-case distortion fidelity measure of the embedding f
G a graph, typically with node set V and edge set E
T a tree
a, b, c nodes in a graph or tree
f an embedding
Na neighborhood around node a in a graph
Ra,b the smallest set of closest points to node a in an embedding f that contains node b
M a manifold; when equipped with a metric g, M is Riemannian
p a point in a manifold, p ∈M
TpM the tangent space of point p in M (a vector space)
g a Riemannian metric defining an inner product on TpM
Ed d-dimensional Euclidean space
Sd d-dimensional spherical space
Hd d-dimensional hyperbolic space
P product manifold consisting of spherical, Euclidean, hyperbolic factors
Expx(v) the exponential map for tangent vector v at point x
R the Riemannian curvature tensor
K(x, y) the sectional curvature for a subspace spanned by linearly independent x, y ∈ TpM
dE metric distance between two points in Euclidean space
dS metric distance between two points in spherical space
dH metric distance between two points in hyperbolic space
dU metric distance between two points in metric space U
dG metric distance between two points in a graph G = (V,E)
µ(T ) mean of a set of points T = {p1, . . . , pn} in P
In the n× n identity matrix

Table 6: Glossary of variables and symbols used in this paper.

B RELATED WORK

Hyperbolic space has recently been proposed as an alternative to Euclidean space to learn embed-
dings in cases where there is a (possibly latent) hierarchical structure. In fact, many types of data
(from various domains) such as social networks, word frequencies, metabolic-mass relationships,
and phylogenetic trees of DNA sequences exhibit a non-Euclidean latent structure, as shown in
Bronstein et al. (2017).

Initial works on hyperbolic embeddings include Nickel & Kiela (2017) and Chamberlain et al.
(2017). In Chamberlain et al. (2017), neural graph embeddings are performed in hyperbolic space
and used to classify the vertices of complex networks. A similar application is link prediction in
Nickel & Kiela (2017) for the lexical database WordNet; this work also measured predicted lex-
ical entailment on the HyperLex benchmark dataset. The follow-up work Nickel & Kiela (2018)
performs optimizations in the hyperboloid (i.e. Lorentz) model instead of the Poincaré model.
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Tay et al. (2018) proposed a neural ranking based question answering (Q/A) system in hyperbolic
space that outperformed many state-of-the-art models using fewer parameters compared to competi-
tor learning models. Ganea et al. (2018a) proposed hyperbolic embeddings of entailment relations,
described by directed acyclic graphs by applying hyperbolic cones as a heuristic and showed im-
provements over baselines in terms of representational capacity and generalization. Sala et al. (2018)
developed a combinatorial construction for efficiently embedding trees and tree-like graphs without
optimization, studied the fundamental tradeoffs of hyperbolic embeddings, and explored PCA-like
algorithms in hyperbolic space.

Unlike Euclidean space, most Riemannian manifolds are not vector spaces, and thus even basic op-
erations such as vector addition, vector translation and matrix multiplication do not have universal
interpretations. In more complex geometries, closed form expressions for basic objects like dis-
tances, geodesics, and parallel transport do not exist. As a result, standard machine learning or deep
learning tools, such as convolutional neural networks, long short term memory networks (LSTMs),
logistic regression, support vector machines, and attention mechanisms, do not have exact corre-
spondences in these complex geometries.

A pair of recent approaches seek to formulate standard machine learning methods in hyperbolic
space. Gulcehre et al. (2018) introduces a hyperbolic version of the attention mechanism using the
hyperboloid model. This work shows improvements in terms of generalization on several down-
stream applications including neural machine translation, learning on graphs and visual question an-
swering tasks, while having compact neural representations. Ganea et al. (2018b) formulates basic
machine learning tools in hyperbolic space including multinomial logistic regression, feed-forward
and recurrent neural networks like gated recurrent units and LSTMs in order to embed sequential
data and perform classification in hyperbolic space. They demonstrate empirical improvements on
textual entailment and noisy-prefix recognition tasks using hyperbolic sentence embeddings. Cho
et al. (2018) introduced a hyperbolic formulation for support vector machine classifiers and demon-
strated performance improvements for multi-class prediction tasks on real-world complex networks
as well as simulated datasets.

Zipf’s law states that word-frequency distributions obey a power law, which defines a hierarchy
based on semantic specificities. Concretely, semantically general words that occur in a wider range
of contexts are closer to the root of the hierarchy while rarer words are further down in the hierar-
chy. In order to capture the latent hierarchy in the natural language, there has been several proposals
for training word embeddings in hyperbolic space. Dhingra et al. (2018) trains word embeddings
using the algorithm from Nickel & Kiela (2017). They show that resulting hyperbolic word em-
beddings perform better on inferring lexical entailment relation than Euclidean embeddings trained
with skip-gram model which is a standard method for training word embeddings, initially proposed
by Mikolov et al. (2013). Leimeister & Wilson (2018) formulated the skip-gram loss function in
hyperboloid model of hyperbolic space and evaluated on the standard the intrinsic evaluation tasks
for word embeddings such as similarity and analogy in hyperbolic space.

Finally, the popularity of hyperbolic embeddings has stimulated interest in descent methods suitable
for hyperbolic space optimization. In addition to tools like Bonnabel (2013) and Zhang et al. (2016),
Zhang & Sra (2016) offers convergence rate analysis for a variety of algorithms and settings for
Hadamard manifolds. Enokida et al. (2018) proposes an explicit update rule along geodesics in a
hyperbolic space with a theoretical guarantee on convergence, and Zhang & Sra (2018) introduces
an accelerated Riemannian gradient methods.

Our work also touches on previous work on maximum distance scaling (MDS) and PCA-like al-
gorithms in hyperbolic, spherical, and more general manifolds. MDS-like algorithms in hyperbolic
space are developed for visualization in Walter (2004) and Lamping & Rao (1994). Embeddings
into spherical or into hyperbolic space with a PCA-like loss function were developed in Wilson
et al. (2014). General forms of PCA include Geodesic PCA (Huckemann et al., 2010) and principal
geodesics analysis (PGA) (Fletcher et al., 2004). A very general study of PCA-like algorithms is
found in Pennec (2018).

C MANIFOLD CONCEPTS AND PROOFS

Below, we include proofs of our results and further discuss manifold notions such as curvature.
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C.1 MEANS IN PRODUCT SPACES

We begin with Lemma 2, restated below for convenience.
Lemma 2. Let P be a product of model spaces of total dimension r, T = {p1, . . . , pn} points in
P and w1, . . . , wn weights satisfying wi ≥ 0 and

∑n
i=1 wi = 1. Moreover, let the components of

the points in P , pi|Sj restricted to each spherical component space Sj fall in one hemisphere of Sj .
Then, Riemannian gradient descent recovers the mean µ(T ) within distance ε in timeO(nr log ε−1).

Proof. Consider the squared distance d2(p, q) for p, q ∈M for a manifold M . Fix q. We denote the
Hessian in p by Hp,M (q). Then, we have the following expressions for the Hessian of the squared
distance of a sphere, derived in Pennec

Hp,Sr (q) = 2uuT + 2
θ cos θ

sin θ
(Ir − ppT − uut),

where Ir is the identity matrix, θ = acos(p · q) is the distance dSr (p, q) and u = (Ir − ppT )q/ sin θ.
In Pennec, it is shown that the eigenvectors of Hp,Sr (q) are 0, 1, and θ cot(θ); thus the Hessian is
bounded and if θ ∈ [0, π/2], it is also positive definite (PD).

For hyperbolic space (under the hyperboloid model), the Hessian is

Hp,Hr (q) = 2uuTJ + 2θ coth θ(J + ppT − uuT )J.

Here θ = acosh(−〈p, q〉∗), J is the matrix associated with the Minkowski inner product, i.e.,
〈p, q〉∗ = pTJq, and u = logp(q)/θ. The log here refers to the logarithmic map. That is, if
q = expp(v), then v = logp(q). Moreover, exact expressions for the eigenvalues of Hp,Hr (q) in
terms of θ imply that it is always bounded and PD.

The Hessian for Euclidean space is Hp,Er (q) = 2Ir, which is also PD.

Now we can express the Hessian of the weighted mean. We write Hp,P for the Hessian of the
weighted variance

∑n
i=1 wid

2
P(p, pi) (recall that µ(p1, . . . , pn) = argminp

∑n
i=1 wid

2
P(p, pi)).

We have, by the decomposability of the distance, that

n∑
i=1

wid
2
P(p, pi) =

s∑
j=1

n∑
i=1

wid
2
sj (p, pi) +

h∑
j=1

n∑
i=1

wid
2
hj
(p, pi) +

n∑
i=1

wid
2
E(p, pi).

Taking the Hessian,

Hp,P =

s∑
j=1

n∑
i=1

wiHp,Ssj (pi) +

h∑
j=1

n∑
i=1

wiHp,Hhj (pi) + 2nIe.

Now, by assumption, the spherical components for our points in each of the spheres, pi|Sj , fall within
one hemisphere, and we may initialize our gradient descent (that is, our p0) within this hemisphere.
Then, the angle θ in each of the spherical distances is in [0, π/2], so that the corresponding Hessians
are PD.

Since each term in the sum is PD and the weights satisfy wi ≥ 0, with at least one positive weight,
Hp,P is also PD. Moreover, these Hessians are bounded. Then we apply Theorem 4.2 (Chap. 7.4)
in Udriste (1994)), which shows linear rate convergence, as desired.

C.2 CURVATURE ESTIMATION

We discuss the notions of curvature relevant to our product manifold in more depth. We start with a
high-level overview of various definitions of curvature. Afterwards, we introduce the formal defini-
tions for curvature and apply them to the product construction.

Definitions of Curvature There are multiple notions of curvature, with varying granularity. Some
of these notions are suitable for working with manifolds abstractly (without reference to an ambi-
ent space, that is, intrinsic). Others, in particular older definitions pre-dating the development of
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the formal mechanisms underpinning differential geometry, require the use of the ambient space.
Gauss defined the first intrinsic notion of curvature, Gaussian curvature. It is the product of the
principal curvatures, which can be thought of as the smallest and largest curvature in different di-
rections.4Below we consider several such notions.

Scalar curvature is a single value associated with a point p ∈ M and intuitively relates to the area
of geodesic balls. Negative curvature means volumes grow faster than in Euclidean space, positive
means volumes grow slower.

A more fine-grained notion of curvature is that of sectional curvature: it varies over all “sheets”
passing through p. Note that curvature is inherently a notion of two-dimensional surfaces, and the
sectional curvature fully captures the most general notion of curvature (the Riemannian curvature
tensor). More formally, for every two dimensional subspace U of the tangent space TpM , the
sectional curvature K(U) is equal to the Gaussian curvature of the sheet Expp(U). Intuitively, it
measures how far apart two geodesics emanating from p diverge. In positively curved spaces like
the sphere, they diverge more slowly than in flat Euclidean space.

The Ricci curvature of a tangent vector v at p is the average of the sectional curvature K(U) over all
planes U containing v. Geometrically the Ricci curvature measures how much the volume of a small
cone around direction v compares to the corresponding Euclidean cone. Positive curvature implies
smaller volumes, and negative implies larger. Note that this is natural from the way geodesics bend
in various curvatures. The scalar curvature is in fact defined as an average over the Ricci curvature,
giving the intuitive relation between scalar curvature and volume. It is thus also an average over the
sectional curvature.

Discrete Analogs of Curvature Discrete data such as graphs do not have manifold structure. The
goal of curvature analogs such as ξ is to provide a discrete analog of curvature which satisfies similar
properties to curvature; we use this to facilitate choosing an appropriate Riemannian manifold to
embed discrete data into. In this work, we focus on the sectional curvature, but discrete versions of
other curvatures have been proposed such as the the Forman-Ricci (Weber et al., 2017) and Ollivier-
Ricci (Ollivier, 2009) curvatures.

The input to the discrete curvature estimation from Section 3.2 is analogous to other discrete curva-
ture analogs. For example, the Ricci curvature is defined for a point p and a tangent vector u, and
the coarse Ricci curvature is defined for a node p and neighbor x (Ollivier, 2011). Similarly, the
sectional curvature is defined for a point and two tangent vectors, and ξ is defined for a a node and
two neighbors.

Sectional Curvature in Product Spaces Now we are ready to tackle the question of curvature in
our proposed product space. Let M be our Riemannian manifold and X (M) be the set of vector
fields on M . The curvature R of M assigns a function R(X,Y ) : X (M) → X (M) to each pair of
vector fields (X,Y ) ∈ X × X . For a vector field Z in X (M), the function R(X,Y ) can be written

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z.

Here∇ is the Riemannian connection for the manifoldM , and [X,Y ] is the Lie bracket of the vector
fields X,Y .

For convenience, we shall write the inner product 〈R(X,Y )Z, T 〉 as (X,Y, Z, T ); this is the Rie-
mannian curvature tensor. Then, the sectional curvature is defined as follows. Let us take V to be
a two-dimensional subspace of TpM and x, y ∈ V be linearly independent (so that they span V).
Then, the sectional curvature at p for subspace V is

K(x, y) :=
(x, y, x, y)

‖x‖2‖y‖2 − 〈x, y〉2
. (4)

The model spaces S,H,E are the spaces of constant curvature, where K is constant for all points p
and 2-subspaces V .

4The curvature of a curve can be found by considering the osculating circles which match it to second order.
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For simplicity, suppose we are working with M =M1×M2; the approach extends easily for larger
products. We write x = (x1, x2) for x ∈ TpM . Similarly, let R1, R2 be the curvatures and K1,K2

be the sectional curvatures of M1,M2 at p, respectively. Then the curvature tensor decomposes as

R(X,Y )Z = (R1(X1, Y1)Z1, R2(X2, Y2)Z2). (5)

Our goal is to evaluate the sectional curvature K((x1, x2), (y1, y2)) for the product manifold M .
We show the following, re-stated for convenience:
Lemma 1. Let M = M1 ×M2 where Mi has constant curvature Ki. For any u, v ∈ TpM , if
K1,K2 are both non-negative, the sectional curvature satisfies K(u, v) ∈ [0,max{K1,K2}]. If
K1,K2 are both non-positive, the sectional curvature satisfies K(u, v) ∈ [min{K1,K2}, 0]. If
Ki < 0 and Kj > 0 for i 6= j, then K(u, v) ∈ [Ki,Kj ].

Proof. Let us start with the numerator of equation (4):

(x, y, x, y) = ((x1, x2), (y1, y2), (x1, x2), (y1, y2))

= 〈R((x1, x2), (y1, y2))((x1, x2)), (y1, y2)〉
= 〈(R1(x1, y1)x1), (R2(x2, y2)x2)〉(y1, y2)〉
= 〈R1(x1, y1)x1, y1〉+ 〈R2(x2, y2)x2, y2〉

Here, we used equation 5 in the third line.

Note that when x1, y1 are linearly independent, then 〈R1(x1, y1)x1, y1〉 = K1(‖x1‖2‖y1‖2 −
〈x1, y1〉2) by (4). Otherwise, this still holds since it is 0. So we can relate the above to K1,K2:

(x, y, x, y) = K1(‖x1‖2‖y1‖2 − 〈x1, y1〉2) +K2(‖x2‖2‖y2‖2 − 〈x2, y2〉2).

For convenience, we write αi = ‖xi‖2‖yi‖2 − 〈xi, yi〉2 for i = 1, 2. Then the numerator is simply
K1α1 +K2α2. Next, we consider the denominator of (equation 4):

‖x‖2‖y‖2 − 〈x, y〉2 = ‖(x1, x2)‖2‖(y1, y2)‖2 − 〈(x1, x2), (y1, y2)〉2

= (‖x1‖2 + ‖x2‖2)(‖y1‖2 + ‖y2‖2)− (〈x1, y1〉+ 〈x2, y2〉)
= α1 + α2 + ‖x1‖2‖y2‖2 + ‖x2‖2‖y1‖2

= α1 + α2 + β,

where we set β = ‖x1‖2‖y2‖2 + ‖x2‖2‖y1‖2. Thus, we have that

K((x1, x2), (y1, y2)) =
α1K1

α1 + α2 + β
+

α2K2

α1 + α2 + β
. (6)

Now, note that β > 0, since we assumed that x1, y1 and x2, y2 are linearly independent. By Cauchy-
Schwarz, αi ≥ 0. Then, if Ki ≥ 0, we have that (αiKi)/(α1 + α2 + β) ≤ (αiKi)/(α1 + α2), so
that

0 ≤ K((x1, x2), (y1, y2)) ≤
α1

α1 + α2
K1 +

α2

α1 + α2
K2. (7)

Thus, we relate the product sectional curvature to a convex combination of the factor sectional
curvatures K1,K2. We have for non-negative K1,K2 (e.g., Euclidean and spherical spaces) that
K((x1, x2), (y1, y2)) ∈ [0,max{K1,K2}]. A similar result holds for the non-positive (Euclidean
and hyperbolic) case. The last case (one negative, one positive space) follows along the same lines.

Distribution ofK The range of curvatures from Lemma 1 can be easily extended to a more refined
distributional analysis. In particular, consider sampling any point p and a random plane V ⊆ TpM .
By homogeneity, we can equivalently fix p. The 2-subspaces of TpM ' Rd forms the Grassman-
nian manifold Gr(2, TpM). The uniform measure on this (i.e. invariant to multiplication by an
orthogonal matrix) can be recovered from the Haar measure on the orthogonal group O(d), which
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Algorithm 2 Sectional curvature distribution

1: Input: Dimensions d1, d2
2: a1 ← χ2(d1 − 1)
3: b1 ← χ2(d1 − 1)
4: t1 ← Beta((d1 − 1)/2, (d1 − 1)/2)

5: c1 ← a
1/2
1 b

1/2
1 (2t1 − 1)

6: a2 ← χ2(d2 − 1)
7: b2 ← χ2(d2 − 1)
8: t2 ← Beta((d2 − 1)/2, (d2 − 1)/2)

9: c2 ← a
1/2
2 b

1/2
2 (2t2 − 1)

10: α1 ← a1b1 − c21
11: α2 ← a2b2 − c22
12: β ← a1b2 + a2b1
13: return α1

α1+α2+β
K1 +

α2

α1+α2+β
K2

itself can be constructed by orthonormalizing independent random normal vectors. In particular, it
suffices to consider V spanned by independent Gaussians x, y ∼ N (0, I).

Furthermore, we do not actually need to sample d-dimensional vectors x, y to compute the rele-
vant curvature in equation 6. It suffices to sample the quantitities 〈x1, y1〉, 〈x1, x1〉, 〈y1, y1〉 and
〈x2, y2〉, 〈x2, x2〉, 〈y2, y2〉 directly. Note that α := 〈x1, x1〉 and β := 〈y1, y1〉 are χ2-distributed,
while 〈x1, y1〉 ∼

√
αβγ, where γ is distributed as the dot product of two uniformly random unit

vectors. By rotational invariance, this is the same as the first coordinate of a random unit vector,
which in turn is distributed as X2

1/(X
2
1 + · · · + X2

d) for independent normal Xi, and therefore
(γ + 1)/2 ∼ Beta((d− 1)/2, (d− 1)/2).

Thus a random K(V) can be computed by sampling from well known distributions in constant time,
via Algorithm 2.

Furthermore, without knowing K1,K2 a priori, an estimate for these curvatures can be found by
matching the distribution of sectional curvature from Algorithm 2 to the empirical curvature com-
puted from Algorithm 3. In particular, Algorithm 2 can be used to generate samples for α1

α1+α2+β

and α2

α1+α2+β
. The overall moments are then simple functions of K1,K2, and the sample moments

of the above quantities, so that K1,K2 can then be found by matching moments.

Curvature Estimation We prove the facts we mentioned in the main body of the paper relating to
the evaluation of ξ over fundamental pieces of graphs: lines, cycles, and trees.

Lemma 3. Suppose a lies on the same geodesic line as b,m, c; in other words, WLOG dG(a, b) ≤
dG(a, c) and suppose dG(a, c) = dG(a, b) + dG(b,m) + dG(m, c). Then ξ(m; b, c; a) = 0.

Lemma 4. Consider a cycle graph C with nodes b,m, c such that (m, b) and (m, c) are neighbors.
Then for all a ∈ C, ξ(m; b, c; a) is either 0 or positive.

Proof. Without loss of generality, let the cycle have an even number of vertices n. Let k be the node
diametrically opposite from m. Note that for any vertex a 6= n, a, b,m, c lie on a geodesic line, and
therefore ξ(m; b, c; a) = 0. On the other hand,

ξ(m; b, c; a) =
1

2 · n/2

((n
2

)2
+ 1− 1

2

(
(n/2− 1)2 + (n/2− 1)2

))
= 1.

The case when n is odd is similar, where we find that two nodes a satisfy ξ(m; b, c; a) = n/(n− 1)
and the rest are 0.

Lemma 5. Consider a tree graph T with nodes b,m, c such that (m, b) and (m, c) are neighbors.
Then for all a ∈ T , ξ(m; b, c; a) is either 0 or negative.
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Algorithm 3 Empirical estimation of sectional curvature distribution

1: Input: Graph G = (V,E)
2: m← Uniform(V )
3: b← Uniform(N (m)) {N (v) is the neighbor set of v}
4: c← Uniform(N (m))
5: a← Uniform(V )
6: K ← ξ(m; b, c; a)
7: return K

Proof. Due to the tree structure, a is either geodesic with b,m, c, or a is connected to m with a path
that does not pass through b or c. In the former case, ξ(m; b, c; a) = 0. In the latter case,

ξ(m; b, c; a) =
1

2d

(
d2 + 1− (d+ 1)2

)
= −1,

where d = dG(a,m).

Given a graph, the distribution of ξ(m; b, c) over random “planes” (i.e. pairs of neighbors b, c) is
easily calculable. This yields a distribution that can then be averaged over m to obtain an average
sectional curvature distribution. To simplify this, we find the distribution via sampling (Algorithm 3)
in the calculations for Table 3, before being fed into Algorithm 2 to estimate Ki.

As a corollary of Lemma 5, note that the ξ becomes more negative for trees of higher degree, match-
ing the intuition that higher degree trees are more appropriate for hyperbolic space embeddings (Sala
et al., 2018).

We additionally note that a line of work has studied discrete analogs of curvature for regular objects
such as triangular planar tessellations (including polyhedra) (Thurston, 1998). For example, these
notions assign positive curvature to regular polyhedra (the tetrahedron, octahedron, icosahedron),
zero curvature to the flat planar tessellation, and positive curvature to the order-7 triangular tiling of
the hyperbolic plane. It is easily checked that Algorithm 3 assigns the right curvature sign to each
of these objects.

C.3 COMBINATORIAL CONSTRUCTIONS

The `1 and min-based distances are suitable for combinatorial constructions where we do not learn
embeddings by optimizing a surrogate loss function, but rather by directly placing points in the
product space, often via recursive procedures. Such constructions offer superior speed and other
benefits. On the other hand,they are only available for certain classes of graphs. Additionally, since
the constructions rely on the `1 and min distances, they do not take advantage of the Riemannian
structure, and thus do not have the same applicability downstream.

We often exploit the combinatorial construction for trees from Sala et al. (2018) as a building block;
it offers worst-case distortion5 1 + ε when embedding a tree into Hr for all r ≥ 2, where we can
control ε.

Hanging Tree Construction Consider the class of graphs G = (V,E) where V = B ∪ T1 ∪
T2 . . . ∪ T|B|, so that B is a base set of nodes and for each node a ∈ B, there is a tree Ta connected
to a (the hanging trees). We show how to use P with the `1 distance to reduce the cost of embedding
G to that of embedding the subgraph induced by B.

We embed G into the product space P = P ′ ×Hr equipped with the `1 distance. Here, P ′ is some
product manifold. We do the embedding in two steps:

5The worst-case distortion Dwc is a commonly-considered variant of distortion

Dwc(f) =
maxu,v∈U :u6=v dV (f(u), f(v))/dU (u, v)

minu,v∈U :u6=v dV (f(u), f(v))/dU (u, v)
.

The worst-case distortion is the ratio of the worst expansion and the worst contraction of distances; note that it
is scale-invariant. Here, the best worst-case distortion is Dwc(f) = 1.
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1. Embed the subgraph induced by B into P ′ by any method; let the resulting worst-case
distortion be 1 + δ. Embed every node in Ti into the embedded image of node i,

2. Form the tree T by connecting each of the T1, . . . , T|B| to a single node (equivalent to
crushing all the nodes in B into a single node), and embed T into Hr by using the combi-
natorial construction. Additionally, all of the nodes in B are embedded into the image of
the single central node in Hr.

We can check the distortion. For nodes xa, yb in subtrees hanging off a, b ∈ B, the distance is
dG(xa, yb) = dT (xa, yb)+dB(x, y). Since the distortion for the two embeddings are given by 1+δ
and 1 + ε, it is easy to check that the overall distortion is at most max{1 + δ, 1 + ε}.
As a concrete example, consider the ring of trees in Figure 1. Then, B = Cr, the cycle on r nodes.
In this case, we can embed B into P ′ = S1. Let the nodes of B be indexed a1, . . . , ar. We embed
ai into Ai = (cos( 2πid ), sin( 2πid )). Then, for i < j,

dS(Ai, Aj) = acos(Ai ·Aj)

= acos
(
cos

(
2πi

d

)
cos

(
2πj

d

)
+ sin

(
2πi

d

)
sin

(
2πj

d

))
= acos

(
cos

(
2π(i− j)

d

))
=

2π(|j − i|)
d

.

Thus indeed, the embedding has worst-case distortion 1. Thus, the overall distortion for the ring of
trees is 1 + ε. Since we control ε, we can achieve arbitrarily good distortion for the ring of trees.
The complexity of this algorithm is linear in the number of nodes, since embedding the trees and
ring is linear time.

General Graph Construction Now we use the min distance space to construct an embedding of
any graph G on r nodes with arbitrarily low distortion via the space P = H2 ×H2 × . . .×H2 with
r − 1 copies. As we shall see, this construction is ideal (arbitrarily low distortion, any graph) other
than requiring O(r) spaces.

Let the nodes of G be V = {a1, . . . , ar}. Now, for each ai, 1 ≤ i ≤ r − 1, form the minimum dis-
tance tree Ti rooted at ai. Then, embed Ti into the ith copy of H2 via the combinatorial construction.
Then, for any nodes ai, aj ∈ V , the distance dG(ai, aj) is attained by dTi

(ai, aj), or dTj
(aj , ai) in

the case i = r. Since at least one of Ti or Tj , say Ti, is embedded in H2 with distortion 1 + ε, if we
make ε small enough, the smallest distance among the embedded copies is indeed that for Ti, so our
overall distortion is still 1 + ε.

D VISUALIZATIONS AND INTERPRETABILITY

The combinatorial construction using the `1 distance (Section C.3) can embed the hanging tree
graph arbitrarily well, unlike any single type of space. Unlike a single space, this also lends more
interpretability to the embedding, as each component displays different qualitative aspects of the
underlying graph structure. Figure 4 shows that this phenomenon does in fact happen empirically,
even using the optimization approach over the `2 (Riemannian) instead of `1 distance.

E EXPERIMENTAL DETAILS

We provide some additional details for our experimental setups.

Graph Reconstruction The optimization framework was implemented in PyTorch. The loss
function (2) was optimized with SGD using minibatches of 65536 edges for the real-world
datasets, and ran for 2000 epochs. For the Cities graph, the learning rate was chosen among
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Figure 4: Ring of trees graph embedding into (H2)1 × (S1)1; left: early epoch, right: completion.
Only accessing graph distances, the optimization separates the different intrinsic structures of the
underlying graph—the cycle and the trees—into interpretable components. Compare to Figure 2.

{0.001, 0.003, 0.01}. For the rest of the datasets, the learning rate was chosen from a grid search
among {10, 30, 100, 300, 1000} for each method.6

Each point in the embedding is initialized randomly according to a uniform or Normal distribution
in each coordinate with standard deviation 10−3. (In the hyperboloid and spherical models, all but
the first coordinate is chosen randomly, and the first coordinate is a function of the rest.)

Table 2 uses only Algorithm 1, and initializes the curvatures to−1 for hyperbolic components and 1
for spherical components. These curvatures are learned using the method described in Section 3.1,
and the “Best model” row reports the final curvatures of the best signature.

Word Embeddings Following LW, the input corpus is a 2013 dump of Wikipedia that has been
preprocessed by lower casing and removing punctuation, and filtered to remove articles few page
views. All other hyperparameters are chosen exactly as in as LW, including their numbers for Eu-
clidean embeddings from fastText. The datasets used for similarity (WS-353, Simlex-999, MEN)
and analogy (Google) are also identical to the previous setup.

6Note that the high LR stems from the particular choice of normalization for (2) in our implementation.
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