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Abstract

Training a model to perform a task typically requires a large amount of data from
the domains in which the task will be applied. However, it is often the case that
data are abundant in some domains but scarce in others. Domain adaptation deals
with the challenge of adapting a model trained from a data-rich source domain
to perform well in a data-poor target domain. In general, this requires learning
plausible mappings between domains. CycleGAN is a powerful framework that
efficiently learns to map inputs from one domain to another using adversarial
training and a cycle-consistency constraint. However, the conventional approach of
enforcing cycle-consistency via reconstruction may be overly restrictive in cases
where one or more domains have limited training data. In this paper, we propose
an augmented cyclic adversarial learning model that enforces the cycle-consistency
constraint via an external task specific model, which encourages the preservation
of task-relevant content as opposed to exact reconstruction. This task specific
model both relaxes the cycle-consistency constraint and complements the role of
the discriminator during training, serving as an augmented information source
for learning the mapping. We explore adaptation in speech and visual domains
in low resource in supervised setting. In speech domains, we adopt a speech
recognition model from each domain as the task specific model. Our approach
improves absolute performance of speech recognition by 2% for female speakers in
the TIMIT dataset, where the majority of training samples are from male voices. In
low-resource visual domain adaptation, the results show that our approach improves
absolute performance by 14% and 4% when adapting SVHN to MNIST and vice
versa, respectively, which outperforms unsupervised domain adaptation methods
that require high-resource unlabeled target domain.

1 Introduction

Domain adaptation (Huang et al., 2007; Xue et al., 2008; Ben-David et al., 2010) aims to generalize
a model from source domain to a target domain. Typically, the source domain has a large amount
of training data, whereas the data are scarce in the target domain. This challenge is typically
addressed by learning a mapping between domains, which allows data from the source domain to
enrich the available data for training in the target domain. One way of learning such mappings is
through Generative Adversarial Networks (GANs Goodfellow et al., 2014) with cycle-consistency
constraint (CycleGAN Zhu et al., 2017), which enforces that mapping of an example from the source
to the target and then back to the source domain would result in the same example (and vice versa for
a target example). Due to this constraint, CycleGAN learns to preserve the ‘content’1 from the source

1Here the content refers to the invariant properties of the data with respect to a task. For example, in
image classification the semantic information of an image would be its class. Thus, different task on the same
data would result in different semantic information. In this paper we use content and semantic information
interchangeably.
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domain while only transferring the ‘style’ to match the distribution of the target domain. This is a
powerful constraint, and various works (Yi et al., 2017; Liu et al., 2017; Hoffman et al., 2018) have
demonstrated its effectiveness in learning cross domain mappings.

Enforcing cycle-consistency is appealing as a technique for preserving semantic information of the
data with respect to a task, but implementing it through reconstruction may be too restrictive when
data are imbalanced across domains. This is because the reconstruction error encourages exact match
of samples from the reverse mapping, which may in turn encourage the forward-mapping to keep
the sample close to the original domain. Normally, the adversarial objectives would counter this
effect; however, when data from the target domain are scarce, it is very difficult to learn a powerful
discriminator that can capture meaningful properties of the target distribution. Therefore, the resulting
mappings learned is likely to be sub-optimal. Importantly, for the learned mapping to be meaningful,
it is not necessary to have the exact reconstruction. As long as the ‘semantic’ information is preserved
and the ‘style’ matches the corresponding distribution, it would be a valid mapping.

To address this issue, we propose an augmented cyclic adversarial learning model (ACAL) for domain
adaptation. In particular, we replace the reconstruction objective with a task specific model. The
model learns to preserve the ‘semantic’ information from the data samples in a particular domain by
minimizing the loss of the mapped samples for the task specific model. On the other hand, the task
specific model also serves as an additional source of information for the corresponding domain and
hence supplements the discriminator in that domain to facilitate better modeling of the distribution.
The task specific model can also be viewed as an implicit way of disentangling the information
essential to the task from the ‘style’ information that relates to the data distribution of different
domain. We show that our approach improves the performance by 40% as compared to the baseline
on digit domain adaptation. We improve the phoneme error rate by ∼ 5% on TIMIT dataset, when
adapting the model trained on one speech from one gender to the other.

1.1 Related Work

Our work is broadly related to domain adaptation using neural networks for both supervised and
unsupervised domain adaptation.

Supervised Domain Adaptation When labels are available in the target domain, a common
approach is to utilize the label information in target domain to minimize the discrepancy between
source and target domain (Hu et al., 2015; Tzeng et al., 2015; Gebru et al., 2017; Hoffman et al.,
2016; Gupta et al., 2016; Ge and Yu, 2017). For example, Hu et al. (2015) applies the marginal Fisher
analysis criteria and Maximum Mean Discrepancy (MMD) to minimize the distribution difference
between source and target domain. Tzeng et al. (2015) proposed to add a domain classifier that
predicts domain label of the inputs, with a domain confusion loss. Gebru et al. (2017) leverages
attributes by using attribute and class level classification loss with attribute consistent loss to fine-tune
the target model. Our method also employs models from both domains, however, our models are used
to assist adversarial learning for better learning of the target domain distribution. In addition, our final
model for supervised domain adaptation is obtained by training on data from target domain as well as
the transfered data from the source domain, rather than fine-tuning a source/target domain model.

Unsupervised Domain Adaptation More recently, various work have taken advantage of the
substantial generation capabilities of the GAN framework and applied them to domain adaptation (Liu
and Tuzel, 2016; Bousmalis et al., 2017; Yi et al., 2017; Tzeng et al., 2017; Kim et al., 2017; Hoffman
et al., 2018). However, most of these works focus on high-resource unsupervised domain adaptation,
which may be unsuitable for situations where the target domain data are limited. Bousmalis et al.
(2017) uses a GAN to adapt data from the source to target domain while simultaneously training
a classifier on both the source and adapted data. Our method also employs task specific models;
however, we use the models to augment the CycleGAN formulation. We show that having cycles
in both directions (i.e. from source to target and vice versa) is important in the case where the
target domain has limited data (see sec. 4). Tzeng et al. (2017) proposes adversarial discriminative
domain adaptation (ADDA), where adversarial learning is employed to match the representation
learned from the source and target domain. Our method also utilizes pre-trained model from source
domain, but we only implicitly match the representation distributions rather than explicitly enforcing
representational similarity. Cycle-consistent adversarial domain adaptation (CyCADA Hoffman
et al., 2018) is perhaps the most similar work to our own. This approach uses both `1 and semantic

2



Figure 1: Illustration of proposed approach. Left: CycleGAN (Zhu et al., 2017). Middle: Relaxed
cycle-consistent model (RCAL), where the cycle-consistency is enforced through task specific models
in corresponding domain. Right: Augmented cycle-consistent model (ACAL). In addition to the
relaxed model, the task specific model is also used to augment the discriminator of corresponding
domain to facilitate learning. In the diagrams x and L denote data and losses, respectively. We point
out that the ultimate goal of our approach is to use the mapped Source→ Target samples (xS 7→T ) to
augment the limited data of the target domain (xT ).

consistency to enforce cycle-consistency. An important difference in our work is that we also include
another cycle that starts from the target domain. This is important because, if the target domain is of
low resource, the adaptation from source to target may fail due to the difficulty in learning a good
discriminator in the target domain. Almahairi et al. (2018) also suggests to improve CycleGAN by
explicitly enforcing content consistency and style adaptation, by augmenting the cyclic adversarial
learning to hidden representation of domains.

Our model is different from recent cyclic adversarial learning, due to implicit learning of content
and style representation through an auxiliary task, which is more suitable for low resource domains.
Using classification to assist GAN training has also been explored previously (Springenberg, 2015;
Sricharan et al., 2017; Kumar et al., 2017). Springenberg (2015) proposed CatGAN, where the
discriminator is converted to a multi-class classifier. We extend this idea to any task specific model,
including speech recognition task, and use this model to preserve task specific information regarding
the data.We also propose that the definition of task model can be extended to unsupervised tasks,such
as language or speech modeling in domains, meaning augmented unsupervised domain adaptation.

2 Preliminaries

2.1 Generative Adversarial Network

To learn the true data distribution Pdata(X) in a nonparametric way, Goodfellow et al. (2014)
proposed the generative adversarial network (GAN). In this framework, a discriminator network D(x)
learns to discriminate between the data produced by a generator network G(z) and the data sampled
from the true data distribution Pdata(X), whereas the generator models the true data distribution
by learning to confuse the discriminator. Under certain assumptions (Goodfellow et al., 2014), the
generator would learn the true data distribution when the game reaches equilibrium. Training of GAN
is in general done by alternately optimizing the following objective for D and G.

min
G

max
D

V (G,D) = Ex∼Pdata(X) [logD(x)] + Ez∼Pz(Z) [log (1−D(G(z))] (1)

2.2 CycleGAN

CycleGAN (Zhu et al., 2017) extends this framework to multiple domains, PS(X) and PT (X), while
learning to map samples back and forth between them. Adversarial learning is applied such that the
result mapping from GS 7→T will match the target distribution PT (X), and similarly for the reverse
mapping from GT 7→S . This is accomplished by the following adversarial objectives:

Ladv(GS 7→T , DT ) = Ex∼PT (X) [logDT (x)] + Ex∼PS(X) [log (1−DT (GS 7→T (x))] (2)

Ladv(GT 7→S , DS) = Ex∼PS(X) [logDS(x)] + Ex∼PT (X) [log (1−DS(GT 7→S(x))] (3)
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CycleGAN also introduces cycle-consistency, which enforces that each mapping is able to invert the
other. In the original work, this is achieved by including the following reconstruction objective:

Lcyc(GS 7→T , GT 7→S) = Ex∼PS(X)[‖GT 7→S(GS 7→T (x))− x‖1]
+ Ex∼PT (X)[‖GS 7→T (GT 7→S(x))− x‖1] (4)

Learning the CycleGAN model involves optimizing a weighted combination of the above objectives
2, 3 and 4.

3 Augmented Cyclic Adversarial Learning (ACAL)

Enforcing cycle-consistency using a reconstruction objective (e.g. eq. 4) may be too restrictive
and potentially results in sub-optimal mapping functions. This is because the learning dynamics of
CycleGAN balance the two contrastive forces. The adversarial objective encourages the mapping
functions to generate samples that are close to the true distribution. At the same time, the reconstruc-
tion objective encourages identity mapping. Balancing these objectives may works well in the case
where both domains have a relatively large number of training samples. However, problems may
arise in case of domain adaptation, where data within the target domain are relatively sparse.

Let PS(X) and PT (X) denote source and target domain distributions, respectively, and samples
from PT (X) are limited. In this case, it will be difficult for the discriminator DT to model the actual
distribution PT (X). A discriminator model with sufficient capacity will quickly overfit and the
resulting DT will act like delta function on the sample points from PT (X). Attempts to prevent this
by limiting the capacity or using regularization may easily induce over-smoothing and under-fitting
such that the probability outputs of DT are only weakly sensitive to the mapped samples. In both
cases, the influence of the reconstruction objective should begin to outweigh that of the adversarial
objective, thereby encouraging an identity mapping. More generally, even if we are are able to obtain
a reasonable discriminator DT , the support of the distribution learned through it would likely to be
small due to limited data. Therefore, the learning signal GS 7→T gets from DT would be limited. To
sum up, limited data within PT (X) would make it less likely that the discriminator will encourage
meaningful cross domain mappings.

The root of the above issue in domain adaptation is two fold. First, exact reconstruction is a too strong
objective for enforcing cycle-consistency. Second, learning a mapping function to a particular domain
which solely depends on the discriminator for that domain is not sufficient. To address these two
problems, we propose to 1) use a task specific model to enforce the cycle-consistency constraint, and
2) use the same task specific model in addition to the discriminator to train more meaningful cross
domain mappings. In more detail, let MS and MT be the task specific models trained on domains
PS(X,Y ) and PT (X,Y ), and Ltask denotes the task specific loss. Our cycle-consistent objective is
then:

LRCAL(GS 7→T , GT 7→S ,MS ,MT ) = E(x,y)∼PS(X,Y ) [Ltask(MS(GT 7→S(GS 7→T (x)), y)]

+ E(x,y)∼PT (X,Y ) [Ltask(MT (GS 7→T (GT 7→S(x)), y)] (5)

Here, Ltask enforces cycle-consistency by requiring that the reverse mappings preserve the semantic
information of the original sample. Importantly, this constraint is less strict than when using
reconstruction, because now as long as the content matches that of the original sample, the incurred
loss will not increase. (Some style consistency is implicitly enforced since each model M is trained
on data within a particular domain.) This is a much looser constraint than having consistency in the
original data space, and thus we refer to this as the relaxed cycle-consistency objective.
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Algorithm 1 Augmented Cyclic Adversarial Learning (ACAL)
Input: source domain data PS(x, y), target domain data PT (x, y), pretrained source task model MS

Output: target task model MT

while not converged do
Sample from (xs, ys) from PS

if yt in PT then
%Supervised%

Sample (xt, yt) from PT

Finetune source model MS on (xs, ys) and (GT 7→S(xt), yt) samples (eq. 6)
Train task model MT on (xt, yt) and (GS 7→T (xs), ys) samples (eq. 7)

else
%Un-supervised%

Sample xt from PT

Finetune source model MS on (xs, ys) samples (eq. 8)
Train task model MT (GS 7→T (xs), ys) and (xt,MS(GT 7→S(xt)) samples (eq. 9)

end
end

To address the second issue, we augment the adversarial objective with corresponding objective:

LACAL−supervised(GT 7→S , DS ,MS) = Ex∼PS(X) [log(DS(x))]

+ Ex∼PT (X) [log(1−DS(GT 7→S(x)))]

+ E(x,y)∼PS(x,y) [Ltask(MS(x, y))]

+ E(x,y)∼PT (x,y) [Ltask(MS(GT 7→S(x), y))] (6)

LACAL−supervised(GS 7→T , DT ,MT ) = Ex∼PT (X) [log(DT (x))]

+ Ex∼PS(X) [log(1−DT (GS 7→T (x)))]

+ E(x,y)∼PT (x,y) [Ltask(MT (x, y))]

+ E(x,y)∼PS(x,y) [Ltask(MT (GS 7→T (x), y))] (7)

Similar to adversarial training, we optimize the above objective by maximizing DS (DT ) and
minimizing GT 7→S (GS 7→T ) and MS(MT ). With the new terms, the learning of mapping functions
G get assists from both the discriminator and the task specific model. The task specific model learns
to capture conditional probability distribution PS(Y |X) (PT (Y |X)), that also preserves information
regarding PS(X) (PT (X)). This conditional information is different than the information captured
through the discriminator DS (DT ). The difference is that the model is only required to preserve
useful information regarding X respect to predicting Y , for modeling the conditional distribution,
which makes learning the conditional model a much easier problem. In addition, the conditional
model mediates the influence of data that the discriminator does not have access to (Y ), which should
further assist learning of the mapping functions GT 7→S (GS 7→T ).

In case of unsupervised domain adaptation, when there is no information of target conditional
probability distribution PT (Y |X), we propose to use source model MS to estimate PT (Y |X) through
adversarial learning, i.e. PT (Y |X) ≈ Ex∼PT (X) [MS(GS 7→T (x))]. Therefore, proposed model can
be extended to unsupervised domain adaptation, with the corresponding modified objectives:

LACAL−unsupervised(GT 7→S , DS ,MS) = Ex∼PS(X) [log(DS(x))]

+ Ex∼PT (X) [log(1−DS(GT 7→S(x)))]

+ E(x,y)∼PS(x,y) [Ltask(MS(x, y))] (8)

LACAL−unsupervised(GS 7→T , DT ,MT ) = Ex∼PT (X) [log(DT (x))]

+ Ex∼PS(X) [log(1−DT (GS 7→T (x)))]

+ E(x,y)∼PT (x,y) [Ltask(MT (x,MS(GT 7→S(x))))]

+ E(x,y)∼PS(x,y) [Ltask(MT (GS 7→T (x), y))] (9)
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Table 1: Ablation study results from SVHN (Source) to MNIST (Target). See text for more details.
Note: The MNIST domain is limited to only 10 labeled samples per class (0.17% of full training
dataset), denoted as MNIST-(10). Experiments were performed 4 times with different random
sampling for MNIST.

Domain Adaptation Model Test Accuracy (%)

No Adaptation (trained on SVHN) 71.11
Target Model (trained on MNIST-(10)) 79.22±3.98
SVHN+MNIST-(10) 85.62±1.15

S→T 69.91±1.56
(S→T→S)-One Cycle 46.32±2.09
(T→S→T)-One Cycle 58.34±2.49

(S→T→S)-RCAL (Ours) 72.51±1.71
(T→S→T)-RCAL (Ours) 43.56±2.92

(S→T→S)-ACAL (Ours) 79.40±0.73
(T→S→T)-ACAL (Ours) 49.81±0.53

CycleGAN 45.54±1.05
RCAL (Ours) 88.62±1.77
ACAL (Ours) 93.90±0.33

To further extend this approach to semi-supervised domain adaptation, both supervised and unsuper-
vised objectives for labeled and unlabeled target samples are used interchangeably, as explained in
Algorithm 1.

4 Experiments

In this section, we evaluate our proposed model on domain adaptation for visual and speech recog-
nition. We continue the convention of referring to the data domains as ‘source’ and ‘target’, where
target denotes the domain with either limited or unlabeled training data. Visual domain adaptation is
evaluated using the MNIST dataset (M) Lecun et al. (1998), Street View House Numbers (SVHN)
datasets (S) Netzer et al. (2011), USPS (U) (Hull, 1994), MNISTM (MM) and Synthetic Dig-
its (SD) (Ganin and Lempitsky, 2014). Adaptation on speech is evaluated on the domain of gender
within the TIMIT dataset Garofolo et al. (1993), which contains broadband 16kHz recordings of 6300
utterances (5.4 hours) of phonetically-balanced speech. The male/female ratio of speakers across
train/validation/test sets is approximately 70% to 30%. Therefore, we treat male speech as the source
domain and female speech as the low resource target domain.

4.1 Model Ablations

To get an idea of the contribution from each component of our model, in this section we perform a
series of ablations and present the results in Table 1. We perform these ablations by treating SVHN
as the source domain and MNIST as the target domain. We down sample the MNIST training data
so only 10 samples per class are available during training, which is only 0.17% of full training data.
The testing performance is calculated on the full MNIST test set. We use a modified LeNet for all
experiments in this ablation. The Modified LeNet consists of two convolutional layers with 20 and
50 channels, followed by a dropout layer and two fully connected layers of 50 and 10 dimensionality.

There are various ways that one may utilize cycle-consistency or adversarial training to do domain
adaptation from components of our model. One way is to use adversarial training on the target domain
to ensure matching of distribution of adapted data, and use the task specific model to ensure the
‘content’ of the data from the source domain is preserved. This is the model described in Bousmalis
et al. (2017), except their model is originally unsupervised. This model is denoted as S → T in Table
1. It is also interesting to examine the importance of the double cycle, which is proposed in Zhu et al.
(2017) and adopted in our work. Theoretically, one cycle would be sufficient to learn the mapping
between domains; therefore, we also investigate the performance of one cycle only models, where one
direction would be from source to target and then back, and similarly for the other direction. These
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models are denoted as (S→T→S)-One Cycle and (T→S→T)-One Cycle in Table 1, respectively. To
test the effectiveness of the relaxed cycle-consistency (eq. 5) and augmented adversarial loss (eq. 6
and 7), we also test one cycle models while progressively adding these two losses. Interestingly, the
one cycle relaxed and one cycle augmented models are similar to the model proposed in Hoffman
et al. (2018) when their model performs mapping from source to target domain and then back. The
difference is that their model is unsupervised and includes more losses at different levels.

As can be seen from Table 1, the simple conditional model performed surprisingly well as compared
to more complicated cyclic counterparts. This may be attributed to the reduced complexity, since
it only needs to learn one set of mapping. As expected, the single cycle performance is poor when
the target domain is of limited data due to inefficient learning of discriminator in the target domain
(see section 3). When we change the cycle to the other direction, where there are abundant data in
the target domain, the performance improves, but is still worse than the simple one without cycle.
This is because the adaptation mapping (i.e. GS 7→T ) is only learned via the generated samples from
GT 7→S , which likely deviate from the real examples in practice. This observation also suggests
that it would be beneficial to have cycles in both directions when applying the cycle-consistency
constraint, since then both mappings can be learned via real examples. The trends get reversed when
we are using relaxed implementation of cycle-consistency from the reconstruction error with the task
specific losses. This is because now the power of the task specific model is crucial to preserve the
content of the data after the reverse mapping. When the source domain dataset is sufficiently large,
the cycle-consistency is preserved. As such, the resulting learned mapping functions would preserve
meaningful semantics of the data while transferring the styles to the target domain, and vice versa. In
addition, it is clear that augmenting the discriminator with task specific loss is helpful for learning
adaptations. Furthermore, the information added from the task specific model is clearly beneficial
for improving the adaptation performance, without this none of the models outperform the baseline
model, where no adaptation is performed. Last but not least, it is also clear from the results that using
task specific model improves the overall adaptation performance.

4.2 Visual Domain Adaptation
In this section, we experiment on domain adaptation for the task of digit recognition. In each
experiment, we select one domain (MNIST, USPS, MNISTM, SVHN, Synthetic Digits) to be the
target. We conduct two type of domain adaptation. First, low-resource supervised adaptation where
we sub-sample the target to contain only a few examples per class, using the other full dataset as
the source domain. Comparison with recent low resource domain adaptation, FADA (Motiian et al.,
2017) for MNIST, USPS, and SVHN adaptation is shown in Table 2.

Table 2: Low-resource Supervised Domain Adaptation on MNIST (M), USPS (U) and SVHN (S)
datasets. FADA model refers to Motiian et al. (2017).

# labeled data per class
Direction Model 1 2 3 4 5 6 7

M→ U FADA 89.1 91.3 91.9 93.3 93.4 94.0 94.4
ACAL 90.53 92.91 93.48 94.08 94.78 95.03 95.43

U →M FADA 81.1 84.2 87.5 89.9 91.1 91.2 91.5
ACAL 82.8 88.6 88.8 91.9 93.4 92.9 93.5

S →M FADA 72.8 81.8 82.6 85.1 86.1 86.8 87.2
ACAL 79.7 85.9 84.6 90.5 90.7 90.7 91.2

M→ S FADA 37.7 40.5 42.9 46.3 46.1 46.8 47.0
ACAL 50.1 50.3 50.8 51.2 51.9 52.1 54.0

S → U FADA 78.3 83.2 85.2 85.7 86.2 87.1 87.5
ACAL 81.25 84.39 85.9 86.01 86.44 88.69 88.24

U → S FADA 27.5 29.8 34.5 36.0 37.9 41.3 42.9
ACAL 31.36 33.74 38.75 38.78 42.50 43.64 45.24

4.3 Speech Domain Adaptation

We also apply our proposed model to domain adaptation in speech recognition. We use the TIMIT
dataset, where the male to female speaker ratio is about 7 : 3 and thus we choose the data subset from
male speakers as the source and the subset from female speakers as the target domain. We evaluate the
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Table 3: Speech domain adaptation results on TIMIT. We treat Male (M) and Female (F ) voices for
the source and target domains, respectively, based on the intrinsic imbalance of speaker genders in
the dataset (about 7 : 3 male/female ratio). For the evaluation metric, lower is better.

Female (PER)
Training Set Domain Adaptation Model Val Test

M - 35.70 30.69
F (Baseline model) - 24.51 23.22

M→ F

CycleGAN (Zhu et al., 2017) 32.95 30.07
FHVAE (Hsu et al., 2017) – 26.2
MD-CycleGAN (Hosseini-Asl et al., 2018) 28.80 25.45
ACAL (Ours) 24.86 23.46

F + (M→ F)
CycleGAN (Zhu et al., 2017) 28.32 28.43
MD-CycleGAN (Hosseini-Asl et al., 2018) 21.15 19.08
ACAL (Ours) 20.32 19.02

F +M - 20.63 20.52

F +M+ (M→ F)
CycleGAN (Zhu et al., 2017) 21.03 22.81
MD-CycleGAN (Hosseini-Asl et al., 2018) 20.26 19.60
ACAL (Ours) 20.02 18.44

test performance on the standard TIMIT test set and use phoneme error rate (PER) as the evaluation
metric. Spectrogram representation of audio is chosen for model evaluation. As demonstrated by
Hosseini-Asl et al. (2018), multi-discriminator training significantly impacts adaptation performance.
Therefore, we used the multi-discriminator architecture as the discriminator for the adversarial loss in
our evaluation. Our task specific model is a pre-trained speech recognition model within each domain
in this set of experiments.

The result are shown in Table 3. We observe significant performance improvements over the baseline
model as well as comparable or better performance as compared to previous methods. It is interesting
to note that the performance of the proposed model on the adapted male (M→ F) almost matches
the baseline model performance, where the model is trained on true female speech. In addition, the
performance gap in this case is significant as compared to other methods, which suggests the adapted
distribution is indeed close to the true target distribution. In addition, when combined with more data,
our model further out performs the baseline by a noticeable margin.

5 Conclusion and Future Work

In this paper, we propose to use augmented cycle-consistency adversarial learning for domain adapta-
tion and introduce a task specific model to facilitate learning domain related mappings. We enforce
cycle-consistency using a task specific loss instead of the conventional reconstruction objective. Addi-
tionally, we use the task specific model as an additional source of information for the discriminator in
the corresponding domain. We demonstrate the effectiveness of our proposed approach by evaluating
on two domain adaptation tasks, and in both cases we achieve significant performance improvement
as compared to the baseline.

By extending the definition of task-specific model to unsupervised learning, such as reconstruction
loss using autoencoder, or self-supervision, our proposed method would work on all settings of
domain adaptation. Such unsupervised task can be speech modeling using wavenet (van den Oord
et al., 2016), or language modeling using recurrent or transformer networks (Radford et al., 2018).
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Appendix A Speech Domain Models Implementation

In this section, the detail of CycleGAN and speech model architectures are explained. The size of the
convolution layer are denoted by the tuple (C, F, T, SF, ST), where C, F, T, SF, and ST denote number
of channels, filter size in frequency dimension, filter size in time dimension, stride in frequency
dimension and stride in time dimension respectively. Architecture of CycleGAN model is based
on Zhu et al. (2017) with modifications mentioned in Hosseini-Asl et al. (2018). Both generators in
CycleGAN are based on U-net Ronneberger et al. (2015) architecture with 4 layers of convolution of
sizes (8,3,3,1,1), (16,3,3,1,1), (32,3,3,2,2), (64,3,3,2,2), followed by corresponding deconvolution
layers. To increase stability of adversarial training, as proposed by Hosseini-Asl et al. (2018), the
discriminator output is modified to predict a single scalar as real/fake probability. Discriminator has
4 convolution layers of sizes (8,4,4,2,2), (16,4,4,2,2), (32,4,4,2,2), (64,4,4,2,2), as default kernel and
stride sizes in Hosseini-Asl et al. (2018). ASR model is implemented based on Zhou et al. (2017),
which is trained only with maximum likelihood. The model includes one convolutional layer of size
(32,41,11,2,2), and five residual convolution blocks of size (32,7,3,1,1), (32,5,3,1,1), (32,3,3,1,1),
(64,3,3,2,1), (64,3,3,1,1) respectively. Convolutional layers are followed by 4 layers of bidirectional
GRU RNNs with 1024 hidden units per direction per layer. Finally, a fully-connected hidden layer of
size 1024 is used as the output layer.

A.1 Qualitative Evaluation of Domain Adaptation

In this section we show some qualitative results on transcriptions produced from different models.

Table 4: ASR prediction improvement on low resource Female domain (TIMIT), when augmented
with adapted audios from high resource Male domain

Train on Female + (Male→Female)

Test on
Female

True sil dh ah m aa r n ih ng sil d uw aa n dh ah s sil p ay dx er w eh sil g l ih s eh n sil d ih n dh ah s ah n sil

No adaptation sil dh ah m aa r n ih ng sil d uw aa m ih s sil b ay er w ih sil b z l ih s ih n d ih n s ah n sil

CycleGAN sil dh ih m aa r n ih ng sil d ih ah n dh ih s sil p ay ih w r eh sil dh l dh ih s ih n sil d ih n s ay n sil

ACAL sil dh ah m aa r n ih ng sil d uw ah n dh ih s sil b ay dx y er w eh sil b l ih s ih n sil d ih n ih s ah n sil

True sil iy v ih n ah s ih m sil p l v ah sil k ae sil b y ih l eh r iy sil k ah n sil t ey n sil t s ih m sil b l z sil

No Adaptation sil iy dh ih n ah s ih m v l v ow sil k ae sil b y ih l eh r iy sil k eh n sil t ey n s ih m sil b l z sil

CycleGAN sil iy ih m ah s eh m sil p l v dh aa sil k ey sil b y ih r ey ey sil k ih n sil t r ey n sil s ih m sil b ah l z sil

ACAL sil iy v ih n ah s ih m sil p l v ow sil k ae sil b y ih l eh r iy sil k ih n sil t ay ey n s ih m sil b l z sil

True sil dh ah f aa sil p r ih v ih n ih sil dh ih m f r ah m er r aa v ih ng aa n sil t aa m sil

No Adaptation sil dh ah f aa sil p er z ih n ih n sil dh ih m z er v er r aa v iy ng aa n sil t ay m sil

CycleGAN sil b er f aa sil p r ih th iy n m ih sil b ih ih m n sil f r eh m er r aw n iy ng er n sil t er m sil

ACAL sil dh ih f aa l sil p r ih z ih n ih sil dh iy ih m f er m er r aa dh ih ng aa n sil t ah m sil

True sil ch iy sil s sil t aa sil k ih ng z r ah n dh ih f er s sil t ay m dh eh r w aa r n sil

No Adaptation sil ch iy sil ch s sil t aa sil k ih n ng z r ah m dh ah f er s sil t aa m dh eh w ah r n sil

CycleGAN sil ch iy sil ch s sil t aa sil k ih ng z r ah n dh ih f er ih s sil t ay n dh eh r w aa r ng sil

ACAL sil sh iy sil ch s sil t aa sil k ih ng z r ah m dh ah f er s sil t ay m dh eh r w aa r n sil

True sil d ow n sil d uw sil ch aa r l iy z sil d er dx iy sil d ih sh ih z sil

No Adaptation sil d ow sil d uw sil ch er l iy s sil t er dx iy sil d ey sh ih z sil

CycleGAN sil dh aw sil d ih sil ch aa r l iy s sil t er dx iy sil d ih sh iy z sil

ACAL sil d ow n sil d uw sil ch er l iy s sil t er dx iy sil d eh sh ih z sil

True sil k ae l s iy ih m ey sil s sil b ow n z n sil t iy th s sil t r aa ng sil

No Adaptation sil k eh l s iy ih m ey sil k s sil b ow n z ih n sil t iy sil s sil t r aa l sil

CycleGAN sil t aw s iy ih m n m ey sil k s sil b ow n z ih n sil t iy sil s sil t r aa ng sil

ACAL sil k aw s iy ih m ey sil k s sil b ow n z ih n sil t iy sil s sil t r aa ng sil
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