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Abstract

Learning the parameters of Gaussian mixture models is a fundamental and widely
studied problem with numerous applications. In this work, we give new algorithms
for learning the parameters of a high-dimensional, well separated, Gaussian mixture
model subject to the strong constraint of differential privacy. In particular, we
give a differentially private analogue of the algorithm of Achlioptas and McSherry
(COLT 2005). Our algorithm has two key properties not achieved by prior work: (1)
The algorithm’s sample complexity matches that of the corresponding non-private
algorithm up to lower order terms in a wide range of parameters. (2) The algorithm
requires very weak a priori bounds on the parameters of the mixture.

1 Introduction

The Gaussian mixture model is one of the most important and widely studied models in Statistics—
with roots going back over a century [58]—and has numerous applications in the physical, life, and
social sciences. In a Gaussian mixture model, we suppose that each sample is drawn by randomly
selecting from one of k distinct Gaussian distributions G1, . . . , Gk in Rd and then drawing a sample
from that distribution. The problem of learning a Gaussian mixture model asks us to take samples
from this distribution and approximately recover the parameters (mean and covariance) of each of the
underlying Gaussians. The past decades have seen tremendous progress towards understanding both
the sample complexity and computational complexity of learning Gaussian mixtures [20, 21, 5, 64, 3,
17, 16, 52, 7, 59, 41, 27, 51, 46, 54, 10, 42, 4, 11, 40, 38, 66, 23, 6, 35, 36, 22, 63, 26, 53, 15].

Due to significant space restrictions, a full version of the paper, with additional details and all proofs,
appears in the supplementary material [48].
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In many of the applications of Gaussian mixtures models, especially those in the social sciences, the
sample consists of sensitive data belonging to individuals. In these cases, it is crucial that we not only
learn the parameters of the mixture model, but do so while preserving these individuals’ privacy. In
this work, we study algorithms for learning Gaussian mixtures subject to differential privacy [32],
which has become the de facto standard for individual privacy in statistical analysis of sensitive
data. Intuitively, differential privacy guarantees that the output of the algorithm does not depend
significantly on any one individual’s data, which in this case means any one sample. Differential
privacy is used as a measure of privacy for data analysis systems at Google [34], Apple [28], and the
U.S. Census Bureau [19]. Differential privacy and related notions of algorithmic stability are also
crucial for statistical validity even when individual privacy is not a primary concern, as they provide
generalization guarantees in an adaptive setting [31, 9].

The first differentially private algorithm for learning Gaussian mixtures comes from the work of
Nissim, Raskhodnikova, and Smith [55] as an application of their influential subsample-and-aggregate
framework. However, their algorithm is a reduction from private estimation to non-private estimation
that blows up the sample complexity by at least a poly(d) factor.

The contribution of this work is new differentially private algorithms for recovering the parameters
of an unknown Gaussian mixture provided that the components are sufficiently well separated. In
particular we give differentially private analogues of the algorithm of Achlioptas and McSherry [3],
which requires that the means are separated by a factor proportional to

√
k, but independent of the

dimension d. Our algorithms have two main features not shared by previous methods:

• The sample complexity of the algorithm matches that of the corresponding non-private
algorithm up to lower order additive terms for a wide range of parameters.

• The algorithm requires very weak a priori bounds on the parameters of the mixture com-
ponents. That is, like many algorithms, we require that the algorithm is seeded with some
information about the range of the parameters, but the algorithm’s sample complexity
depends only mildly (polylogarithmically) on the size of this range.

1.1 Problem Formulation

There are a plethora of algorithms for (non-privately) learning Gaussian mixtures, each with different
learning guarantees under different assumptions on the parameters of the underlying distribution.1 In
this section we describe the version of the problem that our work studies and give some justification
for these choices.

We assume that the underlying distribution D is a mixture of k Gaussians in high dimension d.
The mixture is specified by k components, where each component Gi is selected with probability
wi ∈ [0, 1] and is distributed as a Gaussian with mean µi ∈ Rd and covariance Σi ∈ Rd×d. Thus the
mixture is specified by the tuple {(wi, µi,Σi)}i∈[k].

Our goal is to accurately α-recover this tuple of parameters. Intuitively, with probability 1− β, we
would like to recover a tuple {(ŵi, µ̂i, Σ̂i)}i∈[k], specifying a mixture G̃ such that ‖ŵ −w‖1 is small
and ‖µ̂i − µi‖Σi and ‖Σ̂i − Σi‖Σi are small for every i ∈ [k] (specifically, we require them all to be
O(α)). Here, ‖ · ‖Σ is the appropriate vector/matrix norm that ensures N (µi,Σi) and N (µ̂i, Σ̂i) are
close in total variation distance and we also compare ŵ and w in ‖ · ‖1 to ensure that the mixtures are
close in total variation distance. Of course, since the labeling of the components is arbitrary, we can
actually only hope to recover the parameters up to some unknown permutation π : [k]→ [k] on the
components. We say that an algorithm learns a mixture of Gaussian using n samples if it takes n
i.i.d. samples from an unknown mixture D and outputs the parameters of a mixture D̂ satisfies these
conditions, which will imply the resulting mixtures are α-close in total variation distance.2

1We remark that there are also many popular heurstics for learning Gaussian mixtures, notably the EM
algorithm [24], but in this work we focus on algorithms with provable guarantees.

2To provide context, one might settle for a weaker goal of proper learning where the goal is merely to learn
some Gaussian mixture, possibly with a different number of components, that is close to the true mixture, or
improper learning where it suffices to learn any such distribution.
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In this work, we consider mixtures that satisfy the separation condition

∀i 6= j ‖µi − µj‖2 ≥ Ω̃

(√
k + 1/wi + 1/wj

)
·max

{
‖Σ1/2

i ‖, ‖Σ
1/2
j ‖

}
(1)

Note that the separation condition does not depend on the dimension d, only on the number of
mixture components. However, (1) is not the weakest possible condition under which one can learn a
mixture of Gaussians. We focus on (1) because in this regime we can learn the mixture components
using statistical properties of the data, such as the large principal components of the data and the
centers of a good clustering, which are amenable to privacy. In contrast, algorithms that learn with
separation proportional to k1/4 [64], kε [41, 51, 27], or even

√
log k [59] use algorithmic machinery

such as the sum-of-squares algorithm that has not been studied from the perspective of privacy, or
are not computationally efficient. In particular, a barrier to learning with separation k1/4 is that the
non-private algorithms are based on single-linkage clustering, which is not amenable to privacy due
to its crucial dependence on the distance between individual points. We remark that one can also learn
without any separation conditions, but only with exp(k) many samples from the distributions [54].

In this work, our goal is to design learning algorithms for mixtures of Gaussians that are also
differentially private. An (ε, δ)-differentially private [32] randomized algorithm A for learning
mixtures of Gaussians is an algorithm that takes a dataset X of samples and:

• A is (ε, δ)-differentially private in the worst-case. That is, for every pair of samples
X,X ′ ∈ Xn differing on one sample, A(X) and A(X ′) are (ε, δ)-close in the following
sense: for b ∈ {0, 1}, Pr[A(X) = b] ≤ eε Pr[A(X ′) = b] + δ

• If n is sufficiently large and X1, . . . , Xn ∼ D for a mixture D satisfying our assumptions,
then A(X) outputs an approximation to the parameters of G.

Note that, while the learning guarantees necessarily rely on the assumption that the data is drawn i.i.d.
from some mixture of Gaussians, the privacy guarantee is worst-case. It is important for privacy not
to rely on distributional assumptions because we have no way of verifying that the data was truly
drawn from a mixture of Gaussians, and if our assumption turns out to be wrong we cannot recover
privacy once it is lost.

Furthermore, our algorithms assume certain boundedness of the mixture components. Specifically,
we assume that there are known quantities R, σmax, σmin, wmin such that

∀i ∈ [k] ‖µi‖2 ≤ R and σ2
min ≤ ‖Σi‖2 ≤ σ

2
max and wmin ≤ wi. (2)

For brevity, we define G(`, k,R, σmin, σmax, wmin, s) to be the family of mixtures of k Gaussians
in ` dimensions satisfying 2 and a separation condition defined by s (in our case, s conforms to 1).
These assumptions are to some extent necessary, as even the state-of-the-art algorithms for learning a
single multivariate normal [47] require boundedness.3 However, since R and σmax/σmin can be quite
large—and even if they are not we cannot expect the user of the algorithm to know these parameter a
priori—the algorithm’s sample complexity should depend only mildly on these parameters so that
they can be taken to be quite large.

1.2 Our Contributions

The main contribution of our work is an algorithm with improved sample complexity for learning
mixtures of Gaussians that are separated and bounded.
Theorem 1.1 (Main, Informal). There is an (ε, δ)-differentially private algorithm that takes

n =

(
d2

α2wmin
+

d2

αwminε
+

poly(k)d3/2

wminε

)
· polylog

(
dkR(σmax/σmin)

αβεδ

)
samples from an unknown mixture of k Gaussians D in Rd satisfying (1) and (2), where wmin =
mini wi, and, with probability at least 1− β, learns the parameters of D up to error α.

3These boundedness conditions are also provably necessary to learn even a single univariate Gaussian for
pure differential privacy, concentrated differential privacy, or Rényi differential privacy, by the argument of [50].
One could only hope to avoid boundedness using the most general formulation of (ε, δ)-differential privacy.
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We remark that the sample complexity in Theorem 1.1 compares favorably to the sample complexity
of methods based on subsample-and-aggregate. In particular, when ε ≥ α and k is a small polynomial
in d, the sample complexity is dominated by d2/α2wmin, which is optimal even for non-private
algorithms. In Section 5 we give an optimized version of the subsample-and-aggregate-based
reduction from [55] and show that we can learn mixtures of Gaussians with sample complexity
roughly Õ(

√
d/ε) times the sample complexity of the corresponding non-private algorithm. In

contrast the sample complexity of our algorithm does not grow by dimension-dependent factors
compared to the non-private algorithm on which it is based.

At a high level, our algorithm mimics the approach of Achlioptas and McSherry [3], which is to
use PCA to project the data into a low-dimensional space, which has the effect of projecting out
much of the noise, and then recursively clustering the data points in that low-dimensional space.
However, where their algorithm uses a Kruskal-based clustering algorithm, we have to use alternative
clustering methods that are more amenable to privacy. We develop our algorithm in two distinct
phases addressing different aspects of the problem:

In Section 3 we consider an “easy case” of Theorem 1.1, where we assume that: all components are
spherical Gaussians, such that variances of each component lie in a small, known range (such that
their ratio is bounded by a constant factor) and that the means of the Gaussians lie in a small ball
around the origin. Under these assumptions, it is fairly straight-forward to make the PCA-projection
step [64, 3] private. The key piece of the algorithm that needs to be private is computing the principal
components of the data’s covariance matrix. We can make this step private by adding appropriate
noise to this covariance, and the key piece of the analysis is to analyze the effect of this noise
on the principal components, extending the work of Dwork et al. [33] on private PCA. Using the
assumptions we make in this easy case, we can show that the projection shifts each component’s
mean by O(

√
kσmax), which preserves the separation of the data because all variances are within

constant factor of one another. Then, we iteratively cluster the data using the 1-cluster technique
of [57, 56]. Lastly, we apply a simplified version of [47] to learn each component.

We then consider the general case where the Gaussians can be non-spherical and wildly different
from each other. In this case, if we directly add noise to the covariance matrix to achieve privacy, then
the noise will scale polynomially with σmax/σmin, which is undesirable. For the general case, we
use a recursive algorithm, which repeatedly identifies a secluded cluster in the data, and then recurses
on this isolated cluster and the points outside of the cluster. To that end we develop in Section 4.1 a
variant of the private clustering algorithm of [57, 56] that finds a secluded ball—a set of points that
lie inside of some ball Br (p) such that the annulus B10r (p) \ Br (p) is (essentially) empty.4

We can obtain a recursive algorithm in the following way. First we try to find a secluded ball in the
unprojected data. If we find one then we can split and recurse on the inside and outside of the ball.
If we cannot find a ball, then we can argue that the diameter of the dataset is poly(d, k, σmax). In
the latter case, we can ensure that with poly(d, k) samples, the PCA-projection of the data preserves
the mean of each component up to O(

√
kσmax), which guarantees that the cluster with the largest

variance is secluded, in which case we can find the secluded ball and recurse.

1.3 Related Work

There has also been a great deal of work on learning mixtures of distribution classes, particularly
mixtures of Gaussians. There are many ways the objective can be defined, including clustering [20, 21,
5, 64, 3, 17, 16, 52, 7, 59, 41, 27, 51], parameter estimation [46, 54, 10, 42, 4, 11, 40, 38, 66, 23, 6],
proper learning [35, 36, 22, 63, 26, 53], and improper learning [15].

There has recently been a great deal of interest in differentially private distribution learning, the
most relevant being [50, 47], which focus on learning a single Gaussian. There are also algorithms
for learning structured univariate distributions in TV-distance [25], and learning arbitrary univariate
distributions in Kolomogorov distance [13]. Upper and lower bounds for learning the mean of a
product distribution over the hypercube in `∞-distance include [12, 14, 32, 61]. [1] focuses on
estimating properties of a distribution, rather than the distribution itself. [60] gives an algorithm
which allows one to estimate asymptotically normal statistics with minimal increase in the sample

4Since [57, 56] call the ball found by their algorithm a good ball, we call ours a terrific ball.
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complexity. There has also been a great deal of work on distribution learning in the local model of
differential privacy [29, 65, 45, 2, 30, 44, 67, 37].

Within differential privacy, there are many algorithms for tasks that are related to learning mixtures
of Gaussians, notably PCA [12, 49, 18, 33] and clustering [55, 39, 57, 56, 8, 62, 43]. Applying
these algorithms naïvely to the problem of learning Gaussian mixtures would necessarily introduce
a polynomial dependence on the range of the data, which we seek to avoid. Nonetheless, private
algorithms for PCA and clustering feature in our solution, which builds directly on these works.

2 Robustness of PCA-Projection to Noise

One of the main tools used in learning mixtures of Gaussians under separation is principal component
analysis (PCA). Specifically, we project onto the subspace spanned by the top k principal components,
which has the effect of preserving the means of the components while eliminating the directions
that are purely noise. In this section, we show that PCA achieves a similar effect even when adding
additional noise for privacy.

Before showing the result for perturbed PCA, we reiterate the very simple analysis of Achlioptas
and McSherry [3]. Let X ∈ Rn×d be a matrix of samples and A ∈ Rn×d be the rank-k matrix of
the corresponding cluster centers. Fixing a cluster i, denoting its empirical mean of as µ̄i, the mean
of the resulting projection as µ̂i, Π as the k-PCA projection matrix and ui ∈ {0, 1}n as the vector
indicating which datapoint was sampled from cluster i, we have

‖µ̄i − µ̂i‖2 = ‖ 1
ni

(
XT − (XΠ)T

)
ui‖2 ≤ ‖X −XΠ‖2 ‖ui‖2ni

≤ 1√
ni
‖X −A‖2,

where the last inequality follows from the XΠ being the best k-rank approximation of X whereas
A is any rank-k matrix. We extend this analysis to a perturbed k-PCA projection as given by the
following lemma.
Lemma 2.1. Let X ∈ Rn×d be a collection of n datapoints from k clusters each centered at
µ1, µ2, ..., µk. Let A ∈ Rn×d be the corresponding matrix of (unknown) centers (for each j we place
the center µc(j) with c(j) denoting the clustering point Xj belongs to). Let ΠVk ∈ Rd×d denote the
k-PCA projection of X’s rows. Let ΠU ∈ Rd×d be a projection such that for some bound B ≥ 0
it holds that ‖XTX − (XΠU )T (XΠU )‖2 ≤ ‖XTX − (XΠVk)T (XΠVk)‖2 + B. Denote µ̄i as
the empirical mean of all points in cluster i and denote µ̂i as the projection of the empirical mean
µ̂i = ΠU µ̄i. Then ‖µ̄i − µ̂i‖2 ≤ 1√

ni
‖X −A‖2 +

√
B/ni.

We can instantiate in the following lemma for mixtures of Gaussians.
Lemma 2.2. Let X ∈ Rn×d be a sample from a mixture of Gaussians D, and let A ∈ Rn×d be the
matrix where each row i is the (unknown) mean of the Gaussian from whichXi was sampled. For each
i, let σ2

i denote the maximum directional variance of component i, and wi denote its mixing weight.
Define σ2 = max

i
{σ2

i } and wmin = min
i
{wi}. If n ≥ 1

wmin
(ξ1d + ξ2 log(2k/β)), where ξ1, ξ2 are

universal constants, then with probability at least 1− β,
√
nwminσ

4 ≤ ‖X −A‖2 ≤ 4

√
n

k∑
i=1

wiσ2
i .

3 A Warm Up: Strongly Bounded Spherical Gaussian Mixtures

We first give an algorithm to learn mixtures of spherical Gaussians, whose variances are within a
constant factor of one another, and means lie in a ball of radius k

√
dσ, where σ is the largest variance,

and all mixing weights are uniform. We denote such a family of spherical Gaussians by S(d, k, κ, s),
where κ is an upper bound on the ratio of maxiumum and minimum variances (a constant), and s
defines the separation condition. Now, we present the main theorem of this section.
Theorem 3.1. There exists an (ε, δ)-differentially private algorithm, which if given n independent
samples fromD ∈ S(d, k, κ, C

√
`), such that C = ξ+16

√
κ, where ξ, κ ∈ Θ(1) and ξ is a universal

constant, ` = max{512 ln(nk/β), k}, and

n ≥

(
dk

α2
+
d

3
2 k3

ε
+
dk

αε
+

√
dk ln(k/β)

αε
+
k2

α2
+
`

5
9 k

5
3

ε
10
9

)
· polylog

(
`, k,

1

ε
,

1

δ
,

1

β

)
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then it (α, β)-learns D.

We assume that our algorithm is given samplesX ∈ Rn×d, a parameter σmin that is the exact smallest
variance in the mixture and the parameter κ. The algorithm proceeds as follows:

(1) We first truncate the dataset so that all points lie within a ball of radius 2k
√
dκσmin around the

origin. So with high probability, no points in X are lost in this step.

(2) Next, we do privacy-preserving `-PCA. By the guarantees in the previous section and from
Theorem 9 of [33], since all variances are almost identical, the distances between projected means
are changed by at most O(

√
`σmin), which maintains the separation.

(3) Now, that the Gaussians have shrunk down, and are still far apart, we can find individual
components using an extension of the 1-cluster algorithm of [56] given below.
Theorem 3.2 (Extension of [56]). There is an (ε, δ)-DP algorithm PGLOC(X, t; ε, δ, R, σmin, σmax)
with the following guarantee. Let X = (X1, . . . , Xn) ∈ Rn×d be a set of n points drawn from a
mixture of Gaussians D ∈ G(`, k,R, σmin, σmax, wmin, s). Let S ⊆ X such that |S| ≥ t, and let
0 < a < 1 be any small absolute constant (say, one can take a = 0.1). If t = γn, where 0 < γ ≤ 1,
and

n ≥

(√
`

γε

) 1
1−a

· 9
log∗

(√
`
(
Rσmax
σmin

)`)
· polylog

(
`,

1

ε
,

1

δ
,

1

β
,

1

γ

)
+O

(
`+ log(k/β)

wmin

)
then for some absolute constant c > 4 that depends on a, with probability at least 1 − β, the
algorithm outputs (r,~c) such that the following hold: (1) Br(~c) contains at least t2 points in S, that
is, |Br(~c) ∩ S| ≥ t

2 . (2) If ropt is the radius of the smallest ball containing at least t points in S,
then r ≤ c(ropt + 1

4

√
`σmin).

For simplicity, we set the constant a = 0.1. Since we have balls that isolate individual components in
the lower-dimensional space and that give us a constant factor approximation of each variance, we
can partition the original dataset to find a set of nearly optimal balls containing the points from each
cluster.

(4) We can finally learn the parameters of each individual Gaussian using a simplified version of the
Gaussian learner of [47] that is tailored specifically for spherical Gaussians.
Theorem 3.3. There exists an (ε, δ)-differentially private algorithm PSGE(X;~c, r, αµ, ασ, β, ε, δ)
with the following guarantee. If Br(~c) ⊆ R` is a ball, X1, . . . , Xn ∼ N (µ, σ2I`×`), and n ≥
6 ln(5/β)

ε + nµ + nσ, where

nµ = O

 `

α2
µ

+
ln( 1

β )

α2
µ

+
r ln( 1

β )

αµεσ
+
r
√
` ln( 1

δ )

αµεσ

 , nσ = O

(
ln( 1

β )

α2
σ`

+
ln( 1

β )

ασε
+
r2 ln( 1

β )

ασεσ2`

)
,

then with probability at least 1−β, the algorithm returns µ̂, σ̂ such that ifX is contained inBr(~c) (that
is,Xi ∈ Br(~c) for every i) and ` ≥ 8 ln(10/β), then ‖µ−µ̂‖2 ≤ αµσ and (1−ασ) ≤ σ̂2

σ2 ≤ (1+ασ).

4 An Algorithm for Privately Learning Mixtures of Gaussians

In this section, we present our main algorithm for privately learning mixtures of Gaussians and prove
Theorem 1.1 from the introduction.

4.1 Finding a Terrific Ball

In this section we mention a key building block in our algorithm for learning Gaussian mixtures. This
particular subroutine is an adaptation of the work of Nissim and Stemmer [56] (who in turn built
on [57]) that finds a ball that contains many datapoints. In this section we show how to tweak their
algorithm so that it now produces a ball with a few more additional properties. More specifically, our
goal in this section is to privately locate a ball Br (p) that (i) contains many datapoints, (ii) leaves out
many datapoints and (iii) is secluded in the sense that B2r (p) \ Br (p) holds very few (and ideally
zero) datapoints. More specifically, we are using the following definition.
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Definition 4.1. Given a dataset X and an integer t > 0, we say a ball Br (p) is (c,Γ)-terrific for a
constant c > 1 and parameter Γ ≥ 0 if all of the following three properties hold: (i) The number of
datapoints in Br (p) is at least t− Γ; (ii) The number of datapoints outside the ball Bcr (p) is least
t− Γ; and (iii) The number of datapoints in the annulus Bcr (p) \ Br (p) is at most Γ.

We say a ball is c-terrific if it is (c, 0)-terrific, and when c is clear from context we call a ball terrific.
In this section, we provide a differentially private algorithm that locates a terrific ball.

The algorithm of [56] is composed of two subroutines. The first, GoodRadius privately computes
some radius r̃ such that r̃ ≤ 4ropt with ropt denoting the radius of the smallest ball that contains t
datapoints. Their next subroutine, GoodCenter, takes r̃ as an input and produces a ball of radius γr̃
that holds (roughly) t datapoints with γ denoting some constant > 2. The GoodCenter procedure
works by first cleverly combining locality-sensitive hashing (LSH) and randomly-chosen axes-aligned
boxed to retrieve a poly-length list of candidate centers, then applying ABOVETHRESHOLD to find a
center point p such that the ball Br̃ (p) satisfies the required (holding enough datapoints).

In our modification, the latter procedure is essentially unchanged, with the single condition before
replaced by the three conditions which we require. The previous procedure also requires the same
modification, but since our new scoring function (which takes into account all three conditions) is no
longer monotone or quasi-concave, we perform a capping of the scores to facilitate our search. Our
modification to GoodRadius is called TerrificRadius, to reflect its stronger guarantees.

The resulting combination of these tools gives the following lemma.
Lemma 4.2. The TerrificBall procedure is a (2ε, δ)-DP algorithm which, if run using size-
parameter t ≥ 1000c2

ε na
√
d log(nd/β) log(1/δ) log log(U/L) for some arbitrary small constant

a > 0 (say a = 0.1), and is set to find a c-terrific ball with c > γ (γ being the parameter fed into the
LSH in the GoodCenter procedure), then the following holds. With probability ≥ 1− 2β if it returns
a ball Bp (r′), and furthermore this ball is a (c, 2Γ)-terrific ball of radius r′ ≤ (1 + c

10 )r.

4.2 The Algorithm

We finally introduce our differentially private version of the Achlioptas-McSherry algorithm. Recall
that we assume the separation condition

∀i, j, ‖µi − µj‖ ≥ C(σi + σj)
(√

k log(n) + 1/
√
wi + 1/

√
wj

)
(3)

for some constant C > 0, and that n ≥ poly(d, k) (we note that our constant C is larger than that
of [3]. We also make one additional technical assumption that the Gaussians are not “too skinny.”

∀i, ‖Σi‖F
√

log(n/β) ≤ 1
8 tr(Σi), and ‖Σi‖2log(n/β) ≤ 1

8 tr(Σi) (4)

Note the for a spherical Gaussian (where Σi = σ2
i Id×d) we have that tr(Σi) = dσ2

i , while ‖Σi‖F =

σ2
i

√
d and ‖Σi‖2 = σ2

i , thus the above condition translates to requiring a sufficiently large dimension,
as assumption made explicit in the work regarding learning spherical Gaussians [64].

We now detail the main components of our algorithm. Algorithm 1 takes the dataset X and returns
a k-partition of X into subsets corresponding to different mixture components. There are two key
points to note about this algorithm. First, the parameter k is an upper bound on the number of mixture
components that have points in X , so in every recursive call, even though we specify some upper
bound k′, the number of clusters returned will match the exact number of components. Second, the
partition itself cannot be private (since it is a list of points in the dataset). So once this k-partition
is done, one must apply the existing (ε, δ)-DP procedure (called, "PGE", which is an adaptation of
the private learner for high-dimensional Gaussians from [47] for the case, where a tiny fraction of
the points may be lost, as described in the full version of this paper) for estimating the mean and
the covariance of each cluster, as well as apply the ε-DP histogram to find the cluster weights. The
overall algorithm (PGME) is in Algorithm 2.

The main theorem of our section is as follows.
Theorem 4.3. There is an (ε, δ)-differentially private algorithm that takes

n =

 d2

α2wmin
+

d2

αwminε
+
k9.06d3/2

wminε
+

( √
dk

wminε

) 1
1−a

+
k

3
2

αwminε

 · polylog

(
dkR(σmax

σmin
)

αβεδ

)
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(where a > 0 is an arbitrarily small constant as in Theorem 3.2) samples from an unknown mixture
of k Gaussians D in Rd satisfying (1) and (2), where wmin = mini wi, and (α, β)-learns D.

Algorithm 1: Private Gaussian Mixture Partitioning RPGMP(X; k,R,wmin, σmin, σmax, ε, δ)

Input: Dataset X ∈ Rn×d coming from a mixture of at most k Gaussians, such that each xi ∈ X
has length ≤ O(R+ σmax

√
d). Privacy parameters ε, δ > 0; failure probability β > 0.

Output: Partition of X into clusters.

1. If k = 1 Skip to last step (#8)
2. Find a small ball that contains X , and bound the range of points to within that ball:

Set n′ ← |X|+ Lap(2/ε)− nwmin

20 .
Br′′ (p)← PGLOC(X,n′; ε2 , δ, R, σmin, σmax).
Set r ← 12r′′.
Set X ← X ∩ Br (p).

3. Find 5-TerrificBall in X with t = nwmin

2 :

Br′ (p
′)← PTERRIFICBALL(X, nwmin

2 , c = 5, largest = FALSE; ε, δ, r,
√
dσmin

2 ).
4. If the data is separable already, we recurse on each part.

If Br′ (p′) 6= ⊥ then partition X into A = X ∩ Br′ (p
′) and B = X \ B5r′ (p

′) and return

RPGMP(A; k − 1, r, wmin, σmin, σmax, ε, δ) ∪ RPGMP(B; k − 1, r, wmin, σmin, σmax, ε, δ)

5. Find a private k-PCA of X: Π← k-PCA of XTX +N where N is a symmetric matrix
whose entries are taken from N (0, 4r4 ln(2/δ)

ε2 ).
6. Find 5-TerrificBall in XΠ with t = nwmin

2 :

Br′ (p
′)← PTERRIFICBALL(XΠ, wmin

2 , c = 5, largest = TRUE; ε, δ, r,
√
kσmin

2 ).
7. If the projected data is separable, we recurse on each part.

If Br′ (p′) 6= ⊥ then partition X into A = {xi ∈ X : Πxi ∈ Br′ (p
′)} and

B = {xi ∈ X : Πxi 6∈ B5r′ (p
′)} and return

RPGMP(A; k − 1, r, wmin, σmin, σmax, ε, δ) ∪ RPGMP(B; k − 1, r, wmin, σmin, σmax, ε, δ)

8. Since the data isn’t separable, we treat it as a single Gaussian.
Set a single cluster: C ← {i : xi ∈ X} and return the singleton {C}.

Algorithm 2: Privately Learn Gaussian Mixture PGME(X; k,R,wmin, σmin, σmax, ε, δ, β)

Input: Dataset X ∈ Rn×d coming from a k-Gaussian mixture model. Privacy parameters ε, δ > 0;
failure probability β > 0.

Output: Model Parameters Estimation
1. Truncate the dataset so that for all points, ‖Xi‖2 ≤ O(R+ σmax

√
d)

2. {C1, .., Ck} ← RPGMP(X; k,R,wmin, σmin, σmax, ε, δ)

3. For j from 1 to k: let (µj ,Σj)← PGE({xi : i ∈ Cj};R, σmin, σmax, ε, δ) and
ñj ← |Cj |+ Lap(1/ε).

4. Set weights such that for all j, wj ← ñj/(
∑
j ñj).

5. Return 〈µj ,Σj , wj〉kj=1

5 Sample and Aggregate

In this section, we detail methods based on sample and aggregate, and derive their sample complexity.
This will serve as a baseline for comparison with our methods. In short, the method repeatedly runs a
non-private learning algorithm, and aggregates the results using the 1-cluster algorithms of [57, 56].
A similar sample and aggregate method was considered in [55], but they focused on a restricted case
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(when all mixing weights are equal, and all components are spherical with a known variance), and did
not explore certain considerations (i.e., how to minimize the impact of a large domain). We provide a
more in-depth exploration and attempt to optimize the sample complexity.

The main advantage of the sample and aggregate method we describe here is that it is extremely
flexible: given any non-private algorithm for learning mixtures of Gaussians, it can immediately
be converted to a private method. However, there are a few drawbacks, which our main algorithm
avoids. First, by the nature of the approach, it will increase the sample complexity multiplicatively by
Ω(
√
d/ε), thus losing any chance of the non-private sample complexity being the dominating term in

any parameter regime. Second, it is not clear on how to adapt this method to non-spherical Gaussians,
since the methods of [57, 56] can only find `2-balls containing many points, rather than the ellipsoids
as required by non-spherical Gaussians. We consider aggregation methods which can handle settings
where the required metric is unknown to be a very interesting direction for further study. Our main
sample-and-aggregate meta-theorem is the following.

Theorem 5.1 (Informal). Let m = Θ̃(
√
kd+k1.5

ε log2(1/δ) · 2O(log∗( dRσmax
ασmin

))
). Given a non-private

algorithm which learns a mixture of separated spherical Gaussians with n samples, there exists an
(ε, δ)-differentially private algorithm which learns the same mixture with O(mn) samples.

Combining with results from [64], this implies the following private learning algorithm.
Theorem 5.2 (Informal). There exists a (ε, δ)-differentially private algorithm learns a mixture
of spherical Gaussians with the separation condition that ‖µi − µj‖2 ≥ (σi + σj) · Ω̃(k1/4 ·
poly log(k, d, 1/ε, log(1/δ), log∗(Rσmax

ασmin
))) . The number of samples it requires is

n = Õ

(√
kd+ k1.5

ε
log2(1/δ) · 2O(log∗( dRσmax

ασmin
))

(
d3

w2
min

+
d

wminα2
+
k2

α2

))
.
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