DISCOVERING GENERAL-PURPOSE
ACTIVE LEARNING STRATEGIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a general-purpose approach to discovering active learning (AL) strategies from data. These strategies are transferable from one domain to another and can be used in conjunction with many machine learning models. To this end, we formalize the annotation process as a Markov decision process, design universal state and action spaces and introduce a new reward function that precisely reflects the AL objective of minimizing the annotation cost. We seek to find an optimal (non-myopic) AL strategy using reinforcement learning. We evaluate the learned strategies on multiple unrelated domains and show that they consistently outperform state-of-the-art baselines.

1 INTRODUCTION

Modern supervised machine learning (ML) methods require large annotated datasets for training purposes and the cost of producing them can easily become prohibitive. Active Learning (AL) mitigates the problem by selecting intelligently and adaptively a subset of the data to be annotated. To do so, AL typically relies on informativeness measures that identify datapoints whose labels are most likely to help improve the performance of the trained model. As a result, good performance is achieved using far fewer annotations than by randomly labelling data.

Most AL selection strategies are hand-designed either on the basis of researcher’s expertise and intuition or by approximating theoretical criteria (Settles, 2012). They are often tailored for specific applications and empirical studies show that there is no single strategy that consistently outperforms others in all applications (Baram et al., 2004; Ebert et al., 2012). Furthermore, they only represent a small subset of all possible strategies.

To overcome these limitations, it has recently been proposed to design the strategies themselves in a data-driven fashion by learning from prior experience with AL (Konyushkova et al., 2017; Bachman et al., 2017). This meta approach makes it possible to account for the current state of the trained ML model, to go beyond human intuition, and potentially to discover completely new strategies. However, many of these methods are still limited to learning from closely related domains (Bachman et al., 2017; Fang et al., 2017; Liu et al., 2018). Using a greedy selection that may be suboptimal (Konyushkova et al., 2017; Liu et al., 2018), or relying on properties of specific classifiers (Konyushkova et al., 2017; Bachman et al., 2017; Contardo et al., 2017; Ravi & Larochelle, 2018). In short, even though data-driven AL methods have flourished recently, we are still missing general-purpose ones that depend neither on the kind data being used nor on the specific ML model being trained. In this paper, we introduce such a generic data-driven AL method that is applicable to heterogeneous datasets and to most ML models because it does not require hand-crafting model-specific features.

More specifically, we reformulate AL as a Markov Decision Process (MDP) and use reinforcement learning (RL) to find AL strategy as an optimal MDP policy. To achieve the desired generality, we incorporate two important contributions into our approach. First, we take the AL objective to be minimizing the number of annotations required to achieve a given prediction quality, which is a departure from standard AL approaches that maximize the performance given an annotation budget. In this way, we optimize what the practitioners truly want, that is, the annotation cost, independently of the specific ML model being used. To this end, we design the reward function of MDP to reflect our AL objective. Second, we propose a procedure that can lean an AL strategy from data coming from multiple unrelated domains for which annotations are already available. The strategy then
applies to domains for which this is not the case. To this end, we defined generic MDP state and action representations that can be computed on arbitrary datasets and without regard to the specific ML algorithm that makes our approach more generic.

In our experiments we demonstrate the effectiveness of our approach for the purpose of binary classification by applying the learned strategies to previously unseen datasets from different domains. We show that they enable us to reach pre-defined quality thresholds with fewer annotations than several baselines, including recent meta-AL algorithms (Hsu & Lin, 2015; Konyushkova et al., 2017). We also analyse the properties of our strategies to understand their behaviour and it differs from those of more traditional ones.

2 RELATED WORK

Manually-designed AL methods differ in their underlying assumptions, computational costs, theoretical guarantees, and generalization behaviours. However, they all depend on a human designer having decided how the data points should be selected. Representative approaches to doing this are uncertainty sampling (Lewis & Gale, 1994), which works remarkably well in many cases (Luo et al., 2013; Sun et al., 2015), query-by-committee, which does not require probability estimates (Gilad-Bachrach et al., 2005; Beluch et al., 2018), and expected model change (Freytag et al., 2014; Käding et al., 2015). However, the performance of any one of these strategies on a never seen before dataset is unpredictable (Settles & Craven, 2008; Baram et al., 2004; Ebert et al., 2012), which makes it difficult to choose one over the other. In this section, we review recent methods to addressing this difficulty.

Combining AL strategies If a single manually designed method does not consistently outperform all others, it makes sense to adaptively select the best strategy or to combine them. Such algorithms do it can rely on heuristics (Osugi et al., 2005), on bandit algorithms (Baram et al., 2004; Hsu & Lin, 2015; Chu & Lin, 2016), or on generic RL (Ebert et al., 2012; Long & Hua, 2015). This helps but remains limited to combining existing strategies instead of learning new ones. Furthermore, strategy learning happens during AL and its success depends critically on the ability to estimate the classification performance from scarce annotated data.

Data-driven AL Recently, the researchers have therefore turned to so-called data-driven AL approaches that learn AL strategies from annotated data (Konyushkova et al., 2017; Bachman et al., 2017; Contardo et al., 2017; Ravi & Larochelle, 2018; Liu et al., 2018; Fang et al., 2017; Pang et al., 2018). These approaches learn what kind of actions are most beneficial for training the model given the current state of learning. Then, past experience helps to eventually derive a more effective selection strategy. This has been demonstrated to be effective but the strategies suffer from a number of limitations. First, they are often tailored for learning only from related datasets and domains suitable for transfer or one-shot learning (Liu et al., 2018; Bachman et al., 2017; Fang et al., 2017; Contardo et al., 2017; Ravi & Larochelle, 2018). Second, many rely on specific properties of the ML models, be they standard classifiers (Konyushkova et al., 2017) or few-shot learning models (Bachman et al., 2017; Contardo et al., 2017; Ravi & Larochelle, 2018), which restricts their generality. Finally, some depend on greedy strategies—for example when supervised (Konyushkova et al., 2017) or imitation learning (Liu et al., 2018) is used—that can easily result in suboptimal strategies.

RL methods are used both for pool-based AL where datapoints are selected from a large pool of unlabelled data and for stream-based AL where datapoints come in the form of a stream and AL chooses whether to annotate a datapoint or not as it appears. In stream-based AL, actions—to annotate or not to—are discrete and Q-learning (Watkins & Dayan, 1992) is the method of choice (Woodward & Finn, 2016; Fang et al., 2017). By contrast, in pool-based AL, the actions concern all potential datapoints that can be annotated and they are characterised by continuous vectors that makes it not suitable for Q-learning and policy gradient (Williams, 1992; Sutton et al., 2000) methods are used (Bachman et al., 2017; Contardo et al., 2017; Ravi & Larochelle, 2018; Pang et al., 2018). In this paper we focus on pool-based AL but we would like to reap the benefits of Q-learning that is, lower variance and better data-complexity thanks to bootstrapping. To this end, we take advantage of the fact that although actions in pool-based AL are continuous, their number is finite. Thus, we can adapt Q-learning for our purposes.

Most data-driven AL methods stipulate a specific objective function that is being maximised. However, the methods are not always evaluated in a way that is consistent with the objective that is
optimized. Sometimes, the metric used for evaluation differs entirely from the objective (Bachman et al., 2017; Konyushkova et al., 2017; Pang et al., 2018). Sometimes, the learning objective may include additional factors like discounting (Woodward & Finn, 2016; Pang et al., 2017; Pang et al., 2018) or may combine several metrics (Woodward & Finn, 2016; Contardo et al., 2017). By contrast, our approach uses our evaluation criterion—minimization of the time spent annotating for a given performance level—directly and consistently into the strategy learning process.

Among data-driven AL, the approach of Pang et al. (2018) achieves generality by using multiple training datasets to learn strategies, as we do. However, this approach is far more complex than ours, relies on policy-gradient RL, and uses a standard AL objective. By contrast, our approach does not require a complex state and action embedding, requires fewer RL episodes for training thanks to our adaptation of Q-learning, and explicitly maximizes what practitioners care about most, that is, reduced annotation cost.

3 Method

We formulate the AL process as a Markov decision process (MDP) and use reinforcement learning (RL) to find an optimal strategy. In this section, we first outline our design philosophy. We then formalize AL in MDP terms and finally describe our approach to finding optimal MDP policies. For simplicity, we present our approach in the context of binary classification. However, an almost identical AL problem formulation can be used for other ML tasks and a separate selection policy can be trained for each one.

3.1 Approach

Our goal is to advance data-driven AL towards general-purpose strategy learning. Desirable strategies should have two key properties. They should be transferable across unrelated datasets and have sufficient flexibility to be applied in conjunction with different ML models. Our design decisions are therefore geared towards learning such strategies. The iterative structure of AL is naturally suited for an MDP formulation: For every state of an AL problem, an agent takes an action that defines the datapoint to annotate and it receives a reward depending on the quality of the model that is re-trained using the new label. An AL strategy then becomes an MDP policy that maps a state into an action.

To achieve seamless transferability and flexibility, our task is therefore to design the states, actions, and rewards to be generic. To this end, we represent states and actions as vectors that are independent from specific dataset feature representations and can be computed for a wide variety of ML algorithms. For example, the probability that the classifier assigns to a datapoint suits this purpose because most classifiers estimate this value. By contrast, the number of support vectors in a support vector machine (SVM) or the number of layers of a neural network (NN) are not suitable because they are model-specific. Raw feature representations of data are similarly inappropriate because they are domain specific.

A classical AL objective is to maximize the prediction quality—often expressed in terms of accuracy, AUC, F-score, or negative squared error—for a given annotation budget. For flexibility’s sake, we prefer an objective that is not directly linked to a specific performance measure. We therefore consider the dual objective of minimizing the number of annotations required for a given target quality value. When learning a strategy by optimizing this objective, the AL agent only needs to know if the performance is above or below this target quality, as opposed to its exact value. Therefore, the procedure is less tied to a specific performance measure or setting. Our MDP reward function expresses this objective by penalizing the agent until the target quality is achieved. This makes the agent minimize its “suffering” by driving the amount of requested annotations down.

Having formulated the AL problem as a MDP, we can now learn a strategy using RL. We simulate the annotation process on data from a collection of unrelated labelled datasets, which contributes to transferability to new unlabelled datasets. Our approach to finding the optimal policy is based on the Q-network (DQN) method of Mnih et al. (2013). To apply DQN with pool-based AL, we modify it into two ways. First, we make it work with MDP where actions are represented by vectors corresponding to individual datapoints instead of being discrete. Second, we deal with the set of actions A_t that change between iterations as it makes sense to annotate a datapoint only once.
and Actions structure is difficult to interpret for a human, it is something RL can exploit to learn a policy. Consists of the score x_s the same initial state score or the uncertainty of a classifier. In Fig. 1, we plot the evolution of this vector for Intuitively, the state representation is rich in information on, for example, the average prediction in generality, we can therefore set aside at the start of each AL run a subset It only makes sense to perform AL when there is a lot of unlabelled data. Without loss of States to specifying our choice for U, by intelligently choosing the actions with a policy π.

Then, we formulate AL procedure as an episodic MDP. Each AL run starts with a small labelled procedure. Then, we take the state representation to be a vector $V_t \cup \{ (x^t, y^t) \}, U_{t+1} = U_t \setminus \{ x^t \}$. Give the agent the reward r_{t+1} linked to empirical performance value ℓ_t.

These steps repeat until a terminal state s_T is reached. In the case of target quality objective of Sec. 3.1, we reach the terminal state s_T when $\ell_T \geq q$, where q is fixed by the user, or when $T = |U_t|$. The agent only observes s_t, r_t and a set of possible actions A_t, while f_t, D' and q are the parts of the environment. The agent aims to maximize the return of the AL run $R_0 = r_1 + \ldots + r_T$ by intelligently choosing the actions with a policy π, that is, the datapoints to annotate. We now turn to specifying our choice for states, actions, and rewards that reflect the AL objective of minimizing the number of annotations while providing flexibility and transferability.

States It only makes sense to perform AL when there is a lot of unlabelled data. Without loss of generality, we can therefore set aside at the start of each AL run a subset $V \subset U_0$ and replace U_0 by $U_0 \setminus V$. We use the classifier’s score \hat{y}_t on V as a means to keep track of the state of the learning procedure. Then, we take the state representation to be a vector s_t of sorted values $\hat{y}_t(x_i)$ for all x_i in V. Intuitively, the state representation is rich in information on, for example, the average prediction score or the uncertainty of a classifier. In Fig. 1 we plot the evolution of this vector for t using a policy defined by random sampling, uncertainty sampling, or our learnt strategy, all starting from the same initial state s_0. Note that the statistics of the vectors are clearly different. Although their structure is difficult to interpret for a human, it is something RL can exploit to learn a policy.

Actions We designed our MDP so that taking an action a_t amounts to selecting a datapoint x^t to be annotated. We characterize a potential action of choosing a datapoint x_t by a vector a_t which consists of the score $\hat{y}_t(x_i)$ of the current classifier f_t on x_i and the average distances from x_i to L_t and U_t, that is $g(x_t, L_t) = \sum_{x_j \in L_t} d(x_t, x_j) / |L_t|$ and $g(x_t, U_t) = \sum_{x_j \in U_t} d(x_t, x_j) / |U_t|$, where

Figure 1: The evolution of the learning state vector s_t during an annotation episode starting from the same state for (a) random sampling, (b) uncertainty sampling, and (c) our RL-learned strategy. Every column represents s_t at iteration t, with $|V| = 30$. Yellow corresponds to values of \hat{y}_t that predict class 1 and blue – class 0.

3.2 Formulating AL as an MDP

Let us consider an AL problem where we annotate a dataset D. A test dataset D' is used to evaluate the AL procedure. Then, we iteratively select a datapoint $x^t \in D$ to be annotated. Let f_t be a classifier trained on a subset L_t that is annotated after iteration t. This classifier assigns a numerical score $\hat{y}_t(x_i) \in \mathbb{R}$ to a datapoint and then maps it to a label $y_i \in \{0, 1\}$, $f_t : \hat{y}_t(x_i) \mapsto y_i$. For example, if the score is the predicted probability $\hat{y}_t(x_i) = p(y_i = 0|L_t, x_i)$, the mapping function simply thresholds it at 0.5. If we wanted to perform a regression instead, $\hat{y}_t(x_i)$ could be a predicted label and the mapping function would be the identity. In AL evaluation we measure the quality of classifier f_t by computing its empirical performance ℓ_t on D'.

Then, we formulate AL procedure as an episodic MDP. Each AL run starts with a small labelled set $L_0 \subset D$ along with a large unlabelled set $U_0 = D \setminus L_0$. The following steps are performed at iteration t.

1. Train a classifier f_t using L_t.
2. A state s_t is characterised by f_t, L_t, and U_t.
3. The AL agent selects an action a_t by following a policy $\pi : s_t \mapsto a_t$ that defines a datapoint $x^t \in U_t$ to be annotated.
4. Look up the label y^t of x^t in D and let $L_{t+1} = L_t \cup \{ (x^t, y^t) \}, U_{t+1} = U_t \setminus \{ x^t \}$.
5. Give the agent the reward r_{t+1} linked to empirical performance value ℓ_t.

These steps repeat until a terminal state s_T is reached. In the case of target quality objective of Sec. 3.1, we reach the terminal state s_T when $\ell_T \geq q$, where q is fixed by the user, or when $T = |U_t|$. The agent only observes s_t, r_t and a set of possible actions A_t, while f_t, D' and q are the parts of the environment. The agent aims to maximize the return of the AL run $R_0 = r_1 + \ldots + r_T$ by intelligently choosing the actions with a policy π, that is, the datapoints to annotate. We now turn to specifying our choice for states, actions, and rewards that reflect the AL objective of minimizing the number of annotations while providing flexibility and transferability.

States It only makes sense to perform AL when there is a lot of unlabelled data. Without loss of generality, we can therefore set aside at the start of each AL run a subset $V \subset U_0$ and replace U_0 by $U_0 \setminus V$. We use the classifier’s score \hat{y}_t on V as a means to keep track of the state of the learning procedure. Then, we take the state representation to be a vector s_t of sorted values $\hat{y}_t(x_i)$ for all x_i in V.

Intuitively, the state representation is rich in information on, for example, the average prediction score or the uncertainty of a classifier. In Fig. 1 we plot the evolution of this vector for t using a policy defined by random sampling, uncertainty sampling, or our learnt strategy, all starting from the same initial state s_0. Note that the statistics of the vectors are clearly different. Although their structure is difficult to interpret for a human, it is something RL can exploit to learn a policy.
d is a distance measure. So, at iteration t we choose an action a_t from a set $\mathcal{A}_t = \{a_i\}$, where $a_i = [\hat{y}_i(x_i), g(x_i, \mathcal{L}_t), g(x_i, \mathcal{U}_t)]$ and $x_i \in \mathcal{U}_t$. Notice, that a_i is represented by the relations that are not specific neither for the datasets nor for the classifiers.

Rewards To model our target quality objective of reaching the quality q in as few MDP iterations as possible, we choose our reward function to be $r_i = -1$. This makes the return R_0 of an AL run that terminates after T iterations to be $r_i = -1$. The fewer iterations, the larger the reward, thus the optimal policy of MDP matches the best AL strategy according to our objective. This reward structure is not greedy because it does not restrict the choices of the agent as long as the terminal condition is met after a small number of iterations.

3.3 Policy Learning Using RL

Thanks to our reward structure, learning an AL strategy accounts to finding an optimal (with the highest return) policy π^* of MDP that maps a state s_t into an action a_t to take, i.e. $\pi^*: s_t \rightarrow a_t$. To find this optimal policy π^* we use DQN [Mnih et al., 2013] method on the data that is already annotated. In our case, $Q^*(s_t, a_t)$ aims to predict $-(T - t)$; a negative amount of iterations that are remaining before a target quality is reached from state s_t after taking action a_t and following the policy π afterwards. Note that it is challenging to learn from our reward function because the positive feedback is only received at the end of the run, thus the credit assignment is difficult.

Procedure To account for the diversity of AL experiences we use a collection of \mathcal{Z} annotated datasets $\mathcal{Z} \in \{\mathcal{Z}_i\}_{i \leq i \leq k}$ to simulate AL episodes. We start from a random policy π. Then, learning is performed by repeating the following steps:

1. Pick a labelled dataset $\mathcal{Z} \in \{\mathcal{Z}_i\}$ and split it into subsets \mathcal{D} and \mathcal{D}'.
2. Use π to simulate AL episodes on \mathcal{Z} by initially hiding the labels in \mathcal{D} and following an MDP as described in Sec. 3.2. Keep the experience in the form of transitions $(s_t, a_t, r_{t+1}, s_{t+1})$.
3. Update policy π according to the experience with the DQN update rule.

Even though the features are specific for every \mathcal{Z}, the experience in the form of transitions $(s_t, a_t, r_{t+1}, s_{t+1})$ lies in the same space for all datasets, thus a single strategy is learned for the whole collection. When the training is complete, we obtain an optimal policy π^*.

In the standard DQN implementation, the Q-function takes a state representation s_t as input and outputs several values corresponding to discrete actions [Mnih et al., 2013], as shown in Fig. 2(a). However, we represent actions by vectors a_i, and each of them can be chosen only once per episode as it does not make sense to annotate the same point twice. To account for this, we treat actions as inputs to the Q-function along with states and adapt the standard DQN architecture accordingly, as shown in Fig. 2(b). Then, Q-values for the required actions are computed on demand for $a_i \in \mathcal{A}_t$ through a feed-forward pass through the network. As our modified architecture is still suitable for Q-learning [Watkins & Dayan, 1992, Sutton & Barto, 1998], and the same optimization procedure as in a standard DQN can be used. Finding $\max_{a_i} Q^*(s_t, a_i)$ still is possible because our set of actions is finite and the procedure has the same computational complexity as an AL iteration.

DQN implementation details RL with non-linear Q-function approximation is not guaranteed to converge, but in practice it still finds a good policy with a few tricks. We use separate target network an experience replay of [Mnih et al., 2013], warm start, and prioritized replay [Schaul et al., 2016]. Besides, instead of reward normalisation we initialise the bias of the last layer to the average reward that an agent receives in warm start episodes. To compute $Q^*(s_t, a_i)$ we use NN where first s_t goes in and a compact representation of it is learnt, then, a_i is added to it and $Q^*(s_t, a_i)$ is the output. We use fully connected layers with sigmoid activations except for the final layer that is linear. We perform 1000 RL iterations, each of which consists of 10 AL episodes and 60 updates of the Q-function. As $\hat{y}(x_t)$ we use $p(\hat{y}_i = 0 | \mathcal{L}_t, x_t)$. The size of \mathcal{V} is set to 30.
Q-function

\[Q(s_t, a_1) \ldots Q(s_t, a_{|U_t|}) \]

Figure 2: Adapting the DQN architecture. Left: In standard DQN, the Q-function takes the state vector as input and yields an output for each discrete action. Right: In our version, actions are represented by vectors. The Q-function takes action and the state as input and returns a single value.

4 Experimental Evaluation

In this section, we demonstrate the transferability and flexibility of our method, as defined in Sec. 3.1 and analyze its behavior. The corresponding code is publicly available.

4.1 Baselines and Parameters

Baselines We will refer to our method as **OURS** and compare it against the following 7 baselines. The first 3 are manually-designed. The next 2 are meta-AL algorithms with open source implementations. The final approach is similar in spirit to ours but no code is available online.

- **Rs**, random sampling. The sample to be annotated is picked at random.
- **Us**, uncertainty sampling \(^{2}\) \cite{Lewis1994}, selects a datapoint that maximizes the Shannon entropy \(H\) over the probability of predictions:
\[x(t) = \arg\max_{x_i \in U_t} H[p(y_i = y | L_t, x_i)]. \]
- **QUIRE** \cite{Huang2010}, a strategy that uses the topology of the feature space for query selection. This strategy accounts for both the informativeness and representativeness of datapoints. The vector that characterizes our actions is in the spirit of representativeness.
- **ALBE** \cite{Hsu2015}, a recent meta-AL algorithm that adaptively combines strategies, including **Us**, **Rs** and **QUIRE**.
- **LAL-ind** \cite{Konyushkova2017}, a recent approach that formulates AL as a regression task and learns a greedy strategy that is transferable between datasets.
- **LAL-iter** \cite{Konyushkova2017}, a variation of **LAL-ind** that tries to better account for the biased caused by AL selection.
- **MLP-GAL(Te)** \cite{Pang2018}, a recent method that learns a strategy from multiple datasets with a policy gradient RL method.

Parameters We use logistic regression (LogReg) or SVM as our base classifiers for AL. We make no effort to tune them and use their sklearn python implementations with default parameters. This corresponds to a realistic scenario where there is no obvious way to choose parameters.

Recall from Sec. 3.2 that our strategy is trained to reach the target quality \(q\). For each dataset, we take \(q\) to be 98% of the maximum quality of the classifier trained on 100 randomly drawn datapoints, which is the maximum number of annotations we allow. We made this choice because AL learning curves usually flatten and this slight decrease in performance enables AL agents to reach the desired quality much quicker during the episodes. We use the same RL parameters in all the experiments and also describe them in more detail in the appendix.

4.2 Transferability

We tested the transferability of **OURS** on 10 widely-used standard benchmark datasets from the UCI repository \cite{Dheeru2017}: 1-adult, 2-australian, 3-breast cancer, 4-diabetes, 5-flare solar, 6-heart, 7-german, 8-mushrooms, 9-waveform, 10-wdbc. We use logistic regression and ran 500 trials where AL episodes run up to 100 iterations.

\(\text{https://github.com/author/project}\) to be updated when the paper is public.
In Table 1, we report the average number of annotations required to achieve the desired target accuracy using either our method or the baselines. In the 9 columns marked as leave-one-out, we compare the different methods using a leave-one-out procedure, that is, training on 8 of the datasets number 1 to number 9, and evaluating on the remaining one. In the course of this procedure, we never use dataset 0-adult for training purposes. Instead, we show in the column labeled as test the average of the required number of annotations on 1-adult needed by all 9 strategies learned during the leave-one-out procedure. In each column, the best number appears in bold, the second is underlined, and the third printed in italics. We consider a difference of less than 1 to be insignificant and the corresponding methods to be ex-aequo.

OURS comes out on top in 8 cases out of 10, second and third in the two remaining cases. As it has been noticed in the literature, Us is good on a wide range of problems (Konyushkova et al., 2017; Pang et al., 2018). In our experiments as well, it comes second overall and, for the same level of performance, it saves 29.80% over Rs while OURS, saves 34.71%. These results were obtained using maximum of 100 annotations. In Table 2, we report similar results reaching 98% of the quality of a classifier trained with 200 and 500 random annotations instead.

Unfortunately, we cannot compare OURS to MLP-GAL(Te) in the same fashion for lack of publicly available code. They report results for 20 annotations, we therefore check that even if we also stop all our episodes that early, OURS still outperforms the strongest baseline Us in 90% of cases whereas MLP-GAL(Te) does so in 71% of the cases. Besides, we need 5 times less data to learn a policy.

4.3 Flexibility

In the previous section, we used LogReg as our base classifier. To demonstrate the flexibility of our approach by now we repeat some of the same experiments with 10 datasets using an SVM instead and report the results in the last column of Table 2. Note that Us saves only 8% with respect to Rs, which is much less than in the experiments of Section 4.2. This stems from the fact that the sklearn implementation of SVMs relies on Platt scaling (Platt, 1999) to estimate probabilities, which biases the results when using limited amounts of training data. By contrast, OURS is much less affected by this problem and delivers a 28.71% cost saving when being transferred across datasets.

As predicted probabilities of SVM are unreliable during early AL iterations, greedy performance maximization is unlikely to result in good performance. It make this setting a perfect testbed to
validate the non-myopic strategies can be learned by OURS. In Fig. 3 we plot the percentage of the target quality reached by Rs and OURS as a function of the number of annotated datapoints on one of the UCI datasets. The curve for OURS demonstrates a non-myopic behavior. It is worse than Rs at the beginning for approximately 15 iterations but almost reaches the target quality after 25 iterations, while it takes Rs 75 iteration to catch up.

4.4 Analysis

We now turn to analysing the behaviour of OURS and its evolution over time. To this end, we ran additional experiments to answer the following questions.

What do we select? While performing the experiments of Sec. 4.2 we record \(p_t = p(y^{(t)} = 0|\mathcal{E}_t, x^{(t)}) \). We show the resulting normalized histograms in Fig. 4(a) for Rs, Us, and OURS. The one for Rs is very broad as it simply represents the distribution of available \(p_t \) in our data, while the one for Us is very peaky as it selects \(p_t \) closest to 0.5 by construction. Figs. 4(b,c) depicts the evolution of \(p_t \) for Rs and OURS for the intervals \(0 \leq t \leq 19, 20 \leq t \leq 39, 40 \leq t \leq 59, 60 \leq t \leq 79, 80 \leq t \leq 99 \). The area of all histograms decreases over time as episodes terminate after reaching the target quality. However, while their shape remains roughly Gaussian in the Rs case, the shape changes significantly over time in case of OURS strategy. Evidently, OURS starts by annotating highly uncertain datapoints, then switches to uniform sampling, and finally exhibits a preference for \(p_t \) values close to 0 or 1. In other words, the OURS demonstrates a structured behaviour.

Transfer or not? To separate the benefits of learning a strategy and the difficulties of transferring it, we introduce an artificial scenario OURS-nottransfer in which we learn on one-half of a dataset and transfer to the other half. The detailed results are given in the appendix. In the experimental setting of Sec. 4.2 OURS-nottransfer is better than OURS in 3 case, much better in 2 and equal in 3. This shows that having access to the underlying data distribution confers a modest advantage to OURS. Therefore, our approach still enables to learn a strategy that is competitive to having access to the underlying distribution thanks to its experience on other AL tasks. We also check how OURS-nottransfer performs on unrelated datasets, for example, learning the strategy on dataset 1 and testing it on datasets 2-9. The success rate in this case drops to around 40% on average, which again confirms the importance of using multiple datasets. As learning on one dataset to apply to another does not work well in general, we conclude that OURS learns to distinguish between datasets to be successful across datasets.

5 Conclusion

We have presented a data-driven approach to AL that is transferable and flexible. It can learn strategies from a collection of datasets and then successfully use them on completely unrelated data. It can also be used in conjunction with different base classifiers without having to take their specificities into account. The resulting AL strategies outperform state-of-the-art approaches. Our AL formulation is oblivious to the quality metric. In this paper, we have focused on the accuracy for binary classification tasks but nothing in our formulation is specific to it. It should therefore be equally applicable to multi-class classification and regression problems. In future work, we plan to generalize it to these additional ML models. Another interesting direction is to combine learning before the annotation using meta-AL on unrelated data and during the annotation to adapt to specificities of the dataset.
REFERENCES

Hong-Min Chu and Hsuan-Tien Lin. Can active learning experience be transferred? In International Conference on Data Mining, 2016.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml

Appendices

A EXPERIMENTAL SETUP

We provide additional details about our experimental setup and the parameter values necessary to duplicate our results.

AL parameters The parameters of the Logistic Regression (LogReg) and SVM classifiers were left to their default values in the sklearn package. For LogReg, they include l^2 penalty with regularization strength 1 and a maximum of 100 iterations. For SVM the most important parameters include rbf kernel and penalty parameter of 1. The distance measure d between datapoints is the cosine distance.

RL parameters The RL procedure starts with 100 “warm start” episodes with random actions and 100 Q-function updates. While learning an RL policy, the Adam optimizer is used with learning rate 0.0001 and a batch size 32. To force exploration during the course of learning, we use ϵ-greedy policy π, which means that with probability $1 - \epsilon$ the action $a_t = \arg\max_a Q^\pi_\theta(s_t, a)$ is performed and with probability ϵ a random one is. The parameter ϵ decays from 1 to 0 in 1000 training iterations. We incorporate the following techniques: 1) separate target network (Mnih et al., 2013) to deal with non-stationary targets (update rate 0.01), 2) replay buffer (Mnih et al., 2013) (of size 10000) to avoid correlated updates of neural network, 3) prioritized replay (Schaul et al., 2016) to use the experience from the replay buffer with the highest temporal-difference errors more often. The exponent parameter is 3.

LAL baselines The baselines LAL-iter and LAL-ind are not flexible as they were originally designed to deal with random forest (RF) classifiers. In order we use them within our experimental setup with LogReg, we let them train 2 classifiers in parallel and use the hand-crafted by Konyushkova et al. (2017) features of RF in AL policy.

B ADDITIONAL RESULTS

In Sec 4.2, we reported the average duration and variance of the episodes of 9 learned strategies OURS. The individual durations for all strategies are 38.80, 37.72, 36.74, 33.95, 34.58, 38.76, 37.46, 41.84, and 37.85. Fig. 5 shows the learning curves for all the baselines and for the 9 strategies. Some variability is present, but in 8 out of 9 cases OURS outperforms all others baseline and once it shares the first rank with Us in terms of average episode duration.

![Figure 5: Performance of all the strategies on adult dataset.](image)

No transfer In Tab. 3 we compare the results of OURS with and without transfer. As explained in Sec. 4.4, having access to the target distribution of data does not help to learn much better strategies.

Learning curves Figs. 6 and 7 show additional learning curves depicted the compared performance of LogReg and SVM. The LogReg experiment shows the curves for all the methods and
SVM show the curves for the 3 methods that delivered the best performance on average in the experiments of Sec. 4.2. Note that the SVM curve with dataset 5-flare solar clearly exhibits non-myopic behavior.

![Graphs of 2-austrlian, 3-breast cancer, and 4-diabetes datasets showing performance of different strategies.](image)

Figure 6: Results of experiment from Sec. 4.2 Performance of all baseline strategies on 3 datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>2-aust</th>
<th>3-brea</th>
<th>4-diab</th>
<th>6-germ</th>
<th>7-heart</th>
<th>8-mush</th>
<th>9-wave</th>
<th>10-wdbc</th>
</tr>
</thead>
<tbody>
<tr>
<td>OURS</td>
<td>14.15</td>
<td>18.79</td>
<td>26.77</td>
<td>32.16</td>
<td>15.06</td>
<td>21.94</td>
<td>20.91</td>
<td>7.09</td>
</tr>
</tbody>
</table>

Table 3: Comparison of strategies OURS and OURS-notransfer in average number of annotations required to reach a predefined quality level. We skip flare solar as it does not have enough data for training a policy.
Figure 7: Results of experiment from Sec. 4.3 Performance of 3 top strategies from experiment of Sec. 4.2 on the next 3 datasets.