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ABSTRACT

We propose a general-purpose approach to discovering active learning (AL) strate-
gies from data. These strategies are transferable from one domain to another and
can be used in conjunction with many machine learning models. To this end, we
formalize the annotation process as a Markov decision process, design universal
state and action spaces and introduce a new reward function that precisely model
the AL objective of minimizing the annotation cost We seek to find an optimal
(non-myopic) AL strategy using reinforcement learning. We evaluate the learned
strategies on multiple unrelated domains and show that they consistently outper-
form state-of-the-art baselines.

1 INTRODUCTION

Modern supervised machine learning (ML) methods require large annotated datasets for training
purposes and the cost of producing them can easily become prohibitive. Active learning (AL) miti-
gates the problem by selecting intelligently and adaptively a subset of the data to be annotated. To
do so, AL typically relies on informativeness measures that identify unlabelled datapoints whose
labels are most likely to help to improve the performance of the trained model. As a result, good
performance is achieved using far fewer annotations than by randomly labelling data.

Most AL selection strategies are hand-designed either on the basis of researcher’s expertise and
intuition or by approximating theoretical criteria (Settles, 2012). They are often tailored for specific
applications and empirical studies show that there is no single strategy that consistently outperforms
others in all datasets (Baram et al., 2004; Ebert et al., 2012). Furthermore, they only represent a
small subset of all possible strategies.

To overcome these limitations, it has recently been proposed to design the strategies themselves in
a data-driven fashion by learning them from prior experience with AL (Konyushkova et al., 2017;
Bachman et al., 2017). This meta approach makes it possible to go beyond human intuition and
potentially to discover completely new strategies by accounting for the state of the trained ML
model when selecting the data to annotate. However, many of these methods are still limited to either
learning from closely related domains (Bachman et al., 2017; Fang et al., 2017; Liu et al., 2018),
or using a greedy selection that may be suboptimal (Konyushkova et al., 2017; Liu et al., 2018),
or relying on properties of specific classifiers (Konyushkova et al., 2017; Bachman et al., 2017;
Contardo et al., 2017; Ravi & Larochelle, 2018). In short, even though data-driven AL methods
have flourished recently, there is still no general-purpose non-myopic methods that depend neither
on the kind data nor on the specific ML model used in training. In this paper, we introduce such a
generic data-driven AL method that is applicable to heterogeneous datasets and to most ML models
because it does not require hand-crafting model- or dataset-specific features.

More specifically, we reformulate AL as a Markov Decision Process (MDP) and use reinforcement
learning (RL) to find AL strategy as an optimal MDP policy. To achieve the desired generality,
we incorporate two important contributions into our approach. First, we take the AL objective to
be minimizing the number of annotations required to achieve a given prediction quality, which is a
departure from standard AL approaches that maximize the performance given an annotation budget.
In this way, we optimise what the practitioners truly want, that is, the annotation cost, independently
of the specific ML model and performance measure being used. To this end, we design the reward
function of MDP to reflect our AL objective. Second, we propose a procedure that can lean an
AL strategy from data coming from multiple unrelated domains for which annotations are already
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available. The strategy then applies to domains for which this is not the case. To this end, we
defined generic MDP state and action representations that can be computed for arbitrary datasets
and without regard to the specific ML model.

In our experiments we demonstrate the effectiveness of our approach for the purpose of binary clas-
sification by applying the learned strategies to previously unseen datasets from different domains.
We show that they enable us to reach pre-defined quality thresholds with fewer annotations than sev-
eral baselines, including recent meta-AL algorithms (Hsu & Lin, 2015; Konyushkova et al., 2017).
We also analyse the properties of our strategies to understand their behaviour and how it differs from
those of more traditional ones.

2 RELATED WORK

Manually-designed AL methods differ in their underlying assumptions, computational costs, the-
oretical guarantees, and generalization behaviours. However, they all rely on a human designer
having decided how the data points should be selected. Representative approaches to doing this are
uncertainty sampling (Lewis & Gale, 1994), which works remarkably well in many cases (Luo et al.,
2013; Sun et al., 2015), query-by-committee, which does not require probability estimates (Gilad-
Bachrach et al., 2005; Beluch et al., 2018), and expected model change (Freytag et al., 2014; Käding
et al., 2015). However, the performance of any one of these strategies on a never seen before dataset
is unpredictable (Baram et al., 2004; Ebert et al., 2012), which makes it difficult to choose one over
the other. In this section, we review recent methods to addressing this difficulty.

Combining AL strategies If a single manually designed method does not consistently outperform
all others, it makes sense to adaptively select the best strategy or to combine them. The algorithms
that do it can rely on heuristics (Osugi et al., 2005), on bandit algorithms (Baram et al., 2004; Hsu
& Lin, 2015; Chu & Lin, 2016), or on RL to find an MDP policy (Ebert et al., 2012; Long & Hua,
2015). Still, this approach remains limited to combining existing strategies instead of learning new
ones. Furthermore, strategy learning happens during AL and its success depends critically on the
ability to estimate the classification performance from scarce annotated data.

Data-driven AL Recently, the researchers have therefore turned to so-called data-driven AL ap-
proaches that learn AL strategies from annotated data (Konyushkova et al., 2017; Bachman et al.,
2017; Contardo et al., 2017; Ravi & Larochelle, 2018; Liu et al., 2018; Fang et al., 2017; Pang et al.,
2018). They learn what kind of datapoints are the most beneficial for training the model given the
current state of trained ML model. Then, past experience helps to eventually derive a more effec-
tive selection strategy. This has been demonstrated to be effective, but it suffers from a number of
limitations. First, this approach is often tailored for learning only from related datasets and domains
suitable for transfer or one-shot learning (Liu et al., 2018; Bachman et al., 2017; Fang et al., 2017;
Contardo et al., 2017; Ravi & Larochelle, 2018). Second, many of them rely on specific proper-
ties of the ML models, be they standard classifiers (Konyushkova et al., 2017) or few-shot learning
models (Bachman et al., 2017; Contardo et al., 2017; Ravi & Larochelle, 2018), which restricts their
generality. Finally, in some approached the resulting strategy is greedy—for example when super-
vised (Konyushkova et al., 2017) or imitation learning (Liu et al., 2018) is used—that might lead to
suboptimal data selection.

MDP formulation in data-driven AL is used both for pool-based AL, where datapoints are selected
from a large pool of unlabelled data, and for stream-based AL, where datapoints come from a stream
and AL decides to annotate a datapoint or not as it appears. In stream-based AL, actions—to annotate
or not to—are discrete and Q-learning (Watkins & Dayan, 1992) is the RL method of choice to look
for an op (Woodward & Finn, 2016; Fang et al., 2017). By contrast, in pool-based AL, the action
selection concerns all potential datapoints that can be annotated and it is natural to characterise them
by continuous vectors that makes it not suitable for Q-learning. So, policy gradient (Williams, 1992;
Sutton et al., 2000) methods are usually used (Bachman et al., 2017; Contardo et al., 2017; Ravi
& Larochelle, 2018; Pang et al., 2018). In this paper we focus on pool-based AL but we would
like to reap the benefits of Q-learning that is, lower variance and better data-complexity thanks to
bootstrapping. To this end, we take advantage of the fact that although actions in pool-based AL are
continuous, their number is finite. Thus, we can adapt Q-learning for our purposes.

Most data-driven AL methods stipulate a specific objective function that is being maximised. How-
ever, the methods are not always evaluated in a way that is consistent with the objective that is
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optimized. Sometimes, the metric used for evaluation differs from the objective (Bachman et al.,
2017; Konyushkova et al., 2017; Pang et al., 2018). Sometimes, the learning objective may include
additional factors like discounting (Woodward & Finn, 2016; Fang et al., 2017; Pang et al., 2018)
or may combine several objectives (Woodward & Finn, 2016; Contardo et al., 2017). By contrast,
our approach uses our evaluation criterion—minimization of the time spent annotating for a given
performance level—directly in the strategy learning process.

Among data-driven AL, the approach of Pang et al. (2018) achieves generality by using multiple
training datasets to learn strategies, as we do. However, this approach is more complex than ours,
relies on policy-gradient RL, and uses a standard AL objective. By contrast, our approach does not
require a complex state and action embedding, needs fewer RL episodes for training thanks to using
Q-learning, and explicitly maximizes what practitioners care about, that is, reduced annotation cost.

3 METHOD

We formulate the AL process as a Markov decision process (MDP) and use reinforcement learning
(RL) to find an optimal strategy. In this section, we first outline our design philosophy. We then
formalize AL in MDP terms and finally describe our approach to finding an optimal MDP policy.
For simplicity, we present our approach in the context of binary classification. However, an almost
identical AL problem formulation can be used for other ML tasks and a separate selection policy
can be trained for each one.

3.1 APPROACH

Our goal is to advance data-driven AL towards general-purpose strategy learning. Desirable strate-
gies should have two key properties. They should be transferable across unrelated datasets and
have sufficient flexibility to be applied in conjunction with different ML models. Our design deci-
sions are therefore geared towards learning such strategies. The iterative structure of AL is naturally
suited for an MDP formulation: For every state of an AL problem, an agent takes an action that
defines the datapoint to annotate and it receives a reward that depends on the quality of the model
that is re-trained using the new label. An AL strategy then becomes an MDP policy that maps a state
into an action.

To achieve seamless transferability and flexibility, our task is therefore to design the states, actions,
and rewards to be generic. To this end, we represent states and actions as vectors that are independent
from specific dataset feature representations and can be computed for a wide variety of ML models.
For example, the probability that the classifier assigns to a datapoint suits this purpose because
most classifiers estimate this value. By contrast, the number of support vectors in a support vector
machine (SVM) or the number of layers of a neural network (NN) are not suitable because they
are model-specific. Raw feature representations of data are similarly inappropriate because they are
domain specific.

A classical AL objective is to maximize the prediction quality—often expressed in terms of accuracy,
AUC, F-score, or negative squared error—for a given annotation budget. For flexibility’s sake,
we prefer an objective that is not directly linked to a specific performance measure. We therefore
consider the dual objective of minimizing the number of annotations required for a given target
quality value. When learning a strategy by optimizing this objective, the AL agent only needs
to know if the performance is above or below this target quality, as opposed to its exact value.
Therefore, the procedure is less tied to a specific performance measure or setting. Our MDP reward
function expresses this objective by penalizing the agent until the target quality is achieved. This
motivates the agent to minimize its “suffering” by driving the amount of requested annotations down.

Having formulated the AL problem as a MDP, we can learn a strategy using RL. We simulate the
annotation process on data from a collection of unrelated labelled datasets, that ensures the transfer-
ability to new unlabelled datasets. Our approach to finding the optimal policy is based on the deep
Q-network (DQN) method of Mnih et al. (2013). To apply DQN with pool-based AL, we modify
it in two ways. First, we make it work with MDP where actions are represented by vectors corre-
sponding to individual datapoints instead of being discrete. Second, we deal with the set of actions
At that change between iterations t as it makes sense to annotate a datapoint only once.
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(a) Random (b) Uncertainty (c) Learnt strategy
Figure 1: The evolution of the learning state vector st during an annotation episode starting from the same
state for (a) random sampling, (b) uncertainty sampling, and (c) our learnt strategy. Every column represents
st at iteration t, with |V| = 30 . Yellow corresponds to values of ŷt that predict class 1 and blue – class 0.

3.2 FORMULATING AL AS AN MDP

Let us consider an AL problem where we annotate a dataset D. A test dataset D′ is used to evaluate
the AL procedure. Then, we iteratively select a datapoint x(t) ∈ D to be annotated. Let ft be a
classifier trained on a subset Lt that is annotated after iteration t. This classifier assigns a numerical
score ŷt(xi) ∈ R to a datapoint and then maps it to a label yi ∈ {0, 1}, ft : ŷt(xi) 7→ ŷi. For
example, if the score is the predicted probability ŷt(xi) = p(yi = 0|Lt,xi), the mapping function
simply thresholds it at 0.5. If we wanted to perform a regression instead, ŷt(xi) could be a predicted
label and the mapping function would be the identity. In AL evaluation we measure the quality of
classifier ft by computing its empirical performance `t on D′.
Then, we formulate AL procedure as an episodic MDP. Each AL run starts with a small labelled
set L0 ⊂ D along with a large unlabelled set U0 = D \ L0. The following steps are performed at
iteration t.

1. Train a classifier ft using Lt.
2. A state st is characterised by ft, Lt, and Ut.
3. The AL agent selects an action at ∈ Ak by following a policy π : st 7→ at that defines a

datapoint x(t) ∈ Ut to be annotated.
4. Look up the label y(t) of x(t) inD and set Lt+1 = Lt ∪{(x(t), y(t))}, Ut+1 = Ut \{x(t)}.
5. Give the agent the reward rt+1 linked to empirical performance value `t.

These steps repeat until a terminal state sT is reached. In the case of target quality objective of
Sec. 3.1, we reach the terminal state sT when `T ≥ q, where q is fixed by the user, or when T = |U0|.
The agent only observes st, rt+1 and a set of possible actions At, while ft, D′ and q are the parts
of the environment. The agent aims to maximize the return of the AL run: R0 = r1 + . . . + rT−1
by policy π that intelligently chooses the actions, that is, the datapoints to annotate. We now turn
to specifying our choice for states, actions, and rewards that reflect the AL objective of minimizing
the number of annotations while providing flexibility and transferability.

States It only makes sense to perform AL when there is a lot of unlabelled data. Without loss of
generality, we can therefore set aside at the start of each AL run a subset V ⊂ U0 and replace U0 by
U0 \ V . We use the classifier’s score ŷt on V as a means to keep track of the state of the learning
procedure. Then, we take the state representation to be a vector st of sorted values ŷt(xi) for all xi
in V .

Intuitively, the state representation is rich in information on, for example, the average prediction
score or the uncertainty of a classifier. In Fig. 1, we plot the evolution of this vector for t using a
policy defined by random sampling, uncertainty sampling, or our learnt strategy, all starting from
the same initial state s0. Note that the statistics of the vectors are clearly different. Although their
structure is difficult to interpret for a human, it is something RL can exploit to learn a policy.

Actions We design our MDP so that taking an action at amounts to selecting a datapoint x(t) to
be annotated. We characterize a potential action of choosing a datapoint xi by a vector ai which
consists of the score ŷt(xi) of the current classifier ft on xi and the average distances from xi to Lt
and Ut, that is g(xi,Lt) =

∑
xj∈Lt

d(xi, xj)/|Lt| and g(xi,Ut) =
∑
xj∈Ut d(xi, xj)]/|Ut|, where
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d is a distance measure. So, at iteration t we choose an action at from a set At = {ai}, where
ai = [ŷt(xi), g(xi,Lt), g(xi,Ut)] and xi ∈ Ut. Notice, that ai is represented by the quantities that
are not specific neither for the datasets nor for the classifiers.

Rewards To model our target quality objective of reaching the quality q in as few MDP iterations
as possible, we choose our reward function to be rt = −1. This makes the return R0 of an AL run
that terminates after T iterations to be r1 + . . .+ rT−1 = −T + 1. The fewer iterations, the larger
the reward, thus the optimal policy of MDP matches the best AL strategy according to our objective.
This reward structure is not greedy because it does not restrict the choices of the agent as long as the
terminal condition is met after a small number of iterations.

3.3 POLICY LEARNING USING RL

Thanks to our reward structure, learning an AL strategy accounts to finding an optimal (with the
highest return) policy π? of MDP that maps a state st into an action at to take, i.e. π? : st 7→ at.
To find this optimal policy π? we use DQN (Mnih et al., 2013) method on the data that is already
annotated. In our case, Qπ(st, ai) aims to predict −(T − t): a negative amount of iterations that
are remaining before a target quality is reached from state st after taking action ai and following
the policy π afterwards. Note that it is challenging to learn from our reward function because the
positive feedback is only received at the end of the run, thus the credit assignment is difficult.

Procedure To account for the diversity of AL experiences we use a collection of Z annotated
datasets {Zi}1≤i≤Z to simulate AL episodes. We start from a random policy π. Then, learning is
performed by repeating the following steps:

1. Pick a labelled dataset Z ∈ {Zi} and split it into subsets D and D′.
2. Use π to simulate AL episodes on Z by initially hiding the labels in D and follow-

ing an MDP as described in Sec. 3.2. Keep the experience in the form of transitions
(st,at, rt+1, st+1).

3. Update policy π according to the experience with the DQN update rule.

Even though the features are specific for every Z , the experience in the form of transitions
(st,at, rt+1, st+1) is of the same nature for all datasets, thus a single strategy is learned for the
whole collection. When the training is completed, we obtain an optimal policy π?.

In the standard DQN implementation, the Q-function takes a state representation st as input and
outputs several values corresponding to discrete actions (Mnih et al., 2013), as shown in Fig. 2(a).
However, we represent actions by vectors ai and each of them can be chosen only once per episode
as it does not make sense to annotate the same point twice. To account for this, we treat actions as
inputs to the Q-function along with states and adapt the standard DQN architecture accordingly, as
shown in Fig. 2(b). Then, Q-values for the required actions are computed on demand for ai ∈ At
through a feed-forward pass through the network. As our modified architecture is still suitable for
Q-learning (Watkins & Dayan, 1992; Sutton & Barto, 1998), and the same optimization procedure
as in a standard DQN can be used. Finding maxai Q

π(st,ai) still is possible because our set of
actions is finite and the procedure has the same computational complexity as an AL iteration.

DQN implementation details RL with non-linear Q-function approximation is not guaranteed
to converge, but in practice it still finds a good policy with a few tricks. We use separate target
network and experience replay of Mnih et al. (2013), warm start, and prioritized replay of Schaul
et al. (2016). Besides, instead of reward normalisation we initialise the bias of the last layer to
the average reward that an agent receives in warm start episodes. To compute Qπ(st,ai) we use
NN where first st goes in and a compact representation of it is learnt, then, at is added to it and
Qπ(st,ai) is the output. We use fully connected layers with sigmoid activations except for the final
layer that is linear. We perform 1000 RL iterations, each of which consists of 10 AL episodes and
60 updates of the Q-function. As ŷ(xi) we use p(yi = 0|Lt,xi). The size of V is set to 30.
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Figure 2: Adapting the DQN architecture. Left: In standard DQN, the Q-function takes the state vector as
input and yields an output for each discrete action. Right: In our version, actions are represented by vectors.
The Q-function takes action and the state as input and returns a single value.

4 EXPERIMENTAL EVALUATION

In this section, we demonstrate the transferability and flexibility of our method, as defined in
Sec. 3.1, and analyse its behaviour. The corresponding code is publicly available1.

4.1 BASELINES AND PARAMETERS

Baselines We will refer to our method as OURS and compare it against the following 7 baselines.
The first 3 are manually-designed. The next 3 are meta-AL algorithms with open source implemen-
tations. The final approach is similar in spirit to ours but no code is available on-line.

Rs, random sampling. The datapoint to be annotated is picked at random.
Us, uncertainty sampling (Lewis & Gale, 1994), selects a datapoint that maximizes the Shannon

entropyH over the probability of predictions: x(t) = argmaxxi∈Ut H[p(yi = y | Lt,xi)].
QUIRE (Huang et al., 2010), a query selection strategy that uses the topology of the feature space.

This strategy accounts for both the informativeness and representativeness of datapoints.
The vector that characterizes our actions is in the spirit of this representativeness measure.

ALBE (Hsu & Lin, 2015), a recent meta-AL algorithm that adaptively combines strategies, includ-
ing Us, Rs and QUIRE.

LAL-ind (Konyushkova et al., 2017), a recent approach that formulates AL as a regression task
and learns a greedy strategy that is transferable between datasets.

LAL-iter (Konyushkova et al., 2017), a variation of LAL-ind that tries to better account for the
bias caused by AL selection.

MLP-GAL(Te) (Pang et al., 2018), a recent method that learns a strategy from multiple datasets
with a policy gradient RL method.

Parameters We use logistic regression (LogReg) or SVM as our base classifiers for AL. We make
no effort to tune them and use their sklearn python implementations with default parameters. This
corresponds to a realistic scenario where there is no obvious way to choose parameters.

Recall from Sec. 3.2, that our strategy is trained to reach the target quality q. For each dataset,
we take q to be 98% of the maximum quality of the classifier trained on 100 randomly drawn
datapoints, which is the maximum number of annotations we allow. We allow for a slight decrease
in performance (98% instead of 100%) because AL learning curves usually flatten and our choice
enables AL agents to reach the desired quality much quicker during the episode. We use the same
RL parameters in all the experiments and also describe additional details in the appendix.

4.2 TRANSFERABILITY

We tested the transferability of OURS on 10 widely-used standard benchmark datasets from the UCI
repository (Dheeru & Karra Taniskidou, 2017): 0-adult, 1-australian, 2-breast cancer, 3-diabetes,
4-flare solar, 5-heart, 6-german, 7-mushrooms, 8-waveform, 9-wdbc. We use LogReg and ran 500
trials where AL episodes run up to 100 iterations.

1https://github.com/author/project, to be updated when the paper is public.
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Scenario test leave-one-out
Dataset 0 1 2 3 4 5 6 7 8 9

Rs 50 .78 25.31 25.65 30.33 15.57 44.83 20.80 42.81 45.28 19.36
Us 41.83 13.53 27.07 27 .84 15.50 37.10 15.60 15.60 23.83 7.25
QUIRE 58.33 30.02 33.33 37.12 9.02 57.58 20.30 42.9 36 .49 15.45
ALBE 55.66 29.79 31.84 33.62 10.91 50.71 21.02 39.12 41.23 16.16
LAL-ind 59.39 20 .88 20.85 26.63 15.31 44.14 18 .16 24 .15 39.13 11 .22
LAL-iter 63.29 20 .24 21.79 28.03 14.84 40 .38 19.90 25.2 36.97 10 .39

OURS 37.52 14.15 18.79 26.77 14 .67 32.16 15.06 21.94 20.91 7.09
notransf — 15.01 16.14 24.40 — 23.26 14.65 16.47 18.06 7.14

Table 1: Average number of annotations required to reach a predefined quality level.
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Figure 3: Example of non-myopic be-
haviour of a learnt RL strategy

Baseline Rs Us OURS
LogReg-100 32.07 −28.80% −34.71%
LogReg-200 80.06 −29.61% −39.96%
LogReg-500 51.59 −31.49% −37.75%
SVM 30.87 −7.81% −28.35%

Table 2: Increasing the number of annotations still using logis-
tic regression (first three rows) and using SVM instead of logistic
regression as the base classifier (fourth row). We report the aver-
age number of annotations required using Rs and the percentage
saved by either Us or OURS.

In Table 1 we report the average number of annotations required to achieve the desired target accu-
racy using either our method or the baselines. In the 9 columns marked as leave-one-out, we test out
method using a leave-one-out procedure, that is, training on 8 of the datasets selected from number
1 to number 9, and evaluating on the remaining one. In the course of this procedure, we never use
dataset 0-adult for training purposes. Instead, we show in the column labelled as test the average
number of annotations needed by all 9 strategies learnt in the leave-one-out procedure (the standard
deviation is 2.34). In each column, the best number appears in bold, the second is underlined, and
the third is printed in italics. We consider a difference of less than 1 to be insignificant and the
corresponding methods to be ex-aequo.

OURS comes out on top in 8 cases out of 10, second and third in the two remaining cases. As it has
been noticed in the literature, Us is good in a wide range of problems (Konyushkova et al., 2017;
Pang et al., 2018). In our experiments as well, it comes second overall and, for the same level of
performance, it saves 29.80% over Rs while OURS, saves 34.71%. Table 2 reports similar results
reaching 98% of the quality of a classifier trained with 200 and 500 random datapoints instead.

Unfortunately, we cannot compare OURS to MLP-GAL(Te) in the same fashion for lack of publicly
available code. They report results for 20 annotations, we therefore check that even if we also stop all
our episodes that early, OURS still outperforms the strongest baseline Us in 90% of cases whereas
MLP-GAL(Te) does so in 71% of the cases. Besides, we learn a policy using 5 times less data:
10 000 AL episodes instead of 50 000.

4.3 FLEXIBILITY

To demonstrate the flexibility of our approach now we repeat the experiments of Sec. 4.2 with our
method, best baseline and random sampling using an SVM instead of LogReg and report the results
in the last row of Table 2. Note that Us saves only 8% with respect to Rs, which is much less
than in the experiments of Sec. 4.2 shown in rows 1 to 3. This stems from the fact that the sklearn
implementation of SVMs relies on Platt scaling (Platt, 1999) to estimate probabilities, which biases
the probability estimates when using limited amounts of training data. By contrast, OURS is much
less affected by this problem and delivers a 28% cost saving when being transferred across datasets.

As predicted probabilities of SVM are unreliable during early AL iterations, greedy performance
maximization is unlikely to result in good performance. It make this setting a perfect testbed to
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Figure 4: Comparing the behavior of Rs, Us and OURS. (a) Histogram of pt for Rs in blue, Us in cyan, and
OURS in purple. (b) Evolution over time for random. (c) Evolution over time for OURS.

validate the non-myopic strategies can be learned by OURS. In Fig. 3 we plot the percentage of the
target quality reached by Rs and OURS as a function of the number of annotated datapoints on one
of the UCI datasets. The curve for OURS demonstrates a non-myopic behaviour. It is worse than
Rs at the beginning for approximately 15 iterations but almost reaches the target quality after 25
iterations, while it takes Rs 75 iteration to catch up.

4.4 ANALYSIS

We now turn to analysing the behaviour of OURS and its evolution over time. To this end, we ran
additional experiments to answer the following questions.

What do we select? While performing the experiments of Sec. 4.2 we record pt = p(y(t) =
0|Lt, x(t)). We show the resulting normalized histograms in Fig. 4(a) for Rs, Us, and OURS. The
one for Rs is very broad and it simply represents the distribution of available pt in our data, while
the one for Us is very peaky as it selects pt closest to 0.5 by construction. Figs. 4 (b,c) depicts
the evolution of pt for Rs and OURS for the time intervals 0 ≤ t ≤ 19, 20 ≤ t ≤ 39, 40 ≤ t ≤
59, 60 ≤ t ≤ 79, 80 ≤ t ≤ 99. The area of all histograms decreases over time as episodes terminate
after reaching the target quality. However, while their shape remains roughly Gaussian in the Rs
case, the shape changes significantly over time in case of OURS strategy. Evidently, OURS starts
by annotating highly uncertain datapoints, then switches to uniform sampling, and finally exhibits
a preference for pt values close to 0 or 1. In other words, the OURS demonstrates a structured
behaviour.

Transfer or not? To separate the benefits of learning a strategy and the difficulties of transferring
it, we introduce an artificial scenario OURS-notransfer in which we learn on one-half of a dataset
and transfer to the other half. In Table 1 OURS-notransfer is better than OURS in 3 case, much
better in 2 and equal in 3 (we skip one small dataset). This shows that having access to the underly-
ing data distribution confers a modest advantage to OURS. Therefore, our approach still enables to
learn a strategy that is competitive to having access to the underlying distribution thanks to its ex-
perience on other AL tasks. We also check how OURS-notransfer performs on unrelated datasets,
for example, learning the strategy on dataset 1 and testing it on datasets 2-9. The success rate in
this case drops to around 40% on average, which again confirms the importance of using multiple
datasets. As learning on one dataset to apply to another does not work well in general, we conclude
that OURS learns to distinguish between datasets to be successful across datasets.

5 CONCLUSION

We have presented a data-driven approach to AL that is transferable and flexible. It can learn strate-
gies from a collection of datasets and then successfully use them on completely unrelated data. It can
also be used in conjunction with different base classifiers without having to take their specificities
into account. The resulting AL strategies outperform state-of-the-art approaches. Our AL formu-
lation is oblivious to the quality metric. In this paper, we have focused on the accuracy for binary
classification tasks, but nothing in our formulation is specific to it. It should therefore be equally
applicable to multi-class classification and regression problems. In future work, we plan to gener-
alize it to these additional ML models. Another interesting direction is to combine learning before
the annotation using meta-AL on unrelated data and during the annotation to adapt to specificities
of the dataset.
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Appendices
A EXPERIMENTAL SETUP

We provide additional details about our experimental setup and the parameter values necessary to
replicate our results.

AL parameters The parameters of LogReg and SVM classifiers were left to their default values
in the sklearn package. For LogReg, they include l2 penalty with regularization strength 1 and a
maximum of 100 iterations. For SVM the most important parameters include rbf kernel and penalty
parameter of 1. The distance measure d between datapoints is the cosine distance.

RL parameters The RL procedure starts with 100 “warm start” episodes with random actions
and 100 Q-function updates. While learning an RL policy, the Adam optimizer is used with learning
rate 0.0001 and a batch size 32. To force exploration during the course of learning, we use ε-
greedy policy π, which means that with probability 1 − ε the action at = argmaxaQ

π
θ (st, a) is

performed and with probability ε a random one is. The parameter ε decays from 1 to 0 in 1000
training iterations. We incorporate the following techniques: 1) separate target network (Mnih et al.,
2013) to deal with non-stationary targets (update rate 0.01), 2) replay buffer (Mnih et al., 2013) (of
size 10 000) to avoid correlated updates of neural network, 3) prioritized replay Schaul et al. (2016)
to use the experience from the replay buffer with the highest temporal-difference errors more often
(the exponent parameter is 3).

LAL baselines The baselines LAL-iter and LAL-ind are not flexible as they were originally
designed to deal with Random Forest classifiers. In order we use them within our experimental setup
with LogReg, we let them train 2 classifiers in parallel and use the hand-crafted by Konyushkova
et al. (2017) features of RF in AL policy.

B ADDITIONAL RESULTS

In Sec 4.2, we reported the average duration and variance of the episodes of 9 learned strategies
OURS on dataset 0-adult. The individual durations for all strategies are 38.80, 37.72, 36.74, 33.95,
34.58, 38.76, 37.46, 41.84, and 37.85. Fig. 5 shows the learning curves for all the baselines and for
the 9 strategies. Some variability is present, but in 8 out of 9 cases OURS outperforms all others
baseline and once it shares the first rank with Us in terms of average episode duration.
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Figure 5: Performance of all the strategies on 0-adult dataset.

Learning curves Figs. 6 and 7 show additional learning curves that depict the performance of our
baselines with LogReg and SVM. The LogReg experiment shows the curves for all the methods
and SVM show the curves for the 2 methods that delivered the best performance on average in the
experiments of Sec. 4.2 and random sampling. Note that the SVM curve with dataset 5-flare solar
also clearly exhibits non-myopic behavior.

11



Under review as a conference paper at ICLR 2019
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2-breast cancer
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Figure 6: Results of experiment from Sec. 4.2. Performance of all baseline strategies on 3 first datasets.
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4-flare solar
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5-german
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Figure 7: Results of experiment from Sec. 4.3. Performance of 3 top strategies from experiment of Sec. 4.2
and a random sampling on the next 3 datasets.
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