
Under review as a conference paper at ICLR 2020

CERTIFYING NEURAL NETWORK AUDIO CLASSIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the first end-to-end verifier of audio classifiers. Compared to existing
methods, our approach enables analysis of both, the entire audio processing stage as
well as recurrent neural network architectures (e.g., LSTM). The audio processing
is verified using novel convex relaxations tailored to feature extraction operations
used in audio (e.g., Fast Fourier Transform) while recurrent architectures are
certified via a novel binary relaxation for the recurrent unit update. We show the
verifier scales to large networks while computing significantly tighter bounds than
existing methods for common audio classification benchmarks: on the challenging
Google Speech Commands dataset we certify 95% more inputs than the interval
approximation (only prior scalable method), for a perturbation of -90dB.

1 INTRODUCTION

Recent advances in deep learning have enabled replacement of traditional voice recognition systems
with a single neural network trained from data (Graves et al., 2013; Hannun et al., 2014; Amodei
et al., 2016). Wide adoption of these networks in consumer devices poses a threat to their safety when
exposed to a malicious adversary. Indeed, it was recently shown that an adversary can inject noise
unrecognizable to a human and force the network to misclassify (Szegedy et al., 2013; Goodfellow
et al., 2014; Zhang et al., 2017; Carlini & Wagner, 2018; Carlini et al., 2016; Qin et al., 2019;
Neekhara et al., 2019; Yang et al., 2019; Esmaeilpour et al., 2019), exposing a serious security flaw.

Ideally, when deploying an automated speech recognition system we would like to guarantee that the
system is robust against noise injected by an adversary. There has been substantial recent work on
certifying robustness of computer vision models (Katz et al., 2017; Ehlers, 2017; Bunel et al., 2018;
Ruan et al., 2018; Tjeng et al., 2019; Anderson et al., 2018; Wong et al., 2018; Dvijotham et al., 2018;
Raghunathan et al., 2018; Dvijotham et al., 2019; Weng et al., 2018; Zhang et al., 2018; Salman et al.,
2019; Gehr et al., 2018; Singh et al., 2018; 2019a; Wang et al., 2018; Singh et al., 2019b). However,
the audio domain poses unique challenges not addressed by prior certification work for vision.

Differences between audio and vision models Concretely, while an input to a vision model is a raw
image, audio models typically come with a complex preprocessing stage (that involves non-trivial
non-linear operations such as logarithm) which extracts relevant features from the signal. Additionally,
audio systems typically use recurrent architectures (Chiu et al., 2017) which computer vision verifiers
do not handle as they focus on fully-connected, convolutional and residual architectures.
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Figure 1: End-to-End Audio Certifica-
tion Flow using DAC.

This work We address both of these challenges and propose
an end-to-end verification method for neural network based
audio classifiers and an implementation of this method in
a system called DAC (Deep Audio Certifier). Our threat
model assumes an attacker can introduce a noise-based per-
turbation to the raw audio input signal. The goal then is to
certify that, for any signal that the attacker can produce, the
neural network classifies the signal to the correct label. We
perform verification of this property using the framework of
abstract interpretation (Gehr et al., 2018). At a high level,
the idea is to maintain an abstraction capturing all possible
behaviors of both the audio processing stage and the neural
network. The flow of DAC is shown in Fig. 1 where all
abstractions are dark blue shapes.
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Here, all possible signals an attacker can obtain are captured using an abstraction s(i) (a convex relax-
ation). This abstraction is then propagated through the audio processing stage (shown in green boxes).
The key components of this step are abstract transformers. For each audio processing operation (e.g.
FFT) we create an abstract transformer which receives an abstraction representing an approximation
of all possible inputs to the operation and outputs a new abstraction which approximates all possible
outputs of the operation. The result of the audio processing stage is the abstraction x(i).

The shape x(i) is then used as input to the recurrent LSTM unit (light blue) which maintains an
abstraction of a hidden state h(i−1). LSTM consists of multiple operations and we create a custom
abstract transformer for each of those. The result of the transformers in LSTM is a new hidden state
h(i). If this was the last frame in the signal (meaning i = T ), then hidden state h(T ) is passed through
the fully connected layer of the neural network and, again using the abstract transformer, the final
abstract shape a is obtained at the output (at the right of Fig. 1). Finally, to certify the property we
check if each concrete output in the abstraction a classifies to the correct label (this is typically easy).
If this is true, the output of the network is correct for all inputs that the attacker can create.

Related work on RNN certification The work of (Ko et al., 2019) proposes the POPQORN verifier
for recurrent neural networks (RNN). We note that POPQORN does not handle the audio preprocess-
ing pipeline. Even though POPQORN cannot directly verify audio classifiers, their approximations
for LSTM non-linearities can be integrated in DAC. This results in ≈ 200× slowdown with small
decrease in the volume of the approximation. The massive slowdown makes their approximations un-
suitable for certifying audio classifiers. In contrast, using our custom abstract transformers for LSTM
non-linearities, DAC can precisely certify end-to-end robustness of challenging audio classifiers in
few minutes.

Our main contributions are:

1. A novel and efficient method to certify robustness of neural network audio classifiers to
noise-based perturbations. The method is based on new abstract transformers which handle
non-linear operations used in both audio processing and recurrent architectures.

2. An implementation of both verification and provably robust training in a system called
DAC. We evaluated DAC on common audio classification benchmarks, showing it scales to
realistic networks and is far more precise (97% to 2%) than the next best scalable method.

2 BACKGROUND

We first define a threat model that we work with and then present all operations that are part of the
verification procedure, including audio processing (MFCC) and LSTM updates. We also discuss the
type of verification method we employ.

Threat model We follow the same attacker threat model as Carlini & Wagner (2018). The assumption
is that the attacker can add noise δ to the original signal s so to obtain a perturbed signal s′ = s+ δ.
The measure of signal distortion are decibels (dB) defined as:

dB(s) = max
i

20 · log10(|si|); dBs(δ) = dB(δ)− dB(s)

Note that the quieter the noise is, the smaller the decibel of perturbation dBs(δ) (it is usually a
negative value as it is quieter than the signal). We assume the attacker can generate noise δ such
that dBs(δ) < ε where ε is a constant defined by the threat model. Our goal is to verify whether the
neural network classifies s′ correctly for each small perturbation δ (as constrained above).

Mel-Frequency Cepstral Coefficients (MFCC) Though there have been number of works which
operate directly on the raw signal (Pascual et al., 2017; Sainath et al., 2015), Mel-Frequency Cepstrum
(MFC) is traditionally preferred for audio preprocessing in speech recognition systems e.g., Deep-
Speech (Hannun et al., 2014). The idea of MFC is to model non-linear human acoustic perception as
power spectrum filters based on certain frequencies, called Mel-frequencies. The final result of the
transformation is a vector of coefficients whose elements contain log-scaled values of filtered spectra,
one for every Mel-frequency. This resulting vector is a feature representation of the original signal
and can now be used in a downstream task such as audio classification.

Sahidullah & Saha (2012) presented an approach to represent MFCC computation using several matrix
operations which we integrate with our verification framework. Given T frames of audio signals of
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the length N = 2k, represented as matrix S = [s(1) · · · s(T )]tr ∈ RT×N (tr for transpose), audio
preprocessing with MFCC is calculated using the following steps:

1. Pre-emphasizing and Windowing: Y = S(IN − cpeI+1
N )�H

Transform the signal with the pre-emphasizing and applying the Hamming window. Here,
I+1
N ∈ RN×N is the shifted diagonal identity matrix (I+1

i,j = 1 if i+ 1 = j, otherwise 0),
H ∈ RT×N is the Hamming window, and cpe is the pre-emphasizing constant.

2. Power Spectrum of Fast Fourier Transform (FFT): Θ = (YW )� (YW )
Perform FFT on the windowed data and square it to get the real-value spectrum. We can
denote FFT on discrete domain (DFT) with the multiplication of Y andW ∈ CN×N/2.

3. Filter Bank Log Energy: Ψ = log(ΘΛ)
Apply the Mel frequency filter bank to the power spectrum and get the log value of them.
Λ ∈ RN/2×p is the filter bank given the number of filters p, and log is applied entry-wise.

4. DCT(Discrete Cosine Transformation): X = ΨD
Perform DCT on the previous result. Again, this can be formulated using matrix multiplica-
tion. We use the resultingX = [x(1) · · · x(T )]tr as the input for the neural network.

Long-Short Term Memory (LSTM) LSTM architectures (Hochreiter & Schmidhuber, 1997) are a
key part in modern state-of-the-art speech recognition systems (Hannun et al., 2014; Amodei et al.,
2016). In our work, we consider the following definitions of updates in the LSTM unit.

f
(t)
0 = [x(t),h(t−1)]Wf + bf

i
(t)
0 = [x(t),h(t−1)]Wi + bi

c(t) = σ(f
(t)
0 )� c(t−1) + σ(i

(t)
0 )� tanh(c̃

(t)
0 )

o
(t)
0 = [x(t),h(t−1)]Wo + bo

c̃
(t)
0 = [x(t),h(t−1)]Wc̃ + bc̃

h(t) = σ(o
(t)
0 )� tanh(c(t))

where [·, ·] is the horizontal concatenation two row vectors,W· and b· are kernel and bias of the cell,
respectively. At timestep t, vectors f (t)

0 , i
(t)
0 ,o

(t)
0 , c̃

(t)
0 represent pre-activations of the forget, input,

and output gate, respectively, and the pre-calculation of cell state. Cell state c(t) and hidden state
h(t) computed at timestep t are propagated to the LSTM unit at the next timestep, thus allowing it to
maintain states. This recurrent architecture allows inputs with arbitrary length, making it especially
suited for audio inputs.

Robustness certification In this work, our goal will be to certify the robustness of an audio classifi-
cation pipeline (including the LSTM) to noise perturbations of the input. To build such a verifier,
we leverage the general method of abstract interpretation suggested by Cousot & Cousot (1977),
successfully employed by some of the most recent state-of-the-art verifiers of neural networks (Gehr
et al., 2018; Singh et al., 2019a). The basic idea here will be to propagate the possible perturbations
(captured by a convex region) through the operations of the entire audio pipeline and to then use the
final output region to certify the robustness property. The most challenging step of this approach is
defining efficient yet precise approximations of the non-linear operations (called abstract transformers)
used in the audio pipeline. In this work, we will introduce a number of such new abstract transformers
that handle the non-linear operations used in audio processing. Specifically, our over-approximations
will be expressed in the recent DEEPPOLY abstraction (Singh et al., 2019a) (a restricted form of
convex polyhedra) which aims to balance efficiency and precision. That is, the abstract transformer
of a non-linear function will take as input a convex polyhedra element expressible in DEEPPOLY and
output another polyhedra which over-approximates the behavior of the non-linear operation when
invoked with any concrete point inside the original polyhedra.

3 OVERVIEW OF VERIFICATION PROCESS

We now explain the workings of our verifier on a (toy) example from the point where sound enters
the processing stage to where the output of the classifier is certified as robust under any allowed
perturbation of the threat model. Our goal is to provide an intuitive understanding, formal details are
provided later.

Audio preprocessing Unlike in standard computer vision tasks where the input is fed directly to the
neural network, audio models typically first perform MFCC preprocessing to extract useful features
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Figure 2: Robustness verification illustrated on a toy example. Each box shows the constraints
computed by the verifier after processing a given operation (shown on edges). Green color denotes
elements of the MFCC audio processing stage: the Fast Fourier Transform (FFT), the Filterbank
Transform (FB), and the Discrete Cosine Transform (DCT). Blue color denotes components of the
network: ReLU layer, LSTM and Fully Connected layer. Approximations computed with this work
are shown in the bottom row. The operations which the abstract transformers handle are shown next
to the downward edges. Edges without labels represent affine transforms.

from the signal. We represent all preprocessing operations as green boxes in Fig. 2. The calculation
follows steps described formally in Section 2, using the same notation for resulting vectors.

Fast Fourier transform The first operation is Fast Fourier Transform (FFT) of the pre-emphasized
input signal. It is a two-step process shown in dashed boxes in Fig. 2. We decompose it into affine
and square operations which transform signal s(t) into an intermediate representation θ(t). Using our
novel and optimal abstract transformer for the square operation, formally defined in Section 4 and
visualized in Fig. 3b, we obtain linear bounds on θ(t).

Filterbank transform The next operation is Filterbank transform (FB) which consists of affine and
logarithm operations, shown in solid boxes in Fig. 2. Note that if the approximations from the square
transformer allows negative values, then the entire analysis will fail as the logarithm operation is
undefined for negative inputs. Our transformers are carefully designed to avoid this scenario. To
obtain bounds on the output of the logarithm we apply our novel and optimal logarithm transformer,
also formally described in Section 4 and visualized in Fig. 3a, and obtain linear upper and lower
bounds on the log energy of the filtered power spectrum, ψ(t). Logarithm operation is followed by
Discrete Cosine Transform (DCT) resulting in a vector x̃(t) which is then used as an input to the
fully connected layer of the neural network followed by a ReLU. Our analysis (detailed calculation in
Appendix C) produces x̃(t)

1 ∈ [0.87, 5.56], x̃
(t)
2 ∈ [0.17, 12.8]. Since all the values are positive, the

following ReLU has no effect on its input and thus we set x(t) = x̃(t). Using the back-substitution
technique we describe later, we derive x(t)1 ∈ [0.87, 5.56], x

(t)
2 ∈ [0.17, 12.83]. In the next paragraph

we describe bound propagation through LSTM in more detail.

LSTM bound propagation Here we provide a technical overview of our LSTM transformer, for-
malized in Section 5 and visualized in Fig. 4, by calculating the result of the transformation on the
first neuron of the LSTM hidden layer. We provide detailed mathematical basis of this process in
Appendix D. For our toy example, let the gates be updated as f (t)1 = x

(t)
1 /4, input gate i(t)1 = 2h

(t−1)
2 ,

output gate o(t)1 = h
(t−1)
1 and cell state c̃(t) = h

(t−1)
1 − x(t)2 /4. Also, assume the previous states

are bounded by: h(t−1)1 , h
(t−1)
2 , c

(t−1)
1 , c

(t−1)
2 ∈ [0.90, 1.00]. We now apply our σ(x) · tanh(y) and

σ(x) · y transformers to get bounds of the cell state c(t)1 = σ(f
(t)
1 ) · c(t−1)1 + σ(i

(t)
1 ) · tanh(c̃

(t)
1 ).

0.18f
(t)
1 + 0.45 ≤ σ(f

(t)
1 )·c(t−1)1 ≤ 0.16f

(t)
1 + 0.58

0.03c̃
(t)
1 − 0.78 ≤ σ(i

(t)
1 )· tanh(c̃

(t)
1 ) ≤ 0.39c̃

(t)
1 + 0.28

Summing up the inequalities above results in c(t)1 ∈ [−0.36, 1.46]. For the hidden state h(t)1 =

σ(o
(t)
1 ) · tanh(c

(t)
1 ), we again apply our abstract transformer and obtain

0.48c
(t)
1 − 0.08 ≤ σ(o

(t)
1 ) · tanh(c

(t)
1 ) ≤ 0.14c

(t)
1 + 0.45
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Figure 3: Our DeepPoly approximations of (a) the natural logarithm and (b) the square function. Blue
lines represent the valid (in case of square, non-negative) upper and lower bounds which minimize the
area between the planes under the given domain [lx, ux]. The red bound on (b) grants smaller area,
but contains the negative value, which occurs the analysis failure in the audio processing pipeline.

i.e., h(t)1 ∈ [−0.25, 0.65]. An analogous computation is performed for h(t)2 . For this example, we
assume the computation results in h(t)2 = 0.

Robustness certification using DeepPoly The hidden states in the LSTM at the final timestep are
passed through a fully connected layer without activation. In our example we assume that logits after
the layer are obtained with the following formula: l1 = h

(t)
1 + 0.24 and l2 = h

(t)
2 . These are shown

in the final box of Fig. 2. To certify that the neural network classifies the input to class 1, we need to
prove that l1 − l2 > 0. We now apply the back-substitution technique as in Singh et al. (2019a) upto
the input to the LSTM:

l1 − l2 = h
(t)
1 − h

(t)
2 + 0.24 ≥ 0.48(0.18f

(t)
1 + 0.03c̃

(t)
1 − 0.33)− 0.08 + 0.24

= 0.09f
(t)
1 + 0.01c̃

(t)
1 + 0.01 = 0.09(x

(t)
1 /4) + 0.01(h

(t−1)
1 − x(t)2 /4) + 0.01 ≥ 0.006

As this value is greater than 0, robustness is established. The process above, of replacing a variable
with its constraints, is called back-substitution. Here, we replaced l1 with h(t)1 + 0.24, then h(t)1 with
0.18f

(t)
1 + 0.03c̃

(t)
1 − 0.33 and so on. In Appendix C we show more detailed calculations to obtain

tighter bound 0.0375 by also back-substituting in the preprocessing pipeline. For our experiments in
Section 6, we tune the number of back-substitution steps to achieve a good tradeoff between speed
and precision. Note that robustness cannot be proved if one concretizes the expression above to an
interval, instead of performing back-substitution of linear bounds. For instance, if we concretize h(t)1

to [−0.25, 0.65], we obtain l1 − l2 ≥ h
(t)
1 − h

(t)
2 + 0.24 ≥ −0.01 which is imprecise and fails to

certify robustness. Note that if t is not the last timestep, the hidden state and the cell state are passed
to the next analysis timestep instead of computing the final output.

4 AUDIO PROCESSING TRANSFORMERS

As illustrated earlier, the first part of the verification process involves handling of the audio processing
stage (performed using MFCC). Here, most matrix multiplication parts can be captured exactly by
our abstraction, but MFCC also includes the square operation in the FFT and the logarithm operation
in the computation of energy from filterbanks. Thus, to handle these non-linear operations, we need
to create new abstract transformers, which we present next. To ensure a minimal loss of precision,
our abstract transformers minimize the area between the lower and upper bounds in the input-output
plane. This approach of minimizing the area has been used before for other transformers and has
been shown to be practically effective in Singh et al. (2018; 2019a).

We denote the set of all variables in the analysis as X . For an element x ∈ X , we denote the
functions corresponding to its linear lower and upper bound as xl and xu, respectively. These are
scalar functions defined on Rk where k is the number of other variables used to compute x. For every
element, we also maintain interval bounds, x ∈ [lx, ux]. For ease of explanation, we introduce the
log transformer followed by the square transformer.
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Log abstract transformer The logarithm operation is an assignment y := log(x) where x, y ∈ X .
The output of this operation cannot be captured exactly and we need to carefully introduce an
approximation. Here, we first compute the minimum ly = log(lx) and the maximum uy = log(ux),
which we use as interval approximation. We define linear lower and upper bound functions yl, yu :
R→ R. Using concavity of the logarithm on any subset of the domain, the lower bound function is a
line connecting the points (lx, log(lx)) and (ux, log(ux)). The upper bound function is chosen as the
tangent line to the function minimizing the area between the lower and the upper bound. As a result,
we obtain the following bounds as depicted in Fig. 3a:

yl(x) = log lx +
x− lx
ux − lx

log
ux
lx

yu(x) =
2x

ux + lx
− 1 + log

ux + lx
2

Note that if lx ≤ 0, yl(x) = −∞ since the function is not defined on that domain. We make an
exception when ux − lx < 10−4 to use interval bound for yl for avoiding the unstable floating point
calculation caused by large denominator of x coefficient.

Square abstract transformer The square operation is an assignment y := x2 where x, y ∈ X .
Similar to logarithm, this operation is non-linear and cannot be captured exactly in the abstraction.
We first compute the interval bounds of the output ly and uy , and set the minimum value ly to 0 when
0 ∈ [lx, ux] and min(l2x, u

2
x) otherwise. The maximum value uy is simply max(l2x, u

2
x).

Next, we define linear lower and upper bound functions yl, yu : R → R. Using the convexity of
the square function, we set the upper bound function yu to the linear function connecting (lx, l

2
x)

and (ux, u
2
x). For the lower bound function yl, we have to be delicate: since x2 : R→ R≥0, our yl

should also be greater or equal than 0 within any domain. With the principle of minimizing the area
between the bounds, we obtain the following bounds for cases as shown in Fig. 3b:

yl(x) =


4lxx− 4l2x 0 ≤ lx < ux/3

4uxx− 4u2x 0 ≥ 3ux > lx
0 lx ≤ 0 ≤ ux
(ux + lx)x− ((ux + lx)/2)

2
otherwise

yu(x) = (ux + lx)x− uxlx

5 LSTM TRANSFORMERS

Most prior work on verification of neural networks focuses on feed-forward or convolutional ar-
chitectures whose operations consist of a sequence of affine transforms and activation functions.
However, to perform verification of recurrent architectures, one needs to handle the updates of the
recurrent unit. Following the equations updating the LSTM presented in Section 2, we can observe
that pre-activations of gates are affine transforms which can be captured exactly in our abstraction.
However, the operations updating the cell and hidden states are non-linear and require approximation.

Overall, we have three elementwise products – two are between a sigmoid and a tanh and one
between a sigmoid and the identity. A straightforward approach to handling such transforms would
be to concretize the polyhedra DeepPoly element to an interval and perform the multiplication using
intervals. However, this approach would lose all relations between inputs and incur precision loss
in future operations of the analysis. Instead, we design custom binary approximation transformers
specifically tailored to handle the elementwise product in the update of the recurrent unit.

Sigmoid � Tanh abstract transformer We define elementwise multiplication between sigmoid and
tanh as an assignment z := σ(x) tanh(y), where x, y, z ∈ X . As before, our aim is to construct
linear bounds zl, zu. Unlike the previously defined DeepPoly transformers which take as input a
single abstract element, this transformer is the first which receives two abstract elements as operands.
Hence, the bound functions have the form zl, zu : R2 → R.

Let z = f(x, y) = σ(x) · tanh(y). Our goal is to bound this function between two planes such
that the volume between the planes is as small as possible (following our previous heuristic). We
first divide the computation into 3 cases based on the signs of ly and uy. To simplify notation, we
introduce the variable assignment in Table 1 so that we can reuse notation across all cases. We
first define an anchor point a: a point in the box [lx, ux] × [ly, uy] where function f attains the
max/min value defined upon the case. Also we need reference point r whereas the plane would meet
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zux zuy zlx zly

ly ≥ 0
Φ min min min min

a ux, uy ux, uy lx, ly lx, ly

r lx, uy ux, ly ux, ly lx, uy

ly < 0 ≤ uy
Φ min min max min

a ux, uy ux, uy ux, ly ux, ly

r lx, uy lx, ly lx, ly lx, uy

uy < 0
Φ max min max min

a lx, uy lx, uy ux, ly ux, ly

r ux, uy lx, ly lx, ly uy, uy

Table 1: Variable reference for the σ(x) · tanh(y)
approximation.
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Figure 4: Visualization of the bounding
planes and σ(x) · tanh(y) curve.

first among the four corners if it is tilted in given direction, other than the anchor. Our transformer
computes two candidates planes for the upper bound (zux , zuy ) and two for the lower bound (zlx, zly) as:

(zu|zl)x = Φ

(
Dif(a),

f(a)− f(r)

ax − rx

)
(x− ax) + f(a)

(zu|zl)y = Φ

(
Djf(a),

f(a)− f(r)

ay − ry

)
(y − ay) + f(a)

where Dif = ∂f
∂x , Djf = ∂f

∂y , and Φ, a, r are chosen from Table 1. Finally, we choose bounds
from two candidates which minimize the volume between the planes. Fig. 4 is the visualization of
this result. We note that Sigmoid � Identity transformer is handled in the same manner (we can
directly apply the same transformer by replacing f(x, y) with σ(x) · y).
Theorem 1. Our Sigmoid � Tanh transformer is optimal (it minimizes the volume between the
lower and upper plane) under the assumptions: (1) bounding planes are tangent to the curve at the
respective anchor points, (2) bounding planes are parallel to either x or y axis. Planes computed
using our transformer result in a volume strictly smaller than those computed using interval analysis.

We show the proof in Appendix B. Our assumptions are based on the following reasoning. The first
assumption is need so that our transformer produces bounds strictly better than interval analysis.
Unless zu passes through the point (ux, uy), the concrete upper bound would be larger than σ(ux) ·
tanh(uy), making it worse than an interval bound(analogously for the lower bound). The second
assumption enables computation of optimal planes in O(1) while without this assumption one needs
to solve a non-convex optimization problem which is not feasible at the scale of networks we consider.

6 EXPERIMENTS

We now evaluate the effectiveness of DAC on several datasets and neural architectures. All our
transformers are implemented in C (for performance) and exposed to the verifier using a Python
interface. We will publicly release the datasets, trained networks and source code of DAC. Verification
is performed on a Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz using 6 cores for each instance.

Experimental setup We evaluate on audio classification benchmarks: Free Spoken Digit Dataset
(FSDD) (Jackson, 2019) and Google Speech Commands (GSC) (Warden, 2018). FSDD contains
2,000 samples of spoken digits while GSC is a more complex dataset containing 65,000 utterances of
30 short words spoken by thousands of different people. State-of-the-art accuracy on GSC is 96.9%
by de Andrade et al. (2018) using attention RNN, while our verified model achieves 89%.

Robustness evaluation Following Singh et al. (2019b), we define success rate of verification as the
ratio between certified samples and correctly predicted ones. We randomly shuffled the test data and
then, for every experiment, inferred labels one by one until the number of correctly classified samples
reached 100. We report the number of provably correct samples out of these 100 as our provability.
As a baseline, we consider a verification method based on interval analysis, which only derives
neuronwise lower and upper bounds using the previous layer’s bounds. We used networks with
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Figure 5: Robustness evaluation on FSDD and GSC datasets, using DAC and Interval analysis.

h = 40 hidden neurons and p = 10 filters for both FSDD and GSC. Our results are shown in Fig. 5.
They suggest that DAC substantially outperforms interval analysis due to better approximations of
key functions in both audio preprocessing and neural network stages.

Depth Provability(%) Run Time(s)
0 27 8.33
1 35 18.95
2 37 40.83
3 39 87.92
4 40 166.19
5 41 328.92

Table 2: Effect of back-substitution
depth on the performance.

Effect of back-substitution depth In this experiment, we
vary the depth of back-substitution used in DAC and study
its effect on our performance. We run this experiment on
an FSDD network and report the results in Table 2. We
observe that increasing the back-substitution depth increases
the provability. This is due to the fact that we benefit from
cancellation of common terms in the propagated expressions,
as demonstrated in our example in Section 3. However, this
comes at a cost of exponential increase in runtime. Thus, we
choose to use depth 3 in order to get high verification rate
while still having reasonable verification speed.

Provable defense for audio classifiers We also for the first
time trained audio classifiers to be provably robust against noise-based perturbations. Our training
follows Mirman et al. (2018); Gowal et al. (2018) – we perturb the input signal and propagate interval
bounds through the audio processing and LSTM stages. To train, we combine standard loss with the
worst case loss obtained using interval propagation. The resulting network shown in Fig. 5b achieves
80% of provability for -80 dB even with the imprecise intervals, outperforming the undefended
network. Even though this network was specifically trained to be verifiable using intervals, DAC still
outperforms intervals and proves significantly more robustness properties. Also note that defended
network has lower accuracy of 95%, compared to the 98% accuracy of the baseline.

Experimental comparison with prior work POPQORN (Ko et al., 2019) also proposes a method
to certify recurrent neural networks by propagating linear bounds. One of the key differences with
our work is the approximation of σ(x) · tanh(y) using linear bounds. We found that, in practice,
optimization approach used by POPQORN produces approximations of slightly smaller volume than
our LSTM transformer (although non-comparable). However, this smaller volume comes at a high
cost in runtime. We tried to integrate POPQORN bounds into our verification framework, however
we found it not feasible for our audio tasks as it increased our end-to-end runtime 200× on one of the
smaller networks. In contrast, DAC takes only 1-2 minutes on average to verify a single example
containing multiple frames. Indeed, our observation is consistent with the evaluation of POPQORN
in the paper where it takes hours on a GPU for verifying NLP and vision tasks only for a single frame.

7 CONCLUSION

We presented the first verifier for certifying audio classifiers. The key idea was to create abstract
transformers for non-linear operations used in the audio processing stage and the recurrent network.
These transformers compute an optimal (area-wise) approximation under assumptions representable
in the underlying convex relaxation and enable sound handling of the entire pipeline. Our evaluation
shows that DAC is practically effective and achieves high verification rates on different datasets.
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A SOUNDNESS PROOF OF SIGMOID � TANH ABSTRACT TRANSFORMER

Suppose x and y are the abstract variable bounded by [lx, ux], [ly, uy] respectively. This suggested
transformer finds the bounding planes of the function f(x, y) = σ(x) tanh(y). Let Dif = ∂f

∂x and
Djf = ∂f

∂y .

1. ly ≥ 0
Choose the upper bound of the function between zux and zuy , where

zux(x, y) = min

(
Dif(ux, uy),

f(ux, uy)− f(lx, uy)

ux − lx

)
(x− ux)− f(ux, uy)

zuy (x, y) = min

(
Djf(ux, uy),

f(ux, uy)− f(ux, ly)

uy − ly

)
(y − uy)− f(ux, uy)

by the smaller volume under the each plane.
Claim 1: zux(x, y) ≥ f(x, y) in (x, y) ∈ [lx, ux]× [ly, uy].
Let x1 < x2 ∈ [lx, ux] and y1 < y2 ∈ [ly, uy]. Then for any x, y, f(x, y1) < f(x, y2)
and f(x1, y) < f(x2, y). Thus, since zux is independent to y, it is sufficient to show
zux(x, ·) ≥ f(x, uy).
We can easily know that f(x, uy) is concave at x ≥ 0 and convex at x ≤ 0 by the second
derivation of f .

(a) Consider the case of ux > 0. Let x0 be the x coordinate of the crossing of f(x, uy) and
g(x) = Dif(ux, uy)(x− ux)− f(ux, uy). From the convexity of f(x, uy) in x < 0,
g(0) > f(0, uy), and g′(x) > 0, there exists a single x0 < 0. If lx > x0, the slope
of zux(x, ·) becomes Dif(ux, uy), and zux and g become identical. Hence, f(x, uy) ≤
g(x) = zux(x, ·). If lx ≤ x0, the slope of zux(x, ·) becomes f(ux,uy)−f(lx,uy)

ux−lx . Then
zux and g shares a point of ux but zux has smaller slope, so g(x) ≤ zux(x, ·) in [lx, ux].
Also from f(lx, uy) = zux(lx, ·) and f(0, uy) < zux(0, ·), f(x, uy) ≤ zux(x, ·). Thus,
the claim holds when ux > 0.

(b) Another case of ux ≤ 0, x coefficient of zux will always be f(ux,uy)−f(lx,uy)
ux−lx . Again,

by convexity of f(x, uy), zux(x, ·) ≥ f(x, uy).

Hence zux(x, ·) ≥ f(x, uy) ≥ f(x, y) holds in (x, y) ∈ [lx, ux]× [ly, uy]. Claim proved.
With analogous steps, zuy can be shown to cover above the curve. Choosing the plane with
smaller volume underneath it allows to minimize the expected difference between the true
curve and the upper bound plane under the randomly chosen domain.
For the lower bound, choose the upper bound of the function between zlx and zly , where

zlx(x, y) = min

(
Dif(lx, ly),

f(lx, ly)− f(ux, ly)

lx − ux

)
(x− lx)− f(lx, ly)

zly(x, y) = min

(
Djf(lx, ly),

f(lx, ly)− f(lx, uy)

ly − uy

)
(y − ly)− f(lx, ly)

by the larger volume under the each plane.
Claim 2: zlx(x, y) ≤ f(x, y) in (x, y) ∈ [lx, ux]× [ly, uy].
It is sufficient to show zlx(x, ·) ≥ f(x, ly) since f(x, y1) ≤ f(x, y2) for y1 ≤ y2.

(a) Consider the case of lx < 0. Let x0 be the x coordinate of the crossing of f(x, ly)
and g(x) = Dif(lx, ly)(x− lx)− f(lx, ly). From the concavity of f(x, ly) in x > 0,
g(0) < f(0, ly), and g′(x) > 0, there exists a single x0 > 0. If lx < x0, the slope
of zlx(x, ·) becomes Dif(lx, ly), and zlx and g become identical. Hence, f(x, ly) ≤
g(x) = zlx(x, ·). If lx ≥ x0, the slope of zlx(x, ·) becomes f(lx,ly)−f(ux,ly)

lx−ux
. Then

zlx and g shares a point of lx but zlx has smaller slope, so g(x) ≥ zlx(x, ·) in [lx, ux].
Also from f(ux, ly) = zlx(ux, ·) and f(0, ly) > zlx(0, ·), f(x, ly) ≥ zlx(x, ·). Thus,
the claim holds when ux < 0.
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(b) Another case of lx ≥ 0, x coefficient of zlx will always be f(lx,ly)−f(ux,ly)
lx−ux

. Again, by
convexity of f(x, ly), zlx(x, ·) ≤ f(x, ly).

Hence zlx(x, ·) ≤ f(x, ly) ≥ f(x, y) holds in (x, y) ∈ [lx, ux]× [ly, uy]. Claim proved.
With analogous steps, zly can be shown to lie under the curve. Choosing the plane with
larger volume underneath it allows to minimize the expected difference between the true
curve and the lower bound plane under the randomly chosen domain.

2. ly ≤ 0 ≤ uy

The proof of upper bounds will follow the same steps with the first case. zux in this case
is exactly same as before, but since f(x, y) goes below 0 when y < 0, zuy has to anchor at
(lx, ly) instead of (ux, ly) since f(lx, ly) ≥ f(ux, ly) and convexity of f in the region. The
proof steps do not differ much from the previous proofs.
Again, the proof for lower bound is similar as before, but note that zlx needs to choose
maximum between the two slopes. This is due to the sign of the values. Since f(ux, ly) < 0
is the minimum in the region and it grows along x gets smaller, both Dif(ux, ly) and
f(ux,ly)−f(lx,ly)

ux−lx are less than zero.

3. 0 ≥ uy

We will not provide the proof since this case is symmetric to the first case.

B PROOF OF THEOREM 1

Theorem 1. (copied) Our Sigmoid � Tanh transformer is optimal (it minimizes the volume between
the lower and upper plane) under the assumptions: (1) bounding planes are tangent to the curve at
the respective anchor points, (2) bounding planes are parallel to either x or y axis. Planes computed
using our transformer result in a volume strictly smaller than those computed using interval analysis.

Proof. First note that zux , z
u
y , z

l
x, z

l
y are sound bounds by Appendix A. Assume zux is chosen as the

upper bound. W.l.o.g., suppose there exists another sound candidate upper bound ζux , satisfying (1)
and (2), with smaller volume underneath it than zux . Then ζux would have larger absolute slope on
x than zux . However, the slope of zux is chosen as stiff as possible while remaining the soundness
(Appendix A to see in detail). Hence, ζux would not be sound anymore with larger absolute coefficient.
Contradict to the existence of sound ζux . Other cases can be proved with similar logic as well.

C VERIFICATION BY EXAMPLE

We assume the last sound frame s(t) consists of two elements s(t)1 and s(t)2 such that: s(t)1 ∈ [0, 1] and
s
(t)
2 ∈ [−2,−1]. These constraints capture a noise perturbation of the sound and are depicted in the

white box in the left part of Fig. 2. We describe analysis only at the last timestep t (the same process
is repeated for every timestep).

We note that the DeepPoly abstraction (which we build on in this work) maintains four constraints
for every element: a lower and upper constraints which are linear in terms of the previous elements
as well as two interval constraints. This abstraction is exact for affine transformations, however, to
handle non-linear operations, one has to create new abstract transformers. In our work we introduce
such transformers and formally describe their operation in the next sections. In what follows, we
show their effect on our running example. For the presentation below, our figure shows the linear
constraints obtained by the verifier, but to avoid visual clutter, we do not show the two interval
constraints (however, we do list them in the text).

Fast Fourier Transform The first operation in the audio processing stage is the Fast Fourier
Transform (FFT) of the pre-emphasized input signal. It is a two-step process shown in dashed
boxes in Fig. 2. The preemphasis is in fact an affine transform so we perform it jointly with
the affine transform in the FFT. As the composition of two affine transforms is again affine, this

13



Under review as a conference paper at ICLR 2020

amounts to a single affine transform on the input. In our example, the composed affine transform is
y
(t)
1 = s

(t)
1 − s

(t)
2 and y(t)2 = 2s

(t)
2 . Affine transforms can be captured exactly and here we obtain e.g.,

s
(t)
1 − s

(t)
2 ≤ y

(t)
1 ≤ s

(t)
1 − s

(t)
2 . We also obtain the interval bounds y(t)1 ∈ [1, 3] and y(t)2 ∈ [−4,−2].

The next step in the computation of FFT is elementwise square of y(t). We denote this operation as
θ
(t)
1 = (y

(t)
1 )2 and θ(t)2 = (y

(t)
2 )2. The square operation is non-linear and cannot be captured exactly

which means that we need to decide how to lose precision. Here, we apply our new square abstract
transformer (formally defined in Section 4) which provides an optimal linear lower and upper bounds
of the square function in terms of area. After applying this transformer, we obtain the bounds:

4y
(t)
1 − 4 ≤ θ(t)1 ≤ 4y

(t)
1 − 3 − 6y

(t)
2 − 9 ≤ θ(t)2 ≤ −6y

(t)
2 − 8

The interval bounds are calculated by:

θ
(t)
1 ≥ 4y

(t)
1 − 4 = 4(s

(t)
1 − s

(t)
2 )− 4 ≥ 4(0− (−1))− 4 = 0

θ
(t)
1 ≤ 4y

(t)
1 − 3 = 4(s

(t)
1 − s

(t)
2 )− 3 ≤ 4(1− (−2))− 3 = 9

θ
(t)
2 ≥ −6y

(t)
2 − 9 = −6(2s

(t)
2 )− 9 ≥ −6(2 · (−1))− 9 = 3

θ
(t)
2 ≤ −6y

(t)
2 − 8 = −6(2s

(t)
2 )− 8 ≤ −6(2 · (−2))− 8 = 16

Hence, θ(t)1 ∈ [0, 9] and θ(t)2 ∈ [3, 16]. Note those bounds are not exact but sound; even y(t)1 ∈ [1, 3]

and y(t)2 ∈ [−4,−2], DAC calculates the concrete lower and upper bound with the expression to be
consistent with other transformers, so the bounds might not be exact as [1, 9] and [4, 16]. In practice,
FFT is followed by another affine transform which adds together the real and complex component of
each element, but we omit this for clarity as it is captured as before, without loss of precision.

Filterbanks Transform Our analysis continues with the computation of filter banks of the input,
shown in solid boxes in Fig. 2. The first step is an affine transform and in our example we use: ψ̃(t)

1 =

2θ
(t)
1 + θ

(t)
2 and ψ̃(t)

2 = θ
(t)
1 + 3θ

(t)
2 . Our abstraction is again exact here and additionally computes

interval bounds ψ̃(t)
1 ∈ [3, 34] and ψ̃(t)

2 ∈ [9, 57]. The final step in this transform is the elementwise
logarithm of the input. We denote the operation as ψ(t)

1 = log(ψ̃
(t)
1 ) and ψ(t)

2 = log(ψ̃
(t)
2 ). As this is

again a non-linear operation, we apply our new log transformer so to obtain:

0.0783ψ̃
(t)
1 + 0.8637 ≤ ψ(t)

1 ≤ 0.0541ψ̃
(t)
1 + 1.9178

0.0384ψ̃
(t)
2 + 1.8511 ≤ ψ(t)

2 ≤ 0.0303ψ̃
(t)
2 + 2.4965

The interval bounds are calculated by:

ψ
(t)
1 ≥ 0.0783ψ̃

(t)
1 + 0.8637 = 0.0783(2θ

(t)
1 + θ

(t)
2 ) + 0.8637

≥ 0.0783(2(4y
(t)
1 − 4) + (−6y

(t)
2 − 9)) + 0.8637

= 0.0783(2(4(s
(t)
1 − s

(t)
2 )− 4) + (−6(2s

(t)
2 )− 9) + 0.8637

= 0.6264s
(t)
1 − 1.566s

(t)
2 − 0.4674 ≥ 1.0986

ψ
(t)
1 ≤ 0.0541ψ̃

(t)
1 + 1.9178 = 0.0541(2θ

(t)
1 + θ

(t)
2 ) + 1.9178

≤ 0.0541(2(4y
(t)
1 − 3) + (−6y

(t)
2 − 8)) + 1.9178

= 0.0541(2(4(s
(t)
1 − s

(t)
2 )− 3) + (−6(2s

(t)
2 )− 8)) + 1.9178

= 0.4328s
(t)
1 − 1.082s

(t)
2 + 1.1604 ≤ 3.7572
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ψ
(t)
2 ≥ 0.0384ψ̃

(t)
2 + 1.8511 = 0.0384(θ

(t)
1 + 3θ

(t)
2 ) + 1.8511

≥ 0.0384((4y
(t)
1 − 4) + 3(−6y

(t)
2 − 9)) + 1.8511

= 0.0384((4(s
(t)
1 − s

(t)
2 )− 4) + 3(−6(2s

(t)
2 )− 9)) + 1.8511

= 0.1536s
(t)
1 − 1.536s

(t)
2 + 0.6607 ≥ 2.1967

ψ
(t)
2 ≤ 0.0303ψ̃

(t)
2 + 2.4965 = 0.0303(θ

(t)
1 + 3θ

(t)
2 ) + 2.4965

≤ 0.0303((4y
(t)
1 − 3) + 3(−6y

(t)
2 − 8)) + 2.4965

= 0.0303((4(s
(t)
1 − s

(t)
2 )− 3) + 3(−6(2s

(t)
2 )− 8)) + 2.4965

= 0.1212s
(t)
1 − 1.212s

(t)
2 + 1.6784 ≤ 4.2236

In other words, ψ(t)
1 ∈ [1.0986, 3.7572] and ψ(t)

2 ∈ [2.1967, 4.2236]. Again, these bounds are sound
since [log 3, log 34] ⊂ [1.0986, 3.7572], [log 9, log 57] ⊂ [2.1967, 4.2236].

Discrete Cosine Transform and ReLU After the Filterbanks Transform, the input is passed
through the Discrete Cosine Transform (DCT) followed by a Lifting operation. The analysis result
of these steps is then provided as an input to a fully connected (FC) layer followed by a ReLU
activation. To ease presentation, in our example we combine DCT, Lifting and FC layer in a single
affine transform: x̃(t)1 = ψ

(t)
1 − ψ

(t)
2 + 4 and x̃(t)2 = 4ψ

(t)
1 − ψ

(t)
2 . We show this transform in a

dotted box in Fig. 2. This is again captured exactly in our abstraction along with interval bounds
x̃
(t)
1 ∈ [0.875, 5.5605], x̃(t)2 ∈ [0.1708, 12.8321]. The affine transform is followed by a ReLU

activation x(t)1 = max(0, x̃
(t)
1 ), x(t)2 = max(0, x̃

(t)
2 ). In general, we use the ReLU transformer

defined in Singh et al. (2019a), which for this example produces: x(t)1 = x̃
(t)
1 and x(t)2 = x̃

(t)
2 .

LSTM analysis After the verifier completes the audio processing stage, its output is passed as
input to the LSTM cell. This cell also receives a hidden state and a cell state from the previ-
ous timestep (shown as a blue box in Fig. 2). In our example, we assume these are given as:
h
(t−1)
1 , h

(t−1)
2 , c

(t−1)
1 , c

(t−1)
2 ∈ [0.9, 1]. We note that these elements usually have different interval

bounds, but for simplicity in our example we use the same intervals. We focus on the first neuron in
the LSTM and compute pre-activations in our example for the forget gate f (t)1 = x

(t)
1 /4, input gate

i
(t)
1 = 2h

(t−1)
2 , output gate o(t)1 = h

(t−1)
1 and cell state c̃(t) = h

(t−1)
1 − x(t)2 /4.

In order to update the cell state, we need to compute: c(t)1 = σ(f
(t)
1 ) · c(t−1)1 + σ(i

(t)
1 ) · tanh(c̃

(t)
1 ).

The left and right summands are computed using our new binary abstract transformers for σ(x) · y
and σ(x) · tanh(y) expressions, respectively. Applying our abstract transformers on the summands
produces the following bounds:

0.1891f
(t)
1 + 0.4576 ≤ σ(f

(t)
1 ) · c(t−1)1 ≤ 0.1596f

(t)
1 + 0.5787

0.0341c̃
(t)
1 − 0.7847 ≤ σ(i

(t)
1 ) · tanh(c̃

(t)
1 ) ≤ 0.3945c̃

(t)
1 + 0.2769

Summing up the above inequalities grants the upper and lower bounds of c(t)1 in terms of x(t), h(t−1),
and c(t−1):

c
(t)
1 ≥ 0.1891f

(t)
1 + 0.0341c̃

(t)
1 − 0.3271

= 0.1891(x
(t)
1 /4) + 0.0341(h

(t−1)
1 − x(t)2 /4)− 0.3271

≥ −0.3644

c
(t)
1 ≤ 0.1596f

(t)
1 + 0.3945c̃

(t)
1 + 0.8556

= 0.1596(x
(t)
1 /4) + 0.3945(h

(t−1)
1 − x(t)2 /4) + 0.8556

≤ 1.4551

and get c(t)1 ∈ [−0.3644, 1.4551]. We omit the back-substitution steps since we do not lose precision
over the affine transformations from x(t), and note that this calculation is based on the assumption
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that the bounds of h(t) and c(t−1) are given constant. In practice, we recursively apply the process
for those vectors to express the bounds in terms of x(t),x(t−1), · · · .

The next hidden state is computed as h(t)1 = σ(o
(t)
1 ) · tanh(c

(t)
1 ). We apply our abstract transformer

for the σ(x) · tanh(y) expression, we obtain:

h
(t)
1 ≥ 0.4906c

(t)
1 − 0.0764

≥ 0.4906(0.1891f
(t)
1 + 0.0341c̃

(t)
1 − 0.3271)− 0.0764

≥ −0.2551

h
(t)
1 ≤ 0.1433c

(t)
1 + 0.4471

≤ 0.1433(0.1596f
(t)
1 + 0.3945c̃

(t)
1 + 0.8556) + 0.4471

≤ 0.6556

i.e., h(t)1 ∈ [−0.2551, 0.6556]. An analogous computation is performed for h(t)2 . In this example we
will assume h(t)2 = 0 concretely.

Robustness certification using DeepPoly The hidden states in the LSTM at the final timestep are
passed through a fully connected layer without activation. In our example we assume that logits after
the layer are obtained with the following formula: l1 = h

(t)
1 + 0.24 and l2 = h

(t)
2 . These are shown

in the final box of Fig. 2. To certify that the neural network classifies the input to class 1, we need to
prove that l1 − l2 > 0. We now apply the same back-substitution technique as Singh et al. (2019a):

l1 − l2 = h
(t)
1 − h

(t)
2 + 0.24

≥ 0.4906(0.1891f
(t)
1 + 0.0341c̃

(t)
1 − 0.3271)− 0.0764 + 0.24

= 0.0927f
(f)
1 + 0.0167c̃

(t)
1 + 0.0031

= 0.0927(x
(t)
1 /4) + 0.0167(h

(t−1)
1 − x(t)2 /4) + 0.0031

(applying concrete bound to h
(t−1)
1 for demonstration) ≥ 0.0231x

(t)
1 − 0.0042x

(t)
2 + 0.0181

= 0.0231(ψ
(t)
1 − ψ

(t)
2 + 4)− 0.0042(4ψ

(t)
1 − ψ

(t)
2 ) + 0.0181

= 0.0063ψ
(t)
1 − 0.0189ψ

(t)
2 + 0.1105

halt the computation and plug in the bounds ≥ 0.0063 · 1.0986− 0.0189 · 4.2236 + 0.1105

≥ 0.0375

For the purpose of demonstration, we stop here and plug in previously obtained interval bounds for
ψ(t). As this value is greater than 0, robustness is established.

D MATHEMATICAL DERIVATION OF LSTM TRANSFORMER

LSTM cell receives not only the resulting neurons from the pre-processing stage but a hidden state
and a cell state from the previous timestep. To incorporate with all those incoming values, we extend
the scope of the LSTM equations defined in Section 2. Let d be the dimension of the input and h be
the dimension of states of the cell. To standardize the operations performed within the LSTM cell,
we append 0d×d = [0]d×d and 0d = [0]d below to each kernel and bias respectively to express the
formula as

f
(t)
0 = [x(t),h(t−1), c(t−1)]W ′

f + b′f

i
(t)
0 = [x(t),h(t−1), c(t−1)]W ′

i + b′i

o
(t)
0 = [x(t),h(t−1), c(t−1)]W ′

o + b′o

c̃
(t)
0 = [x(t),h(t−1), c(t−1)]W ′

c̃ + b′c̃
(1)
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Figure 6: σ(x) · tanh(y) boundings on [−30.7, 107] × [−9.87,−0.02]. Orange plane is obtained
from POPQORN and blue plane is from DAC.

Then the cell state and hidden state computations can be rewritten as

c(t) = σ(f
(t)
0 )� c(t−1) + σ(i

(t)
0 )� tanh(c̃

(t)
0 )

= σ([x(t),h(t−1), c(t−1)]W ′
f + b′f )� ([x(t),h(t−1), c(t−1)][0h×(d+h), Ih]T )

+ σ([x(t),h(t−1), c(t−1)]W ′
i + b′i)� tanh([x(t),h(t−1), c(t−1)]W ′

c̃ + b′c̃) (2)

h(t) = σ(o
(t)
0 )� tanh(c(t))

= σ([x(t),h(t−1), c(t−1)]W ′
o + b′o)� tanh(c(t)) (3)

As is described in detail in Section 5, f(x, y) = σ(x) · tanh(y) and g(x, y) = σ(x) · y can be
bounded with two planes regarding the operands’ lower and upper bounds. In other words, for any
given two real values, x, y ∈ R, x ∈ [lx, ux], y ∈ [ly, uy], our finding guarantees the planar bounds
of f and g with the coefficients built by linear combination of lx, ux, ly, uy . For a single neuron c(t)j

in c(t), the upper bound can be expressed from Eq. (2):

c
(t)
j = σ([x(t),h(t−1), c(t−1)][W ′

f ]:,j + [b′f ]j) · ([x(t),h(t−1), c(t−1)][0d+h, [Ih]j,:]
T )

+ σ([x(t),h(t−1), c(t−1)][W ′
i ]:,j + [b′i]j) · tanh([x(t),h(t−1), c(t−1)][W ′

c̃]:,j + [b′c̃]j)

≤ Au([x(t),h(t−1), c(t−1)][W ′
f ]:,j + [b′f ]j) +Bu([x(t),h(t−1), c(t−1)][0d+h, [Ih]j,:]

T ) + Cu

+Du([x(t),h(t−1), c(t−1)][W ′
i ]:,j + [b′i]j) + Eu([x(t),h(t−1), c(t−1)][W ′

c̃]:,j + [b′c̃]j) + Fu

= x(t)wx + h(t−1)wh + c(t−1)wc + b (4)

where Au, · · · , Fu are calculated real values by Section 5, and w· and b are the simplified linear
coefficients of each vector and bias term, respectively. We also can get the upper bound of h(t)j by
plugging Eq. (4) in Eq. (3), and similarly for the lower bounds of those states.

Note these linear bounds makes possible to recursively apply this step to get desired bounds, and can
be branched in any depth for the trade-off between the precision and the complexity.

E COMPARISON BETWEEN DAC AND POPQORN

In this subsection we provide in-depth comparison between our approach and POPQORN (Ko et al.,
2019) which provides another way to bound σ(x) · tanh(y) and σ(x) · y non-linearities. Before the
experiments, we discuss comparability between three methods to bound the non-linearities: interval,
DAC and POPQORN. Then, we perform three different experiments. First, we compare volume of
bounds produced by both POPQORN and DAC on a set of synthetic test cases. As these test cases
do not reflect the actual test cases which occur during the verification of audio benchmarks, in the
second set of experiments we compare the methods on a set of test cases from one of our benchmarks.
Finally, in the third experiment we plug in POPQORN bounds into our framework and show its
certification performance on the audio benchmarks.
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Figure 7: Volume comparison with interval bounds with synthesized data. Excluded outliers.
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Figure 8: Volume comparison with interval bounds with data from the working pipeline. Excluded
outliers.

Comparability of different bounding methods We say that methods A and B are pairwise non-
comparable if there exists an input for which method A produces tighter bound than method B, and
vice versa. Given this definition, POPQORN is non-comparable with our method. To demonstrate
this, in Fig. 6 we show a case where this behavior is manifested. Here, for y ≤ −1 POPQORN
(shown as orange plane) produces tighter bound than DAC (shown as blue plane). However, for the
other entire range of inputs where −10 ≤ y ≤ −2, POPQORN bounds are substantially worse than
our bounds. Further, those bounds are even worse than interval bounds and the overapproximation
error is not bounded. Contrary to POPQORN, our bounds are always strictly better than interval
bounds (this is proven in Theorem 1) and distance between the function and our planes is bounded.

Comparison on synthetic test cases In this experiment, we compare bounds produced by
POPQORN and DAC on a set of synthetic test cases, unrelated to the certification of audio classifiers.
Both methods take lx, ux and ly, uy as bounds for the input to the sigmoid and tanh, respectively.
We sample those inputs uniformly from [−2, 2] × [−2, 2] and compared the volume between the
curve σ(x) · tanh(y) and bounding planes produced by both DAC and POPQORN. The volume
was computed using 1000 Monde Carlo samples in the set [lx, ux] × [ly, uy]. Since there are two
σ(x) · tanh(y) and one σ(x) · y calculation appearing in a single LSTM cell, we run the experiment
with such portion of data. In other words, in 67% of experiments we bound σ(x) · tanh(y), and
in 33% we bound σ(x) · y. We sampled 100 such inputs and compared the volumes obtained by
POPQORN and DAC with the volume obtained using interval.

The distribution of volumes is shown in Fig. 7. Here, 1 stands for the same volume as interval
bounds and values less than 1 indicate performance better than intervals. We conclude that, for this
experiment, POPQORN bounds produces smaller volume than our method - 0.2 compared to 0.37. In
terms of runtime, POPQORN takes 14.37 seconds on average while the bound calculation of DAC
finishes in few milliseconds.

Direct comparison on test cases from audio benchmarks The previous experiment may not
reflect the actual performance on audio benchmarks that we consider in this work. We uniformly
sampled the arguments lx, ux, ly, uy that our transformer for σ(x) · tanh(y) and σ(x) · y was invoked
with. We distinguish between test cases corresponding to different perturbation ranges and then
further split it into certified and uncertified samples. For each of the cases, Fig. 8 shows the box plot
of the distributions of volumes produced by both POPQORN and DAC.
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(a) undefended FSDD, 98%
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(b) defended FSDD, 95%

Figure 9: Robustness evaluation on FSDD with error bars.

We found that, while overall POPQORN bounds work well in practice, they frequently produce bounds
less precise than interval bounds. The reason of this malfunctioning comes from the limitation of
gradient descent approach employed by POPQORN. The gradient of the function, which POPQORN
uses to search for the optimal bounds, is large when the inputs are distributed near 0. However, if
the inputs are far from the origin or are too close to each other, the function curve becomes almost
flat, gradients are close to zero and gradient descent has problems converging. Also, in other cases,
gradient descent is not guaranteed to find the bounds with minimum volume. Fig. 6 shows one of the
examples where POPQORN fails to find lower planar bound which produces minimum volume. On
the contrary, the resulting value of σ(x) · tanh(y) is within [−1, 1] regardless of the magnitude of
arguments which means that the error produced by intervals is bounded. As our planar bounds are
strictly better than intervals, regardless of input conditions, our error is also bounded.

Plugging in POPQORN bounds into DAC We also experimented with using POPQORN bounds
instead of our bounds in the pipeline and compared the final adversarial regions with those resulting
from DAC. As POPQORN is relatively slow (108 minutes per sample), we performed this experiment
only on the first 10 inputs with −80dB perturbation. Using their bounds results in 0 verified samples,
while DAC verifies 4 samples. We believe the reason here is the existence of many pathological cases
as described in the previous point where gradient descent used by POPQORN converges to suboptimal
solution which ends up being worse than interval bounds. These errors are further propagated through
each frame and resulting output can not be certified.

F SENSITIVITY OF PROVABILITY METRIC

In our experiments, we followed the convention of provability measurement from Singh et al. (2019b).
Here, we also provide the result with error bars from 10 independent repetitions with randomly
permuted test set. For each repetition, we randomly permute the test set with the different seed and
collect the first 100 samples with the correct prediction under zero perturbation from the ordered set.
We then count the number of certified inputs from those samples to represent the provability under
the given constant ε. Fig. 9 shows that provabilities do not differ much from the reported results for
multiple experiments.

G TRAINING WITH PROVABLE DEFENSE WITH IBP

Here we give more details on our training procedure for provably defended network which follows
Mirman et al. (2018); Gowal et al. (2018). Let zLB(ε) and zUB(ε) be the resulting lower and upper
bounds for the final logit z ∈ Rd under the perturbation size ε, with the true label j ∈ {0, · · · , d− 1}.
We define the worst-case logits ẑ(ε) as

ẑi(ε) =

{
zLB
i (ε) i = j

zUB
i (ε) i 6= j

which corresponds to the worst concrete logits under the given input with the predefined perturbation
amount. Recall that we say the input is certified when this worst-case logits satisfy j = arg maxi ẑi.

19



Under review as a conference paper at ICLR 2020

−120 −110 −100 −90 −80 −70 −60 −50
0

20

40

60

80

100

dB noise (log scale)

Verified robustness(%)

DAC
INTERVAL

Figure 10: defended GSC, 82%.

params FSDD GSC
Frame size N 256 512
Frame step s 200 400
Number of filters p 10 10
Hidden neurons h 40 40

Learning rate 0.001 0.001
Batch size 5 50

Table 3: Model parameters used in the experiments.

Training loss L is a linear combination of the standard cross-entropy loss l(z, e(j)) and the worst-case
cross-entropy loss l(ẑ, e(j)) where e(j) is target one-hot vector, i.e.,

L(t′) = κ(t′)l(z, e(j)) + (1− κ(t′))l(ẑ(ε(t′)), e(j))

Note that we set up the κ and ε as the function of t′. As in Gowal et al. (2018), gradual in-
crease/decrease of these parameters during the training was essential to get desired performance. We
set these functions with respect to the number of training epochs E as

κ(t) =

{
1− t/E t < E/2

1/2 otherwise

ε(t) = −70− (200− 70)1−t/E .

Also, to track the training speed, we increase one by one t′ only if we are achieving 85% of standard
accuracy and 80% provability at the current setting. The models were built under the E = 60.

We also attach the missing result of defended GSC with 82% concrete accuracy in Fig. 10.

H MODEL PARAMETERS USED IN THE EXPERIMENTS

We perform the experiments with the same architecture with different model parameters for FSDD
and GSC. Table 3 shows the parameters of the models we use. Both defended and undefended
networks share the same parameters for each dataset.
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