
Under review as a conference paper at ICLR 2020

HUBERT UNTANGLES BERT
TO IMPROVE TRANSFER ACROSS NLP TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce HUBERT1 which combines the structured-representational power
of Tensor-Product Representations (TPRs) and BERT, a pre-trained bidirectional
Transformer language model. We show that there is shared structure between
different NLP datasets that HUBERT, but not BERT, is able to learn and leverage.
We validate the effectiveness of our model on the GLUE benchmark and HANS
dataset. Our experiment results show that untangling data-specific semantics from
general language structure is key for better transfer among NLP tasks.2

1 INTRODUCTION

Built on the Transformer architecture (Vaswani et al., 2017), the BERT model (Devlin et al., 2018)
has demonstrated great power for providing general-purpose vector embeddings of natural language:
its representations have served as the basis of many successful deep Natural Language Processing
(NLP) models on a variety of tasks (e.g., Liu et al., 2019a;b; Zhang et al., 2019). Recent studies
(Coenen et al., 2019; Hewitt & Manning, 2019; Lin et al., 2019; Tenney et al., 2019) have shown
that BERT representations carry considerable information about grammatical structure, which, by
design, is a deep and general encapsulation of linguistic information. Symbolic computation over
structured symbolic representations such as parse trees has long been used to formalize linguistic
knowledge. To strengthen the generality of BERT’s representations, we propose to import into its
architecture this type of computation.

Symbolic linguistic representations support the important distinction between content and form in-
formation. The form consists of a structure devoid of content, such as an unlabeled tree, a collection
of nodes defined by their structural positions or roles (Newell, 1980), such as root, left-child-of-root,
right-child-of-left-child-of root, etc. In a particular linguistic expression such as “Kim referred to
herself during the speech”, these purely-structural roles are filled with particular content-bearing
symbols, including terminal words like Kim and non-terminal categories like NounPhrase. These
role fillers have their own identities, which are preserved as they move from role to role across
expressions: Kim retains its referent and its semantic properties whether it fills the subject or the
object role in a sentence. Structural roles too maintain their distinguishing properties as their fillers
change: the root role dominates the left-child-of-root role regardless of how these roles are filled.

Thus it is natural to ask whether BERT’s representations can be usefully factored into content ×
form, i.e., filler× role, dimensions. To answer this question, we recast it as: can BERT’s representa-
tions be usefully unpacked into Tensor-Product Representations (TPRs)? A TPR is a collection of
constituents, each of which is the binding of a filler to a structural role. Specifically, we let BERT’s
final-layer vector-encoding of each token of an input string be factored explicitly into a filler bound
to a role: both the filler and the role are embedded in a continuous vector space, and they are bound
together according to the principles defining TPRs: with the tensor product. This factorization ef-
fectively untangles the fillers from their roles, these two dimensions having been fully entangled
in the BERT encoding itself. We then see whether disentangling BERT representations into TPRs
facilitates their general use in a range of NLP tasks.

Concretely, as illustrated in Figure 1, we create HUBERT by adding a TPR layer on top of BERT;
this layer takes the final-layer BERT embedding of each input token and transforms it into the tensor

1HUBERT is a recursive acronym for HUBERT Untangles BERT.
2Our code and models will be made available after publication.

1

Under review as a conference paper at ICLR 2020

product of a filler embedding-vector and a role embedding-vector. The model learns to separate
fillers from roles in an unsupervised fashion, trained end-to-end to perform an NLP task.

If the BERT representations truly are general-purpose for NLP, the TPR re-coding should reflect
this generality. In particular, the formal, grammatical knowledge we expect to be carried by the
roles should be generally useful across a wide range of downstream tasks. We thus examine transfer
learning, asking whether the roles learned in the service of one NLP task can facilitate learning when
carried over to another task.

In brief, overall we find in our experiments on the NLP benchmarks of GLUE (Wang et al., 2018)
and HANS (McCoy et al., 2019) that HUBERT’s recasting of BERT encodings as TPRs does indeed
lead to effective knowledge transfer across NLP tasks, while the bare BERT encodings do not.
Specifically, after pre-training on the MNLI dataset in GLUE, we observe positive gains ranging
from 0.60% to 12.28% when subsequently fine-tuning on QNLI, QQP, RTE, SST, and SNLI tasks.
This is due to transferring TPR knowledge—in particular the learned roles—relative to transferring
just BERT parameters which have gains ranging from minus 0.33% to positive 2.53%.

Additionally, on average, we gain 5.7% improvement on the demanding non-entailment class of the
HANS challenge dataset. Thus TPR’s disentangling of fillers from roles, motivated by the nature
of symbolic representations, does yield more general deep linguistic representations as measured by
cross-task transfer.

The paper is structured as follows. First we discuss the prior work on TPRs in deep learning and its
previous applications in Section 2. We then introduce the model design in Section 3 and present our
experimental results in Section 4. We conclude in Section 5.

2 RELATED WORK

Building on the successes of symbolic AI and linguistics since the mid-1950s, there has been a
long line of work exploiting symbolic and discrete structures in neural networks since the 1990s.
Along with Holographic Reduced Representations (Plate, 1995) and Vector-Symbolic Architectures
(Levy & Gayler, 2008), Tensor Product Representations (TPRs) provide the capacity to represent
the discrete linguistic structure in a continuous, distributed manner, where grammatical form and
semantic content can be disentangled (Smolensky, 1990; Smolensky & Legendre, 2006). In Lee
et al. (2016), TPR-like representations were used to solve the bAbI tasks (Weston et al., 2016),
achieving close to 100% accuracy in all but one of these tasks. Schlag & Schmidhuber (2018)
also achieved success on the bAbI tasks, using third-order TPRs to encode and process knowledge-
graph triples. In Palangi et al. (2018), a new structured recurrent unit (TPRN) was proposed to
learn grammatically-interpretable representations using weak supervision from (context, question,
answer) triplets in the SQuAD dataset (Rajpurkar et al., 2016). In Huang et al. (2018), unbinding
operations of TPRs were used to perform image captioning. None of this previous work, however,
examined the generality of learned linguistic knowledge through transfer learning.

Transfer learning for transformer-based models has been studied recently: Keskar et al. (2019) and
Wang et al. (2019) report improvements in accuracy over BERT after training on an intermediate task
from GLUE; an approach which has come to be known as Supplementary Training on Intermediate
Labeled data Tasks (STILTs). However, as shown in more recent work (Phang et al., 2018), the
results do not follow a consistent pattern when using different corpora for fine-tuning BERT, and
degraded downstream transfer is often observed. Even for data-rich tasks like QNLI, regardless of
the intermediate task and multi-tasking strategy, the baseline results do not improve. This calls for
new model architectures with better knowledge transfer capability.

3 MODEL DESCRIPTION

Applying the TPR scheme to encode the individual words (or sub-word tokens) fed to BERT, a
word is represented as the tensor product of a vector embedding its content—its filler (or symbol)3

aspect—and a vector embedding the structural role it plays in the sentence. Given the results of

3We use filler or symbol to indicate the content symbolic representation throughout the paper.

2

Under review as a conference paper at ICLR 2020

Palangi et al. (2018), we expect the symbol to capture the semantic contribution of the word while
the structural role captures its grammatical role:

x(t) = s(t) ⊗ r(t) (1)

Assuming we have nS symbols with dimension dS and nR roles with dimension dR, x(t) ∈ RdS×dR

is the tensor representation for token t, s(t) ∈ RdS is the (presumably semantic) symbol repre-
sentation and r(t) ∈ RdR is the (presumably grammatical) role representation for token t. s(t)

may be either the embedding of one symbol or a linear combination of different symbols using a
softmax symbol selector, and similarly for r(t). In other words, Eq. 1 can also be represented as
x(t) = SB(t)R> where S ∈ RdS×nS and R ∈ RdR×nR are matrices the columns of which contain
the global symbol and role embeddings, common for all tokens, and either learned from scratch or
initialized by transferring from other tasks, as explained in Section 4. B(t) ∈ RnS×nR is the bind-
ing matrix which selects specific roles and symbols (embeddings) from R and S and binds them
together. We assume that for a single-word representation, the binding matrix B(t) is rank 1, so we
can decompose it into two separate vectors, one soft-selecting a symbol and the other a role, and
rewrite equation (1) as x(t) = S(a

(t)
S a

(t)>
R)R> where a(t)

R ∈ RnR and a
(t)
S ∈ RnS can respectively

be interpreted as attention weights over different roles (columns of R) and symbols (columns of S).
For each input token x(t), we get its contextual representations of grammatical role (a(t)

R) and se-
mantic symbol (a(t)

S) by fusing the contextual information from the role and symbol representations
of its surrounding tokens.

We explore two options for mapping the input token from the current time-step, and the tensor
representation from the previous time-step, to a

(t)
R and a

(t)
S : a Long Short-Term Memory (LSTM)

architecture (Hochreiter & Schmidhuber, 1997) and a one-layer Transformer. All the models share
the general architecture depicted in Figure 1 except for BERT and BERT-LSTM, where the TPR
layer is absent. Our conclusion based on initial experiments was that the Transformer layer results
in better integration and homogeneous combination with the other Transformer layers in BERT, as
will be described shortly.

TPR layer

BERT model

Linear classifier

…..

…..

…..

Aggregation layer

!(#)

%(#)

&(#)

'

%(() %())

!(() !())

&(() &())

*+(,|')

Figure 1: General architecture for all models: HUBERT models have a TPR layer; BERT and BERT-
LSTM don’t. BERT and TPR layers can be shared between tasks but the classifier is task-specific.

The TPR layer with LSTM architecture works as follows (see also Figure 2, discussed in Sec. 4.2).
We calculate the hidden states (h(t)

S , h(t)
R) and cell states (c(t)S ,c(t)R) and for each time-step according

to the following equations:

h
(t)
S , c

(t)
S = LSTMS(vt, (vec(x

(t)), c
(t−1)
S)); h

(t)
R , c

(t)
R = LSTMR(vt, (vec(x

(t)), c
(t−1)
R)) (2)

where vt is the final-layer BERT embedding of the t-th word, and vec(.) flattens the input tensor
into a vector. Each LSTM’s input cell state is the previous LSTM’s cell output state. Each LSTM’s
input hidden state, however, is calculated by binding the previous cell’s role and symbol vectors.

3

Under review as a conference paper at ICLR 2020

In the TPR layer with Transformer architecture, we calculate the output representations (h(t)
S , h(t)

R)
using a Transformer Encoder layer:

h
(t)
S = TransformerS(vt); h

(t)
R = TransformerR(vt) (3)

Each Transformer layer consists of a multi-head attention layer, followed by a residual block (with
dropout), a layer normalization block, a feed-forward layer, another residual block (with dropout),
and a final layer normalization block. (See Figure 3, discussed in Sec. 4.2, and the original Trans-
former paper, Vaswani et al. (2017), for more details.)

Given that each word is usually assigned to a few grammatical roles and semantic concepts (ideally
one), an inductive bias is enforced using a softmax temperature (T) to make a

(t)
R and a

(t)
S sparse.

Note that in the limit of very low temperatures, we will end up with one-hot vectors which pick only
one filler and one role.4

a
(t)
S = softmax(WSh

(t)
S /T); a

(t)
R = softmax(WRh

(t)
R /T) (4)

Here WS and WR are linear-layer weights. For the final output of the transformer model, we
explored different aggregation strategies to construct the final sentence embedding:

P (c|f) = softmax(WfAgg(x(0),x(1), ...,x(N))) (5)

where P (c|f) is a probability distribution over class labels, f is the final sentence representation,
Wf is the classifier weight matrix, and N is the maximum sequence length. Agg(.) defines the
merging strategy. We experimented with different aggregation strategies: max-pooling, mean-
pooling, masking all but the input-initial [CLS] token, and concatenating all tokens and projecting
down using a linear layer. In Devlin et al. (2018), the final representation for the [CLS] token is used
as the sentence representation. However, during our experiments, we observed better results when
concatenating the final embeddings for all tokens and then projecting down to a smaller dimension,
as this exposes the classifier to the full span of token information.

The formal symmetry between symbols and roles evident in Eq. 1 is broken in two ways.

First, we choose hyper-parameters so that the number of symbols is greater than the number of
roles. Thus each role is on average used more often than each symbol, encouraging more general
information (such as structural position) to be encoded in the roles, and more specific information
(such as word semantics) to be encoded in the symbols. (This effect was evident in the analogous
TPR learning model of Palangi et al. (2018).)

Second, to enable the symbol that fills any given role to be exactly recoverable from a TPR in which
it appears along with other symbols, the role vectors should be linearly independent: this expresses
the intuition that distinct structural roles carry independent information. Fillers, however, are not
expected to be independent in this sense, since many fillers may have similar meanings and be
quasi-interchangeable. So for the role matrix R, but not the filler matrix S, we add a regularization
term to the training loss which encourages the R matrix to be orthogonal:

L = −
∑
c

1[c = c∗] logP (c|f) + λ(||RR> − IdR
||2F + ||R>R− InR

||2F) (6)

HereL indicates the loss function, Ik is the identity matrix with k rows and k columns, and 1[.] is the
indicator function: it is 1 when the predicted class c matches the correct class c∗ label, and 0 other-
wise. Following the practice in Bansal et al. (2018) we use double soft orthogonality regularization
to handle both over-complete and under-complete matrices R.

4Note that bias parameters are omitted for simplicity of presentation.

4

Under review as a conference paper at ICLR 2020

4 EXPERIMENTS

We performed extensive experiments to answer the following questions:

1. Does adding a TPR layer on top of BERT (as in the previous section) impact its perfor-
mance positively or negatively? We are specifically interested in MNLI for this experiment
because it is large-scale compared to other GLUE tasks and is more robust to model noise
(i.e., different randomly-initialized models tend to converge to the same final score on this
task). This task is also used as the source task during transfer learning. This experiment
is mainly a sanity check to verify that the specific TPR decomposition added does not hurt
source-task performance.

2. Does transferring the BERT model’s parameters, fine-tuned on one of the GLUE tasks,
help the other tasks in the Natural Language Understanding (NLU) benchmarks (Bowman
et al., 2015; Wang et al., 2018)? Based on our hypothesis of the advantage of disentangling
content from form, the learned symbols and roles should be transferable across natural
language tasks. Does transferring role (R) and/or symbol (S) embeddings (described in
the previous section) improve transfer learning on BERT across the GLUE tasks?

3. Is the ability to transfer the TPR layer limited to GLUE tasks? Can it be generalized? To
answer this question we evaluated our models on a challenging diagnostic dataset outside
of GLUE called HANS (McCoy et al., 2019).

4.1 DATASET

We conduct three major experiments to answer the above questions: a comparison of architectures
on the MNLI dataset, a study of transfer learning between GLUE tasks (Wang et al., 2018), and
finally model diagnosis using HANS (McCoy et al., 2019); these are discussed in Sections 4.2, 4.3,
and 4.4, respectively.

Section A.1 provides a more detailed analysis of the dataset. Table 4 (see Appendix) shows the
dataset statistics and details for GLUE, SNLI, and HANS.

4.2 ARCHITECTURE COMPARISON ON MNLI

Our experiments are done with four different model architectures. The general architecture of the
models is depicted in Figure 1. The TPR layer is absent in BERT and BERT-LSTM. In the figure,
the BERT model indicates the pre-trained off-the-shelf BERT base model which has 12 Transformer
encoder layers. The aggregation layer computes the final sentence representation (see Eq. 5). The
linear classifier is task-specific and is not shared between tasks during transfer learning.

BERT: This is our baseline model which consists of BERT, an aggregation layer on top, and a final
linear classifier.

BERT-LSTM: We augment the BERT model by adding a unidirectional LSTM Recurrent layer
(Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014) on top. The inputs to the LSTM are token
representations encoded by BERT. We then take the final hidden state of the LSTM and feed it into
a classifier to get the final predictions. Since this model has an additional layer augmented on top of
BERT, it can serve as a baseline for TPR models introduced below.

HUBERT (LSTM): We use two separate LSTM networks to compute symbol and role representa-
tion for each token. Figure 2 shows how the final token embedding (x(t)) is constructed at each time
step: this plays the role of the LSTM hidden state h(t). (In the figures, ‘©∗ ’ denotes matrix-vector
multiplication.) The results (Table 1) show that this decomposition improves the accuracy on MNLI
compared to both the BERT and BERT-LSTM models. Training recurrent models is usually diffi-
cult, due to exploding or vanishing gradients, and has been studied for many years (Le et al., 2015;
Vorontsov et al., 2017). With the introduction of the gating mechanism in LSTM and GRU cells,
this problem was alleviated. In our model, we have a tensor-product operation which binds role
and symbol vectors. We observed that during training the values comprising these vectors can reach
very small numbers (< 10−4), and after binding, the final embedding vectors have values roughly
in the order of 10−8. This makes it difficult for the classifier to distinguish between similar but
different sentences. Additionally, backpropagation is not effective since the gradients are too small.

5

Under review as a conference paper at ICLR 2020

We avoided this problem by linearly scaling all values by a large number (∼ 1K) and making that
scaling value trainable so that the model can adjust it for better performance.

LSTM cell

LSTM cell

!(#)

ℎ&(#)

ℎ'(#)

('(#)

)'

⨂

(&
(#)

LSTM cell

LSTM cell

!(#+,)

(-(#), (&(#))

(-(#), ('
(#))

-(#)

)&

./0123-

./0123-

(-(#4,), (&(#4,))

(-(#4,), ('(#4,)) 3'(#)

3&(#)

⊛

⊛

R

S

Figure 2: TPR layer architecture for HUBERT (LSTM). R and S are global Role and Symbol
embedding matrices which are learned and re-used at each time-step.

HUBERT (Transformer): In this model, instead of using a recurrent layer, we deploy the power of
Transformers (Vaswani et al., 2017) to encode roles and symbols (see Figure 3). This lets us attend
to all the tokens when calculating a

(k)
R and a

(k)
S and thus better capture long-distance dependencies.

It also speeds up training as all embeddings are computed in parallel for each sentence. Furthermore,
it naturally solves the vanishing and exploding gradients problem, by taking advantage of residual
blocks (He et al., 2015) to facilitate backpropagation and Layer Normalization (Lei Ba et al., 2016)
to prohibit value shifts. It also integrates well with the rest of the BERT model and presents a more
homogeneous architecture.5

We first do an architecture comparison study on the four models, each built on BERT (base model).
We fine-tune BERT on the MNLI task, which we will then use as our primary source training task
for testing transfer learning. We report the final accuracy on the MNLI development set.

Table 1 summarizes the results. Both HUBERT models are able to maintain the same performance
as our baseline (BERT). This confirms that adding TPR heads will not degrade the model’s accuracy
and can even improve it (in our case when evaluated on MNLI matched development set). Although
HUBERT (Transformer) and HUBERT (LSTM) have roughly the same accuracy, we choose HU-
BERT (Transformer) to perform our transfer learning experiments, since it eliminates the limitations
of HUBERT (LSTM) (as discussed above) and reduces the training and inference time significantly
(> 4X).

Model BERT BERT-LSTM HUBERT (LSTM) HUBERT (Transformer)
Accuracy (%) 84.15 84.17 84.26 84.30

Table 1: MNLI (matched) dev set accuracy for different models.

4.3 TRANSFER LEARNING

We compare the transfer-learning performance of HUBERT (Transformer) against BERT. We follow
the same training procedure for each model and compare the final development set accuracy on the
target corpus. The training procedure is as follows: For Baseline, we train three instances of each
model on the target corpus and then select the one with the highest accuracy on target dev set (We
vary the random seed and the order in which the training data is sampled for each instance.) These
results are reported for each model in the Baseline Acc. column in Table 2. For Fine-tuned, in a
separate experiment, we first fine-tune one instance of each model on the source corpus and use these

5The results reported here correspond to an implementation using an additional Transformer encoder layer on top of the TPR layer; we
scale the input values to this layer only. Future versions of the model will omit this layer.

6

Under review as a conference paper at ICLR 2020

Multi-Head Attention Multi-Head Attention

!(#), !(%), , !(')….

…. .…

() () ()

*+,-./0

Residual block + Layer norm

Feed Forward layer

Residual block + Layer norm

⨂ ⨂ ⨂

….

….

….0(#) 0(%) 0(')

….

(2 (2 (2

*+,-./0

Residual block + Layer norm

Feed Forward layer

Residual block + Layer norm

….

….
/)(#) /)(%) /)(')

ℎ)(#) ℎ)(%) ℎ)(')

/2
(#) /2(%) /2(')

ℎ2(#) ℎ2
(%) ℎ2

(')

⊛ ⊛ ⊛ ⊛ ⊛ ⊛

R S

Figure 3: TPR layer architecture for HUBERT (Transformer). R and S are global Role and Symbol
embeddings which are learned and shared for all token positions.

updated parameters to initialize a second instance of the same model. The initialized model will then
be trained and tested on the target corpus. In this setting, we have three subsets of parameters to
choose from when transferring values from the source model to the target model: BERT parameters,
the Role embeddings R, and the Filler embeddings F . Each of these subsets can independently
be transferred or not, leading to a total of 7 combinations excluding the option in which none of
them are transferred. We chose the model which has the highest absolute accuracy on the target dev
dataset. These results are reported for each model under Fine-tuned Acc. Note that the transferred
parameters are not frozen, but updated during training on the target corpus.

MNLI as source: Table 2 summarizes the results for these transfer learning experiments when the
source task is MNLI. Gain shows the difference between Fine-tuned model’s accuracy and Base-
line’s accuracy. For HUBERT (Transformer), we observe substantial gain across all 5 target corpora
after transfer. However, for BERT we have a drop for QNLI, QQP, and SST.

These observations confirm our hypothesis that recasting the BERT encodings as TPRs leads to
better generalization across down-stream NLP tasks.

Almost all tasks benefit from transferring roles except for QNLI. This may be due to the structure of
this dataset, as it is a modified version of a question-answering dataset (Rajpurkar et al., 2016) and
has been re-designed to be an NLI task. Transferring the filler embeddings helps with only QNLI
and RTE. Transferring BERT parameters in conjunction with fillers or roles surprisingly boosts
accuracy for QNLI and SST, where we had negative gains for the BERT model, suggesting that TPR
decomposition can also improve BERT’s parameter transfer.

QQP as source: The patterns here are quite different as the source task is now a paraphrase task
(instead of inference) and TPR needs to encode a new structure. Again transferring roles gives
positive results except for RTE. Filler vectors learned from QQP are more transferable compared to
MNLI and gives a boost to all tasks except for SNLI. Surprisingly, transferring BERT parameters is
hurting the results now even when TPR is present. However, for cases in which we also transferred
BERT parameters (not shown), the Gains were still higher than for BERT, confirming the results
obtained when MNLI was the source task.6

6Baseline results slightly differ from Table 2 due to using a different scaling value for this each source task.

7

Under review as a conference paper at ICLR 2020

Model Target
Corpus

Transfer
BERT

Transfer
Filler

Transfer
Role

Baseline
Acc. (%)

Fine-
tuned
Acc. (%)

Gain (%)

BERT QNLI True – – 91.60 91.27 – 0.33
BERT QQP True – – 91.45 91.12 – 0.33
BERT RTE True – – 71.12 73.65 + 2.53
BERT SNLI True – – 90.45 90.69 + 0.24
BERT SST True – – 93.23 92.78 – 0.45
HUBERT (Transformer) QNLI True True False 90.56 91.16 + 0.60
HUBERT (Transformer) QQP False False True 90.81 91.42 + 0.61
HUBERT (Transformer) RTE True True True 61.73 74.01 + 12.28
HUBERT (Transformer) SNLI True False True 90.66 91.36 + 0.70
HUBERT (Transformer) SST True False True 91.28 92.43 + 1.15

Table 2: Transfer learning results for GLUE tasks. The source corpus is MNLI. Baseline accuracy
is when Transfer BERT, Filler, and Role are all False, equivalent to no transfer. Fine-tuned accuracy
is the best accuracy among all possible transfer options.

We also verified that our TPR layer is not hurting the performance by comparing the test set results
for HUBERT (Transformer) and BERT. The results are obtained by submitting models to the GLUE
evaluation server. The results are presented in Table 6.

4.4 MODEL DIAGNOSIS

We also evaluated HUBERT (Transformer) on a probing dataset outside of GLUE called HANS
(McCoy et al., 2019) Results are presented in Table 3. HANS is a diagnosis dataset that probes
various syntactic heuristics which many of the state-of-the-art models turn out to exploit, and thus
they perform poorly on cases that don’t follow those heuristics. There are three heuristics measured
in HANS which are as follows: Lexical overlap where a premise entails any hypothesis built from a
subset of words in the premise, Subsequence where a premise entails any contiguous subsequences
of it, and Constituent where a premise entails all complete subtrees in its parse tree. Our results
indicate that TPR models are less prone to adopt these heuristics, resulting in versatile models with
better domain adaptation. Following McCoy et al. (2019), we combined the predictions of neutral
and contradictory into a non-entailment class, since HANS uses two classes instead of three. Note
that no subset of the HANS data is used for training.7

We observed that our HUBERT (Transformer) model trained on MNLI did not diminish BERT’s
near-perfect performance on correctly-entailed cases (which follow the heuristics). In fact, it in-
creased the accuracy of Lexical and Subsequence heuristics. On the problematic Non-Entailment
cases, however, BERT outperforms HUBERT (Transformer). Since HUBERT has more parameters
than BERT it can better fit the training data. Thus, we suspect that HUBERT attends more to the
heuristics that MNLI has in its design, and gets a lower score on sentences that don’t follow those
heuristics. But to examine the knowledge-transfer power of TPR, we additionally fine-tuned each
model on SNLI and tested again on HANS. (For HUBERT (Transformer), we only transfer roles
and fillers). On Non-entailment cases, for the HUBERT model, the Lexical accuracy improved dras-
tically: by 61.62% (6,162 examples). Performance on cases violating the Subsequence heuristic
improved by 1.44% (144 examples) and performance on those violating the Constituent heuristic
improved by 5.4% (540 examples). These improvements on Non-entailment case came at the cost
of small drops in Entailment accuracy. This pattern of transfer is in stark contrast with the BERT
results. Although the results on Entailment cases are improved, the accuracies for Subsequence and
Constituent Non-Entailment cases drop significantly, showing that BERT is failing to integrate new
knowledge gained from SNLI with previously learned information from MNLI. This shows that
here, HUBERT (Transformer) can leverage information from a new source of data efficiently. The
huge improvement on the Lexical Non-entailment cases speak to the power of TPRs to generate
role-specific word embeddings: the Lexical heuristic amounts essentially to performing inference

7We observed high variance in the results on HANS for both BERT and HUBERT. For instance, two models that achieve similar scores
on the MNLI dev set can have quite different accuracies on HANS. To account for this, we ran our experiments with at least 3 different seeds
and reported the best scores for each model.

8

Under review as a conference paper at ICLR 2020

on a bag-of-words representation, where mere lexical overlap between a premise and a hypothesis
yields a prediction of entailment.

Correct: Entailment Correct: Non-Entailment
Model Acc. (%) Lex. (%) Sub. (%) Const. (%) Lex. (%) Sub. (%) Const. (%)
BERT 63.59 95.32 99.32 99.44 53.40 8.86 25.20
BERT + 61.03 ↓ 98.70 ↑ 99.96 ↑ 100.00 ↑ 55.22 ↑ 2.92 ↓ 9.40 ↓
HUBERT (Transformer) 52.31 98.30 99.92 99.40 8.40 2.32 5.52
HUBERT (Transformer) + 63.22 ↑ 95.52 ↓ 99.76↓ 99.32 ↓ 70.02 ↑ 3.76 ↑ 10.92 ↑

Table 3: HANS results for BERT and HUBERT (Transformer) models. Acc. indicates the average
of the results on each sub-task in HANS. Each model is fine-tuned on MNLI. ‘+’ indicates that
the model is additionally fine-tuned on the SNLI corpus. ↑ indicates an increase and ↓ indicates a
decrease in accuracy after the model is fine-tuned on SNLI.

5 CONCLUSION

In this work we showed that BERT cannot effectively transfer its knowledge across NLP tasks, even
if the two tasks are fairly closely related. To resolve this problem, we proposed HUBERT: this
adds a decomposition layer on top of BERT which disentangles symbols from their roles in BERT’s
representations. The HUBERT architecture exploits Tensor-Product Representations, in which each
word’s representation is constructed by binding together two separated properties, the word’s (se-
mantic) content and its structural (grammatical) role. In extensive empirical studies, HUBERT
showed consistent improvement in knowledge-transfer across various linguistic tasks. HUBERT+
outperformed BERT+ on the challenging HANS diagnosis dataset, which attests to the power of its
learned, disentangled structure. The results from this work, along with recent observations reported
in Kovaleva et al. (2019); McCoy et al. (2019); Clark et al. (2019); Michel et al. (2019), call for bet-
ter model designs enabling synergy between linguistic knowledge obtained from different language
tasks.

ACKNOWLEDGMENTS

We would like to thank R. Thomas McCoy from Johns Hopkins University and Alessandro Sordoni
from Microsoft Research for sharing and discussing their recent results on HANS, and Xiaodong
Liu from Microsoft Research for thoughtful discussions.

REFERENCES

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regular-
izations in training deep cnns? In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 4266–4276. Curran Associates Inc., 2018.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What Does BERT Look At? An Analysis
of BERT’s Attention. arXiv e-prints, June 2019.

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda Viégas, and Martin Wat-
tenberg. Visualizing and measuring the geometry of BERT. arXiv preprint arXiv:1906.02715,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. arXiv e-prints,
December 2015.

9

Under review as a conference paper at ICLR 2020

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng, and Dapeng Oliver Wu. Tensor product
generation networks for deep NLP modeling. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long
Papers), pp. 1263–1273, 2018.

Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard Socher. Unifying question
answering and text classification via span extraction. arXiv preprint arXiv:1904.09286, 2019.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv e-prints, December
2014.

O. Kovaleva, A. Romanov, A. Rogers, and A. Rumshisky. Revealing the Dark Secrets of BERT.
arXiv e-prints, August 2019.

Q. V. Le, N. Jaitly, and G. E. Hinton. A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units. arXiv e-prints, April 2015.

Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, Li Deng, and Paul Smolensky. Reasoning
in vector space: An exploratory study of question answering. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

J. Lei Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv e-prints, July 2016.

Simon D Levy and Ross Gayler. Vector symbolic architectures: A new building material for artificial
general intelligence. In Proceedings of the 2008 Conference on Artificial General Intelligence
2008: Proceedings of the First AGI Conference, pp. 414–418. IOS Press, 2008.

Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting inside BERT’s linguistic
knowledge. arXiv preprint arXiv:1906.01698, 2019.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 4487–4496, Florence, Italy, July 2019a. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/P19-1441.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. arXiv preprint arXiv:1902.01007, 2019.

P. Michel, O. Levy, and G. Neubig. Are Sixteen Heads Really Better than One? arXiv e-prints, May
2019.

Allen Newell. Physical symbol systems. Cognitive science, 4(2):135–183, 1980.

Hamid Palangi, Paul Smolensky, Xiaodong He, and Li Deng. Question-answering with
grammatically-interpretable representations. In AAAI, 2018.

Jason Phang, Thibault Févry, and Samuel R Bowman. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088, 2018.

Tony A Plate. Holographic reduced representations. IEEE Transactions on Neural networks, 6(3):
623–641, 1995.

10

https://www.aclweb.org/anthology/P19-1441

Under review as a conference paper at ICLR 2020

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ Questions for Machine Com-
prehension of Text. arXiv e-prints, June 2016.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions
for machine comprehension of text. In EMNLP, 2016.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor products. In
Advances in Neural Information Processing Systems 31, pp. 9981–9993. 2018.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46(1):159 – 216, 1990.

Paul Smolensky and Géraldine Legendre. The Harmonic Mind: From Neural Computation to
Optimality-Theoretic GrammarVolume I: Cognitive Architecture (Bradford Books). The MIT
Press, 2006. ISBN 0262195267.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neural Networks. arXiv
e-prints, September 2014.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal. On orthogonality and learning recurrent networks
with long term dependencies. arXiv e-prints, January 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappagari, R Thomas McCoy, Roma Patel, Najoung
Kim, Ian Tenney, Yinghui Huang, Katherin Yu, et al. Can you tell me how to get past sesame
street? sentence-level pretraining beyond language modeling. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 4465–4476, 2019.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-complete question
answering: A set of prerequisite toy tasks. In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li, Shuailiang Zhang, Xi Zhou, and Xiang Zhou.
Semantics-aware bert for language understanding. arXiv preprint arXiv:1909.02209, 2019.

A APPENDIX

A.1 DATASET DETAILS

In this section, we briefly describe the datasets we use to train and evaluate our model. GLUE is a
collection of 9 different NLP tasks that currently serve as a good benchmark for different proposed
language models. The tasks can be broadly categorized into single sentence tasks (e.g. CoLA and
SST) and paired sentence tasks (e.g. MNLI and QQP). In the former setting, the model makes a
binary decision on whether a single input satisfies a certain property or not. For CoLA, the property
is grammatical acceptability; for SST, the property is positive sentiment.

The 7 other tasks in GLUE are paired sentence tasks in which the model strives to find a relationship
(binary or ternary) between two sentences. QNLI, WNLI, and RTE are inference tasks, in which
given a premise and a hypothesis, the model predicts whether the hypothesis is congruent with
the premise (i.e. entailment) or not (i.e. conflict). Although QNLI and WNLI are not originally
designed as inference tasks, they have been re-designed to have a similar configuration as other

11

Under review as a conference paper at ICLR 2020

NLI tasks. This way, a single classifier can be used to judge whether the right answer is in the
hypothesis (e.g. for QNLI) or whether a pronoun is replaced with the correct antecedent (e.g. for
WNLI). MNLI is an additional NLI task in which three classes are being used instead of two to
represent the relation between two sentences. The third class shows neutrality when the model is
not confident that the relation is either entailment or contradiction. The last three tasks measure
sentence similarity. In MRPC the model decides if two sentences are paraphrases of each other. In
QQP, given two questions, the model decides whether they are equivalent and are asking for the
same information. All the tasks discussed so far fall under the classification category, where the
model produces a probabilistic distribution over the possible class outcomes and the highest value
is selected. STS-B, however, is a regression task where the model produces a real number between
1 and 5, indicating the two sentences’ semantic similarity. Since our model is designed only for
classification tasks, we skip this dataset.

Corpus Task single\pair # Train # Dev # Test # Labels
CoLA Acceptability single 8.5K 1K 1K 2
SST Sentiment single 67K 872 1.8K 2

MRPC Paraphrase pair 3.7K 408 1.7K 2
QQP Paraphrase pair 364K 40K 391K 2

MNLI Inference pair 393K 20K 20K 3
QNLI Inference pair 108K 5.7K 5.7K 2
RTE Inference pair 2.5K 276 3K 2

WNLI Inference pair 634 71 146 2
SNLI Inference pair 549K 9.8K 9.8K 3

HANS Inference pair – – 30K 2

Table 4: Details of the GLUE (excluding STS-B), SNLI and HANS corpora

We observed a lot of variance in the accuracy (±5%) for models trained on WNLI, MRPC, and
CoLA. As mentioned in the GLUE webpage8, there are some issues with the dataset, which makes
many SOTA models perform worse than majority-voting. We found that MRPC results are highly
dependent on the initial random seed and order of sentences in the shuffled training data which
is mainly caused by the small number of training samples (Table 4). CoLA is the only task in
GLUE which examines grammatical correctness rather than sentiment, and thus it makes it harder to
benefit from the knowledge learned from other tasks. The train and test set are also constructed in an
adversarial way which makes it very challenging. For example, the sentence “Bill pushed Harry off
the sofa for hours.” is labeled as incorrect in the train split but a very similar sentence “Bill pushed
Harry off the sofa.” is labeled as correct in the test split. Hence, we only conduct our experiments
on the remaining 5 datasets from GLUE.

We also take advantage of an additional NLI dataset called SNLI. It is distributed in the same format
as MNLI and recommended by Wang et al. (2018) to be used in conjunction with MNLI during
training. However, in our experiments, we treat this dataset as a separate corpus and report our
results on it individually.

To further test the capabilities of our model, we evaluate our model on a probing dataset (McCoy
et al., 2019). It introduces three different syntactic heuristics and claims that most of SOTA neural
NLI models exploit these statistical clues to form their judgments on each example. It shows through
extensive experiments that these models obtain very low accuracies for sentences cleverly crafted to
defeat the models which exploit these heuristics. Lexical overlap, Subsequence, and Constituent are
the three categories examined, each containing 10 sub-categories.

A.2 TEST RESULTS

Table 5 shows the transfer learning results when the source corpus is QQP. Table 6 shows the test
results for BERT and HUBERT (Transformer). The top 5 rows are for MNLI as source corpus and
bottom 5 rows are for QQP as source corpus.

8https://gluebenchmark.com/faq

12

Under review as a conference paper at ICLR 2020

Model Target
Corpus

Transfer
BERT

Transfer
Filler

Transfer
Role

Baseline
Acc. (%)

Fine-
tuned
Acc. (%)

Gain (%)

BERT QNLI True – – 91.60 90.96 – 0.64
BERT MNLI True – – 84.15 84.41 + 0.26
BERT RTE True – – 71.12 62.45 – 8.67
BERT SNLI True – – 90.45 90.88 + 0.43
BERT SST True – – 93.23 92.09 – 1.14
HUBERT (Transformer) QNLI False True True 88.32 90.55 + 2.23
HUBERT (Transformer) MNLI False True True 84.30 85.24 + 0.94
HUBERT (Transformer) RTE False True False 61.73 65.70 + 3.97
HUBERT (Transformer) SNLI False False True 90.63 91.20 + 0.57
HUBERT (Transformer) SST True True True 86.12 91.06 + 4.94

Table 5: Transfer learning results for GLUE tasks. The source corpus is QQP. Baseline accuracy is
for when Transfer BERT, Filler, and Role are all False, which is equivalent to no transfer. Fine-tuned
accuracy is the best accuracy among all possible transfer options.

HUBERT
Source Corpus Target Corpus Transfer

BERT
Transfer
Filler

Transfer
Role

BERT Acc.
(%)

HUBERT
Acc. (%)

MNLI QNLI True True False 90.50 90.50
MNLI QQP False False True 89.20 89.30
MNLI RTE True True True 66.40 69.30
MNLI SNLI True False True 89.20 90.35
MNLI SST True False True 93.50 92.60
QQP QNLI False True True 90.50 90.70
QQP MNLI False True True 84.60 84.70
QQP RTE False True False 66.40 63.20
QQP SNLI False False True 89.20 90.36
QQP SST True True True 93.50 91.00

Table 6: Test set results for HUBERT (Transformer) and BERT. BERT accuracy indicates test results
on target corpus (without transfer) for bert-base-uncased which are directly taken from the GLUE
leaderboard. Fine-tuned accuracy are the test results for best performing HUBERT (Transformer)
model on target dev set after transfer (see Tables 2 and 5).

13

Under review as a conference paper at ICLR 2020

A.3 IMPLEMENTATION DETAILS

Our implementations are in PyTorch and based on the HuggingFace9 repository which is a library
of state-of-the-art NLP models, and BERT’s original codebase10. In all of our experiments, we used
bert-base-uncased model which has 12 Transformer Encoder layers with 12 attention heads
each and the hidden layer dimension of 768. BERT’s word-piece tokenizer was used to preprocess
the sentences. We used Adamax (Kingma & Ba, 2014) as our optimizer with a learning rate of
5× 10−5 and used a linear warm-up schedule for 0.1 proportion of training. In all our experiments
we used the same value for dimension and number of roles and symbols (dS : 32, dR: 32, nS : 50,
nR: 35). These parameters were chosen from the best performing BERT models over MNLI. We
used the gradient accumulation method to speed up training (in which we accumulate the gradients
for two consecutive batches and then update the parameters in one step). Our models were trained
with a batch size of 256 distributed over 4 V100 GPUs. Each model was trained for 10 epochs, both
on the source task and the target task (for transfer learning experiments).

We performed hyper-parameter tuning for both BERT and HUBERT models on the MNLI dev set.
As for the dimension of roles and symbols we did grid search over these values: [10, 30, 60] We
fixed the number of roles to 35 and searched among these values for number of fillers: [50, 100,
150]. We additionally performed some light tuning on learning rate, temperature value, and scaling
value. To control for the randomness in our results, we ran our experiments by fine-tuning BERT
with 3 different seeds and choosing the best results among them. However, for HUBERT we used
the same seed for all 7 experiments and only changed the initial weights of layers in the model. We
observed small variance in baseline and fine-tuned accuracy across different runs for BERT model.
Specifically when MNLI is the source corpus, the standard deviation for QNLI, QPP, RTE, SNI, and
SST as target corpora was 0.2%, 0.4%, 0.5%, 0.4%, 0.4% respectively.

A.4 INTERPRETATION OF LEARNED ROLES

To gain a better understanding of what R (the global role matrix) is learning we analyze the attention
scores (aR) over this matrix generated by the model for each token. The final role vector (r(t)) for
each token is being calculated by performing a matrix product between the attention vector and Role
matrix as discussed in Section 3:

r(t) = Ra
(t)
R (7)

aR is a vector of nR dimension indicating the importance of each Role in constructing the final role
vector r(t). First, for each sentence in the dataset we collect the Part Of Speech (POS) tags for each
token (or sub-token) coming out of BERT model. We obtain the POS tags from the last sub-tokens
of each word. This requires us to take extra care when processing the data and keep a dictionary
that maps the index of each token in the original sentence to the indices of all its sub-tokens. Then,
we gather the roles each sub-token is being attracted to. To account for the distributed nature of
the attention scores, instead of choosing the role with highest value in the attention distribution, we
select the top K values, concatenate them, and treat this new tuple as a single role. We then calculate
the number of roles assigned to each POS tag. Figure 4 shows this distribution where each color
shows a specific role tuple.

The number of all possible POS tags in MNLI is 36 which nicely aligns with the 35 number of roles
we chose in our experiments. See this link11 for a description of each tag. To make the visualizations
simpler we merged tags indicating similar grammar roles into one coming up with a total of 21 tags
(e.g. combining NN, NNS, NNP, and NNPS into one category: NN).

We can observe some interesting patterns by looking at the frequency of the roles assigned to each
tag. For example, we observe that the “yellow” role is attracted to ‘.’ tag which represents punctua-
tion marks such as a full stop, question mark, exclamation mark, etc. On the other hand, the “blue”
role is attracted almost exclusively to NN. Additionally the “green” role is mainly present in NN,
VB, and JJ which are linguistically the three most important POS categories. However, the “purple”

9https://github.com/huggingface/pytorch-pretrained-BERT
10https://github.com/google-research/bert
11Penn Treebank POS

14

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Under review as a conference paper at ICLR 2020

role is more or less used by all different POS categories suggesting low correlation between that role
and POS tags.

Figure 4: POS tags vs Role frequencies when selecting the two roles with highest value in the
attention distribution. Subsequently the tags referring to similar grammar roles are merged into one
category to generate better visualization.

15

	Introduction
	Related work
	Model Description
	Experiments
	Dataset
	Architecture comparison on MNLI
	Transfer Learning
	Model Diagnosis

	Conclusion
	Appendix
	Dataset Details
	Test Results
	Implementation Details
	interpretation of learned Roles

