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ABSTRACT

The expressive power of end-to-end automatic speech recognition (ASR) systems
enables direct estimation of the character or word label sequence from a sequence
of acoustic features. Direct optimization of the whole system is advantageous be-
cause it not only eliminates the internal linkage necessary for hybrid systems, but
also extends the scope of potential application use cases by training the model for
multiple objectives. Several multi-lingual ASR systems were recently proposed
based on a monolithic neural network architecture without language-dependent
modules, showing that modeling of multiple languages is well within the capabil-
ities of an end-to-end framework. There has also been growing interest in multi-
speaker speech recognition, which enables generation of multiple label sequences
from single-channel mixed speech. In particular, a multi-speaker end-to-end ASR
system that can directly model one-to-many mappings without additional auxiliary
clues was recently proposed. In this paper, we propose an all-in-one end-to-end
multi-lingual multi-speaker ASR system that integrates the capabilities of these
two systems. The proposed model is evaluated using mixtures of two speakers
generated by using 10 languages, including mixed-language utterances.

1 INTRODUCTION

The expressive power of an end-to-end automatic speech recognition (ASR) system enables direct
conversion from input speech feature sequences to output label sequences without any explicit in-
termediate representations and hand-crafted modules (Amodei et al., 2015; Soltau et al., 20165 Hor1
et al.| 2017} |[Chorowski & Jaitly, [2016; (Chan et al., 2016). In addition to eliminating these interme-
diate linkage components found in hybrid systems, the direct optimization of the whole end-to-end
system allows the model to be more easily targeted to different scenarios simply by changing the
training data and objectives.

Multi-lingual speech recognition is one such scenario, in which the goal is to support recognition
of multiple languages. Conventional approaches require language dependent modules and rely on
a pipeline processing consisting of language identification followed by recognition of speech with
matched language-dependent system. However, recent studies have demonstrated end-to-end sys-
tems that can recognize multiple languages without language dependent modules (Watanabe et al.,
2017a; |Seki et al., 2018b; [Toshniwal et al.| |2018). These methods eliminate the need for a lan-
guage identification module, making it easier for an application developer to produce systems for an
arbitrary set of languages.

Whereas conventional ASR systems support recognition of speech by a single speaker, it is typically
difficult or impossible to use them in scenarios where multiple people are talking simultaneously.
There has recently been growing interest in dealing with such situations, with many developments in
the field of single-channel multi-speaker ASR (Cooke et al.,|2009; Rennie et al.,|2010; [Hershey et al.,
2010520165 [Isik et al., 20165 Chen et al.,|2017;|Qi1an et al., 2017;|Yu et al.,[2017;|Chen et al., 2018)).
The goal of single-channel multi-speaker speech recognition is to recognize the speech of multiple
speakers given the single-channel mixture of their acoustic signals, in a one to many transformation.
Promising techniques have been proposed for this task, but earlier works have required the availabil-
ity of additional training information such as the isolated source signals of each speaker (Isik et al.,
2016) or the phonetic state alignments (Qian et al., |2017; [Yu et al.| |2017) for effective learning.
Some of these also require an explicit intermediate separation stage prior to recognition (Isik et al.,
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Figure 1: Overview of the proposed end-to-end multi-lingual multi-speaker ASR system. The en-
coder networks transform an input speech mixture into a set of high-level hidden representations.
The decoder network generates output label sequences from each encoder network’s output. As
a multi-lingual ASR system, the recognizer supports the input of multiple languages and allows
speakers to switch languages during an utterance (code-switching). The decoder network generates
a language ID followed by a character sequence, and repeats the generation of a language ID and
character sequence when the speech includes code-switching.

20165 Settle et al., 2018; Yu et al., 2017). However, |Seki et al.| (2018a) recently proposed an end-to-
end architecture to directly generate multiple hypotheses from a speech mixture without requiring
additional auxiliary training signals and separation modules. In addition, |Qian et al.|(2017) reported
that the recognition of two-speaker mixtures using models trained for two-speaker and three-speaker
mixtures shows equivalent performance (Qian et al., 2017). Therefore, it may be possible to further
eliminate modules which depend on the number of speakers by assuming a large enough maximum
number of speakers.

In this paper, we further integrate end-to-end multi-lingual ASR with end-to-end multi-speaker ASR,
to propose an unprecedented all-in-one end-to-end multi-lingual multi-speaker ASR system. Fig-
ure[T]shows an overview of the multi-lingual multi-speaker ASR system for a mixture of two speak-
ers, where one speaker first speaks in Japanese then in English, while the other speaker speaks in
Chinese. In this example, the left side encoder and decoder networks perform recognition of multi-
lingual speech with language switching between Japanese and English, and the right side networks
perform recognition of the Chinese part. The input speech is a mixture of two speakers and the
system is expected to generate hypotheses of two character sequences, one for each speaker. We
describe the recognition of multi-lingual speech in Section |2} and the recognition of multi-lingual
multi-speaker speech in Section [3] respectively. We evaluate the proposed model using a large
dataset of two-speaker mixtures generated by using 10 languages including code-switching in Sec-
tion[d] and conclude the paper in Section 5]

2  MULTI-LINGUAL SPEECH RECOGNITION

2.1 END-TO-END ASR NETWORK

We employ a hybrid joint CTC/attention end-to-end ASR framework (Watanabe et al.,|2017b). An
attention-based encoder-decoder network predicts an N-length label sequence Y = {y, € U|n =
1,..., N} given a T-length input feature vector sequence O and the past label history, where U
denotes a set of character labels. At inference time, the previously emitted labels are used, whereas
at training time, the N-length reference labels R = {r,, € U|n = 1,..., N} are used in a teacher-
forcing fashion. The probability of sequence Y is computed by multiplying the sequence of condi-
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tional probabilities of label y,, given the past history y;.,—1:
N
patl(Y|O) = Hpatt(ynlovylznfl)- (])
n=1

The model is composed of two main sub-modules: an encoder network and a decoder network. The
encoder network transforms the input feature vector sequence O into a C'-dimensional high-level
representation H = {h; € RY|l = 1,..., L}, where L is the length of the sequence and usually
L < T due to subsampling. The decoder network emits labels based on the label history y and a
context vector c calculated using an attention mechanism which weights and sums the representation
sequence H with attention weight a. A hidden state e of the decoder is updated based on the previous
state, the previous context vector, and the emitted label. This mechanism is summarized as follows:

H = Encoder(0), (2)
yn ~ Decoder(cp, Yn—1), 3)
Cn, an, = Attention(a,—1, en, H), )
en, = Update(en—1,Cn—1, Yn—1); (5)

The hybrid CTC/attention network also includes a connectionist temporal classification (CTC) sub-
module, where the probability of label sequence Y is computed as:

L
Pac(Y10) = > ] p(zilzi-1,Y)p(2]0), 6)
Z =1
where p(z;|z;-1,Y") represents state transition, which satisfies monotonic alignment constraints in
CTC, and p(z;|O) is the frame-level label probability computed by
p(21|0) = Softmax(Linear(h;)), 7
where Linear(-) is the final linear layer of the CTC sub-module. The summation over all possible
sequences Z € Z = {(z1,...,210)|z1 € U U {blank},Vi} is efficiently computed by using the
forward-backward algorithm, where blank represents a special label that emits nothing in CTC.

The CTC loss and the attention-based encoder-decoder loss are combined with an interpolation
weight A € [0, 1]:

ﬁhyb = Aec + (1 — /\)ﬁatt, (8)

where we define the CTC and attention losses as:
Lee = Lossee (Y, R) & —log pue(Y = R|O), 9)
L = Lossy (Y, R) £ —log pa(Y = R|O), (10)

based on the cross entropy. Both CTC and encoder-decoder networks are also used in the inference
step. The additional CTC objective provides fast and accurate inference during training and decoding
thanks to its monotonic alignment property (Watanabe et al., 2017b)). In addition, the CTC objective
can be used to reduce the computational cost in permutation selection, which will be described in
Section 3.2

2.2 AUGMENTED CHARACTER SET

For the recognition of multiple languages, we employ the union of all target language character
sets as an augmented character set, i.e., Y = UEN UUP U --- , where UPN'P" is a character
set of a specific language, as in [Watanabe et al.| (2017a) and [Toshniwal et al.|(2018). By using
this augmented character set, likelihoods of character sequences can be computed for any language
without requiring a separate language identification module. The network is trained to automatically
predict the correct character sequence for the target language of each utterance.

2.3 AUXILIARY LANGUAGE IDENTIFICATION

Language identification symbols, such as “[EN]” and “[JP]” for English and Japanese, are further
added to the augmented character set for an explicit identification of the target language and for
modeling the joint distribution of a language ID and a character sequence (Wu et al.|[2016;[Watanabe
et al., 2017aj [Li et al| [2018). The language ID is inserted at the beginning of the reference label.
The final augmented character set is /™" = ¢/ U {[EN], [JP],...}.



Under review as a conference paper at ICLR 2019

2.4 CODE-SWITCHING SPEECH

It is natural for speakers of multiple languages to switch language between or during utterances, a
phenomenon known as code-switching. Monolingual speakers also frequently use code-switching
with foreign named entities and expressions. Code-switching speech is particularly challenging for
conventional ASR systems, and typically requires combining multiple mono-lingual systems under
a language identification module.

It was showed in |Seki et al.| (2018b) that multi-lingual speech recognition with code-switching can
be more elegantly solved using an end-to-end multi-lingual ASR system trained on a dataset of
code-switching speech. Because existing corpora of code-switching speech are limited and thus
inadequate for large scale experiments with end-to-end frameworks, |Seki et al.| (2018b) instead gen-
erated a large code-switching corpus by concatenating speech from existing monolingual corpora.
Here, we use the same strategy to generate a large dataset of multi-speaker multi-lingual speech with
code-switching. We describe the generation procedure in more details in Section[d.1.1]

3 MULTI-LINGUAL MULTI-SPEAKER ASR

3.1 ATTENTION LOSS FUNCTION FOR END-TO-END MULTI-SPEAKER ASR

When a speech mixture contains speech uttered by S speakers simultaneously, the encoder network
generates S hidden representations from the 7'-frame sequence of D-dimensional input feature vec-
tors, O = {o, e RP|t =1,....T}:

H? = Encoder’(0), s =1,...,8S. (11)

In the training stage, the attention-based decoder network uses reference labels R = {R',... R°}
for the generation of hypotheses, in a teacher-forcing fashion. There is however here an ambiguity,
known as the permutation problem (Hershey et al., 2016), as to which reference label should cor-
respond to which estimate. Therefore, the conditional probability of the decoder network for the
u-th output depends on the selected v-th reference label. The probability of the n-th label y" is
computed by conditioning on the past reference history r7.,,_;:

Par(Yar'10) = [ [ pa (Wi [H" 78,0 1).- (12)
n

The attention-based decoder network computes the corresponding context vectors, decoder states,
and output labels as:

bV am? = Attention(a, ", ew?, H"), (13)

ew? = Update(e, "y, en 1, o), (14)

yr¥ ~ Decoder(ci®, r")). (15)

In the training stage, all possible permutations of the S sequences R® = {r{,...,73 } of N

reference labels are considered, and the one leading to minimum loss is adopted for backpropagation,
resulting in a permutation-free objective (Hershey et al., 2016} Isik et al.,2016;|Yu et al.,|[2017). Let

P denote the set of permutations on {1, ..., S}. The final attention loss L, is defined as
s
La = i Zl Lossa (Y™, R™(®), (16)

where 7(s) is the s-th element of a permutation 7.

3.2 REDUCING THE PERMUTATION SELECTION COST

The final loss of the model is calculated as the weighted sum of the losses from two modules, CTC
and encoder-decoder network. As the decoder network takes more computation time than CTC,
the permutation of reference labels is selected based on minimizing the CTC loss only: an optimal
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permutation 7 is calculated based on the CTC network output Y,;. (considered as a random variable)
corresponding to /¢ and the reference labels, as

S

T = arg minZLossCm(chc,R”(s)). (17)

(S —

This optimal permutation is then used to compute both CTC and attention losses,

S

Ectc = Z Lossctc(}/cfcv Rﬁ(S))a (18)
s=1
s S N
‘Catt = Z LOSSa[t()/af{Tr(S), Rﬂ-(s)), (19)
s=1

which are combined as in Eq.

3.3 TRAINING A MULTI-LINGUAL MULTI-SPEAKER SYSTEM

By defining the augmented character set as in Section [2.3] and using a multi-lingual multi-speaker
corpus, we can train the system to recognize simultaneous speech by multiple speakers in multiple
languages. We describe a way to generate such multi-lingual multi-speaker corpus below.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP
4.1.1 CORPUS

A multi-lingual multi-speaker corpus was generated using the following corpora: WSJ (En-
glish) (Consortium), [1994; |Garofalo et al.| [2007), CSJ (Japanese) (Maekawa et al., [2000), HKUST
(Chinese Mandarin) (Liu et al.}2006)), and Voxforge (German, Spanish, French, Italian, Dutch, Por-
tuguese, Russian) (VoxForge) for a total of 622.7 hours and 10 languages. The generated mixtures
are intended to mimic overlapped speech by two speakers, where each speaker may speak any lan-
guage and change language during the utterance. Because available corpora typically do not share
speakers, we here concatenate utterances in various languages uttered by different speakers. Two
such streams are prepared and mixed down into a multi-lingual overlapped speech mixture with
code-switching. We now explain this process in more detail. We first sample the number of con-
catenation nl .., and n2 ., ranging from 1 to Neonca for code-switching within each stream. Then,
nk .o @and n2 .. utterances are sampled from the union of original corpora. We limit the number
of times each utterance can be selected to 7y, and prevent the same speaker from appearing in
both streams to be mixed. The probability of sampling a language is proportional to the duration
of its original corpus, while that of sampling an utterance within a language is uniform. Selected
utterances are concatenated into respective streams, which are mixed with randomly selected SNR
ranging from O to R dB. Since the durations of the streams to be mixed are different, we randomize
the starting point of the overlapping part by padding the shorter stream with silence. These proce-
dures are repeated until the cumulative duration d of the generated corpus reaches the total duration
of the original corpora. In our experiment, Nconcar and nrense Were set to 3, and R was set to 2.5 dB.

4.1.2 NETWORK ARCHITECTURE

We followed the setup of earlier work on joint CTC/attention-based encoder decoder network (Hori
etal.,2017). As encoder network, we used a stack of 6-layer VGG network and 8-layer bi-directional
long short-term memory (BLSTM) network. For the generation of multiple hypotheses, the encoder
network was split at the BLSTM layer: the VGG network generates a single hidden vector, from
which two speaker-differentiating 2-layer BLSTMs generate two hidden vectors. The two hidden
vectors are further independently fed into the (shared) 6-layer BLSTMs and the decoder network
to generate hypotheses for the utterances in the mixture. As input feature, we used 80-dimensional
log mel filterbank coefficients with pitch features and their delta and delta delta features extracted
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Figure 2: Network architecture with the two speaker mixture case.

using Kaldi (Povey et al.,2011). The BLSTM layer has 320 cells in each layer and direction, and a
linear projection layer with 320 units follows each BLSTM layer. The decoder network has a 1-layer
LSTM with 320 cells.

4.1.3 OPTIMIZATION

We used the AdaDelta algorithm (Zeiler, |2012) with gradient clipping (Pascanu et al., 2013) for
optimization. The networks were implemented using ChainerMN (Akiba et al.,2017)) and optimized
under synchronous data parallelism using 8 GPUs.

In a preliminary experiment, we found that the flat start training of the randomly initialized model
using the mixed speech resulted in poor generalization. Therefore, we first trained a randomly
initialized network using single-speaker speech without code-switching. The network was then
retrained using mixed speech without code-switching, and finally using mixed speech with code-
switching. When moving to mixed speech, the other speaker-differentiating encoder was initialized
using the already trained one by copying the parameters with random perturbation, w’ = w x (1 +
Uniform(—0.1,0.1)) for each parameter w.

4.2 RESULTS

4.2.1 RECOGNITION PERFORMANCE

Table [T] shows character error rates (CERs) for the generated multi-lingual multi-speaker speech
recognized by the baseline multi-lingual single-speaker model. Results are reported separately ac-
cording to the number of concatenated utterances in each stream within the mixture. We can see that
the baseline model has high CERs, over 100%, because the model was trained as a multi-lingual
single-speaker ASR system. For the evaluation of the baseline system, the generated hypothesis is
duplicated to match the number of references.

Table[2]shows the CERs for the generated speech recognized with the proposed model. Our proposed
model significantly reduced the CERs from the baseline model, obtaining an average CER of 44.5%,
a 57.5% relative reduction from the baseline.

To investigate the lower bound of CER for the generated corpus, we evaluated the performance of
the multi-lingual single-speaker ASR system of |Seki et al.| (2018b) on each of the multi-lingual
streams used in the generated corpus, prior to mixing. This can be considered an oracle result with
perfect speech separation. Table [3] shows the oracle CERs. The average CER of the oracle result
was 25.4%, showing that there is a room for further performance improvement.
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Table 1: Character error rates (CERs %) of mixed speech recognized by the baseline multi-lingual
single-speaker ASR system.
# concat. utt. in softer stream
1 2 3 Avg.
# concat. utt. 1 1072 107.3 109.6 | 108.0
in louder 2 107.5 100.5 102.0 | 103.3
stream 3 109.1 101.1  98.1 | 102.7
| Avg. | 107.9 103.0 103.2 | 104.7

Table 2: CERs (%) of mixed speech recognized by our proposed multi-lingual multi-speaker ASR
system.
# concat. utt. in softer stream

1 2 3 Avg.

# concat. utt. 1 429 420 403 41.7
in louder 2 41.6 46.7 475 453
stream 3 40.6 479 50.8 46.4

Avg. | 41.7 455 462 | 445

Table 3: Oracle CERs (%) of isolated speech for each of the utterances appearing in the mixtures
used in Tables[I]and 2} recognized by the baseline multi-lingual single-speaker ASR system.
# concat. utt. in softer stream
1 2 3 Avg.
# concat. utt. 1 244 253 253 | 250
in louder 2 252 26.1 259 | 257
stream 3 25,5 254 259 | 25.6
Avg. | 25.1 256 257 | 254

Table 4: Language ID error rates (LERs %) of the baseline, proposed, and oracle systems.

baseline 86.8
proposed 18.6
oracle 2.8

4.2.2 LANGUAGE IDENTIFICATION

Table ] shows language identification error rates (LERs) of the baseline single-speaker system, our
proposed system, and the oracle system described above. The LER was calculated by computing
the edit distance between the predicted language IDs and corresponding reference language IDs.
Similar to the CERs, there is a gap between the proposed and oracle results, although the obtained
LERs were much better than with the baseline single-speaker ASR system.

4.2.3 RECOGNITION EXAMPLE

Table 5] shows three examples of transcriptions generated by the proposed model. The first example
contains German and Japanese utterances, where there is no code-switching. The results are almost
perfect. In the second example, one stream is a concatenation of English speech followed by Chi-
nese speech, and the other is a concatenation of two Japanese utterances. The Japanese result has a
few errors but these errors are in fact mostly correct in terms of pronunciation. The third example
includes more complex utterances with code-switching, where each stream contains three concate-
nated utterances. As shown in Table 2] this is the most difficult condition and the CERs are higher
than in the other cases. The network did make substitution, insertion, and deletion errors, but there
is no swapping of words between sentences, and language IDs are correctly estimated.

5 CONCLUSION

We proposed an end-to-end multi-lingual multi-speaker ASR system by integrating a multi-lingual
ASR system and a multi-speaker ASR system. The model is able to convert a speech mixture to mul-
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Table 5: Examples of multi-lingual multi-speaker recognition result. The CER of hypotheses HYP1
and HYP2 are shown in the parentheses, respectively. Errors are emphasized in red color. “*” is a
special token inserted to pad deletion and insertion errors for better readibility.

REF1: [DE] eine hohere geschwindigkeit ist moglich

Example 1 |HYP1: [DE] eine hoh*re geschwindigkeit ist méglich (CER=2.6%)

REF2: [JP] XT LB CONFZEALZPES O L

HYP2: [JP] ¥R ONEZEATNELE D L (CER=0.0%)

REF1: [EN] grains and soybeans most corn and wheat futures prices were
stronger [ZH] tHEN

Example 2 |HYP1: [EN] grains and soybeans most corn and wheat futures prices were
strongxk [ZH] tJZHY (CER=2.8%)

REF2: [JP] 2 —C CCEH T ANETogUdI M T — & MRFEICRT £ 1
[Pl 7= ATFEem

HYP2: [JP] 2 — 2 CHEHITRIVLRIEIE T — ZF TR T L DI
[JP] 7= ATF &h (CER=8.6%)

REF1: [EN] he noted that last week’s one hundred eight point dro*xp inx*
*xthe dow jxon*x*es industrial average resulted from a slightly
weaker dollar [ZH] Wus*xx - 2R AA [DE] ich darf nicht

Example 3 |HYP1: [EN] it arter thxe last week’s one hundred eight point cround and
with* daw jumn the*xxdefter_almove**xs resulted from a flx*atly
reaker dollar [ZH] WuZAHAy HALZE [G]#Y [DE] ich darf nicht (CER=
29.2)

REF2: [ES] sortexando los p*rxomontorios de los respaldos los golfos y
penins *ulas formados por las **rodillas [JP] 2z —/RD—FIZ DWW
T ES E I E Gwonxifiimz L 2T TV IT v & v ) X9 RIS
ToTWET ZNTE—2Z—NSZNZTNOMEDOHIEL £—2 —
SOty 3 Deex FTE ST e VW) DZFWIL 72w ATTIT R ED
[ZH] g

HYP2: [ES] sortenando los para_el turios de las respaxdos los golfos *
penens bulas formados por la* carxeixdas [JP] 2 —{RD—TFIZ DWW
TE-IEIERATVIDOZ L ZITHITVITF L & Vv ) RIS
BToTWET ZVWTE—2Z—NWSZNZTNOMEDOHIEL £—2 —
CHOkwLAZDAREIAFTZTLIEVIDEHIALIEZVATTITNED
[zH] ik (CER=20.2)

tiple hypotheses directly without explicit separation. We evaluated the proposed model using speech
mixtures involving two simultaneous speech streams in which the language can switch between 10
languages during the utterance. Our all-in-one multi-lingual multi-speaker system obtained 57.5%
relative improvement in CER over the baseline system, and showed strong potential towards this
challenging task.
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