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Abstract
Automatically tracing elongated structures, such as axons and blood vessels, is a challenging prob-
lem in the field of biomedical imaging, but one with many downstream applications. Real, labelled
data is sparse, and existing algorithms either lack robustness to different datasets, or otherwise
require significant manual tuning. Here, we instead learn a tracking algorithm in a synthetic envi-
ronment, and apply it to tracing axons. To do so, we formulate tracking as a reinforcement learning
problem, and apply deep reinforcement learning techniques with a continuous action space to learn
how to track at the subpixel level. We train our model on simple synthetic data and test it on mouse
cortical two-photon microscopy images. Despite the domain gap, our model approaches the per-
formance of a heavily engineered tracker from a standard analysis suite for neuronal microscopy.
We show that fine-tuning on real data improves performance, allowing better transfer when real
labelled data is available. Finally, we demonstrate that our model’s uncertainty measure—a feature
lacking in hand-engineered trackers—corresponds with how well it tracks the structure.
Keywords: tracking, tracing, neuron, axon, reinforcement learning, transfer learning

1. Introduction

Although image segmentation has received significant attention as a tool for analysing biomedical
image data (Greenspan et al., 2016), it does not immediately provide geometric information. In-
deed, semantic pixel-level segmentation is often an input to further analytical processes: measuring
sizes, areas, or being used as inputs to global shape representations. In contrast, tracking—often
implemented through Kalman filtering, particle filtering, or semi-heuristic connectivity algorithms,
can provide additional structural information. In particular, tracking differs from segmentation in
several crucial ways:

• Tracking establishes an order to locations;

• Tracking can be used to capture semantically useful properties of data (e.g. velocity of move-
ment; length of a structure) without an explicit label being applied to each observation point;
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• Algorithms for tracking (Bar-Shalom and Li, 1995; Van Trees and Bell, 2007) often include
some form of model-based parameter estimation for properties of interest (e.g., Kalman filters
for velocity estimation).

Tracking may also involve solving some form of correspondence, or target assignment problem:
this is particularly true when multiple structures are being tracked, i.e., multiple, distinct paths
exist within an image, and also when objects have gaps due to geometric factors associated with
slice selection or confocal imaging. An analogy can be drawn to tracking pedestrians from video
data: multiple pedestrians may need to be tracked, and occlusions from other people or objects are
common. While a segmentation of an image frame would typically exclude occluded objects, a
tracking algorithm would need to infer the objects’ locations through time and space.

Tracking is of interest in biomedical imaging where it can be applied to analyse thin, elon-
gated structures that might vary in apparent contrast and curvature, or have crossing and branching
patterns. The structured output that can be produced by tracking is useful to quantify different
aspects of the underlying geometry (e.g., number of structures/branches, crossing point locations,
etc.), which is not possible with segmentation. As such, tracking algorithms have been applied to
biomedical datasets with thin structures, for example: neurons (Meijering, 2010; Peng et al., 2010,
2015; Acciai et al., 2016; Poulin et al., 2017), blood vessels (Fraz et al., 2012; Kumar et al., 2015),
and muscle fibres (Farris and Lichtwark, 2016).

To alleviate the need for hand-engineering trackers for different biomedical image datasets, we
first formulate the task of tracing paths along the centrelines of elongated structures as a reinforce-
ment learning (RL) problem, and then explore the use of deep RL (DRL) to train deep convolutional
neural networks (CNNs) to learn tracking policies (Zhang et al., 2018). This removes the need for
explicit appearance (observation) models and state evolution models, and additionally enables po-
tentially richer objectives to be optimised.

We extend prior work in several ways. Firstly, we utilise a continuous action space, in contrast
to prior work using DRL in biomedical imaging (Ghesu et al., 2016; Maicas et al., 2017; Liao
et al., 2017; Krebs et al., 2017; Alansary et al., 2018; Zhang et al., 2018; Al and Yun, 2018; Ghesu
et al., 2019), to perform subpixel tracking. Secondly, unlike Zhang et al. (2018), we address the
challenge of limited training data, which is common in biomedical settings; we train our model
on a simple synthetic dataset and test it on an axonal mouse cortex dataset (Bass et al., 2017),
which contains many crossing elongated structures. The results of our tracker, which has to perform
transductive (Pan et al., 2010) or “zero-shot” transfer to the microscopy data, can be seen in Figure 1.
Despite this, our model’s performance approaches that of the current standard in the field, the Vaa3D
tracker (Peng et al., 2010). By fine-tuning on the real data, which is viable with a small amount of
labelled data in a mainly unlabelled dataset, we can improve performance even further. Finally, we
demonstrate that the entropy of our model’s outputs—a measure of uncertainty—corresponds with
how well it stays on track. Such a property is valuable in biomedical contexts, and is often lacking
from many trackers, including Vaa3D’s. Our work represents another step towards learning general
trackers for biomedical images, and we have open sourced our code1 and data2 to support further
research in this direction.

1. https://bitbucket.org/bicv/axon_tracking_with_rl/
2. https://www.zenodo.org/record/1182487
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Figure 1: The operation of our learned tracker (left) on a microscopy image of several axons (Bass
et al., 2017). After starting the tracker from manually labelled end-points, we can con-
struct traces of all found axons, including branches (centre). A manual segmentation of
the axons (right) is provided for comparison.

2. Background

2.1. Reinforcement Learning

RL is a branch of machine learning in which the objective is to learn to make an optimal sequence
of decisions in order to maximise a reward (Sutton and Barto, 1992). In our case, the task is to
trace the centreline of a biological structure from one end to another. Given the wide variety in the
appearance of these structures, as well as the imaging conditions, our aim is to develop a learning
agent that can be trained on the data in question, rather than having to manually tune a fixed tracking
algorithm on each new dataset. We shall now explain RL more generally, as well as our specific
algorithmic choices.

In RL, an agent inhabits an environment, and makes a sequence of decisions based on what it
observes. At every timestep t, the agent receives the current state of the environment, st , and chooses
an action, at , according to its policy π—a probability distribution that maps states to actions. As a
result of taking an action, the agent receives a new state together with a scalar reward rt+1, which
gives it information about its performance. The goal of the agent is to maximise its expected return,
E[R], in episodes of length T , where R = ∑

T−1
t=0 γ trt+1. Here, γ ∈ [0,1] is a discount factor which can

be tuned to prioritise immediate rewards over more distant ones.
To solve our RL problem, we use an actor-critic algorithm, which combines learning a policy

(actor) and value function (critic) (Sutton and Barto, 1992). Moreover, we use DRL, modelling
both the policy and value functions with CNNs.3 The use of CNNs in RL agents allows them
to learn directly from images, with successful applications including real-world visual navigation
(Arulkumaran et al., 2017).

In order to achieve subpixel accuracy when tracing centrelines, the agent should ideally output
continuous (real-valued) actions that can be mapped to subpixel coordinates. We therefore use
proximal policy optimization (PPO) (Schulman et al., 2017), a state-of-the-art actor-critic algorithm
which supports continuous action policies. Its main benefit is the use of an adaptive penalty on the

3. The CNN architectures can be found in Appendix A.

132



DEEP REINFORCEMENT LEARNING FOR SUBPIXEL NEURAL TRACKING

amount by which the policy can change during an update, which results in more stable training than
many other RL algorithms.

The original PPO algorithm used Gaussian distributions, which have infinite support (Schulman
et al., 2017). In practice, we may want to constrain the action space, for example to prevent the agent
from traversing many pixels in one action. Rather than penalising or thresholding large actions,
which can adversely bias learning, we instead use beta distributions, which have finite support and
have empirically been shown to improve the convergence of DRL algorithms on a range of problems
(Chou et al., 2017).

Actor-critic algorithms make use of a learned value function to reduce the variance of the policy
updates (Schulman et al., 2016). We use a particular form of variance reduction technique known
as generalised advantage estimation (GAE) (Schulman et al., 2016), which introduces a small bias
in return for extra variance reduction.

In actor-critic methods, the value function is only needed during training. Pinto et al. (2017)
introduced the asymmetric actor-critic algorithm, in which the critic is given extra information that
is available only during training, which can improve the learning of the true value function. Conse-
quentially, the actor then benefits from less biased policy updates. In our setup, we achieve this by
giving the critic access to the “ground truth” (the centreline, which acts as a visual representation of
the reward), which allows it to learn the underlying value function more easily. The actor does not
view the ground truth; and once trained, it operates directly upon on the image data, with no explicit
segmentation.

2.2. Biomedical Imaging

There are several areas within the field of biomedical imaging that are related to our work. We
will briefly cover research on thin structures within biomedical images (e.g., axons, neurons and
vessels), tracking, and other uses of DRL for image analysis tasks.

2.2.1. THIN STRUCTURES

The analysis of elongated anatomical structures such as neurons, retinal vasculature, and muscle
fibres, are important in the fields of medicine, physiology and neuroscience for diagnosis, and for the
study of biological processes. These thin structures have varying properties, due to the differences in
imaging techniques (microscopy, ultrasound), conditions (lighting, noise), and due to the underlying
biological variability. For example, whole neurons have cell bodies, as well as dendrites and axons
containing synapses which are blob-like in appearance, while retinal vasculature has a tree like
structure, often with many branches (Fraz et al., 2012). Much of the prior work has focused on using
segmentation algorithms for the analysis of these datasets. Segmentation of retinal vasculature has
been extensively studied, and we refer the reader to Fraz et al. (2012) and Kirbas and Quek (2003)
for detailed reviews of the topic. More recent works have used deep neural networks to segment
thin structures in vessels (Maninis et al., 2016), muscle fibres (Farris and Lichtwark, 2016; Xie
et al., 2016; Cunningham et al., 2017), whole neurons (Zhou et al., 2018; Li et al., 2017; Liu et al.,
2018), and in axons (Bass et al., 2019). Of particular relevance is the work of Li et al. (2017), which
involved both segmentation and tracking. They used a CNN for the segmentation of whole neurons,
followed by a tracking algorithm to extract a graph structure from the segmentation map. While
successful, this type of approach relies on an accurate segmentation for tracking to succeed.
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2.2.2. TRACKING

Tracking in biomedical images has been used for a range of applications, including tracing elongated
structures such as neurons (Meijering, 2010; Skibbe et al., 2019), vessels (Fraz et al., 2012), and
muscle fibres (Farris and Lichtwark, 2016). Tracking can be used either with or without prior
segmentation in situations where (i) one wants to quantify the tracked structure, (ii) the proportion
of pixels representing the structure of interest is small (Helmstaedter et al., 2008) and (iii) there are
branches, terminations or obscuring structures, such as blood vessels (Fraz et al., 2012). The path
established by a tracker can be used to order and capture quantitative measures about morphology
of entities, such as width, direction, the presence and number of branches, information that requires
additional processing if segmentation is used. Moreover, tracking methods can identify branching
points over the course of tracing and they can maintain the identities of branches emerging from the
branching points, providing information on topology and connectivity.

2.2.3. DEEP REINFORCEMENT LEARNING

The combination of deep neural networks with reinforcement learning (DRL) has been successfully
utilised across a range of applications in the last few years (Arulkumaran et al., 2017), including
biomedical imaging (Ghesu et al., 2016; Maicas et al., 2017; Liao et al., 2017; Krebs et al., 2017;
Alansary et al., 2018; Zhang et al., 2018; Al and Yun, 2018; Ghesu et al., 2019). These combine
both feature learning (as opposed to utilising hand-engineered appearance models) with a general
optimisation objective, formulated as a sequential decision problem in order to fit into the RL frame-
work. Prior works have included applications to landmark detection (where the agent is similarly
“embodied” in the image and must find a specific structure) (Ghesu et al., 2016; Maicas et al., 2017;
Al and Yun, 2018; Ghesu et al., 2019), view planning (finding optimal 2D views in 3D images for
downstream tasks) (Alansary et al., 2018), and image registration (aligning images to the same co-
ordinate system) (Liao et al., 2017; Krebs et al., 2017). While these applications allow the agent
to take any path to the solution, tracking requires the path to be as close as possible to the ground
truth path of the underyling (in our case, anatomical) structure at every point. Having an underlying
path allows for a denser reward signal, but also leaves less room for failure. Zhang et al. (2018)
previously proposed the use of DRL for centreline tracing for blood vessels. One of the major dif-
ferences is their use of a discrete action space, which limits their ability to make subvoxel traces.4

In addition, they are able to train directly on hundreds of real labelled images, so do not have to ad-
dress a transfer learning problem. Finally (with the exception of Al and Yun (2018) who also use an
actor-critic approach but still with discrete actions), all of these prior works have been based on the
deep Q-network (DQN) (Mnih et al., 2015) or variants thereof, and are hence restricted to discrete
action spaces; whereas we utilise DRL with a continuous action space for biomedical imaging ap-
plications. Additionally, the output of DQNs are “Q-values” as opposed to probability distributions,
where the latter allows us to directly provide uncertainty estimates via the entropy of the policy.

3. Subpixel Neural Tracking via Reinforcement Learning

3.1. Environment

We now discuss how tracing centrelines in medical images can be formulated as an RL problem.
This includes the environment, the state and action spaces and the reward function.

4. We also formulate a different reward function to specifically account for taking subpixel movements.
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Environment: Our environment is based on 2D greyscale images of a neuron; in RL terminology
we use one image per “episode”, such that the agent receives a new neuron to track every episode.
For our experiments, we use synthetic and microscopy images. In both cases the background is
noisy with a low average intensity, and the neuronal structures are depicted by brighter pixels. We
treat the agent as being “embodied” in the environment, which means that it is positioned within
the image. The agent starts at a predefined position—one end of an axon—and moves until it finds
another end. If the agent does not find another end, we terminate the episode after 200 timesteps.
The environment generation is highly stochastic, but with selectable degrees of complexity.
State space: Rather than using the whole image as input, we provide an egocentric, multiscale
view to the agent, with all views at 11×11px. The view comprises of one window at full resolution
(11× 11px) and one 21× 21px window downscaled via bilinear interpolation to 11× 11px.5 In
order to give temporal context to the agent, we also provide the historical path—a view which
shows the previously visited pixels around the agent’s current position. The (asymmetric) critic
also receives a view containing the centreline. As the agent’s location, and hence the centre of
the views, is specified with subpixel accuracy, we use bilinear interpolation to provide a correctly
centred viewpoint to the agent. We zero pad all images when the view extends beyond the edge
of the original image. Finally, to provide further temporal context, we concatenate all the different
types of views with the corresponding views from the 3 previous timesteps (Mnih et al., 2015). The
full state for the agent is visualised in Figure 2.
Action space: Fine structures, like axons, can be smaller than the pixel size of the image, due to dis-
cretisation in the imaging process. Furthermore, data acquisition can occur at different resolutions.
To account for this, our aim is to achieve subpixel tracking. There are two components to attaining
subpixel accuracy. First, rather than using discrete control, we use continuous control, with actions
moving the position of the agent in 2D space. This means that the estimated position as the result
of any action comes in the form of floating point coordinates that potentially (indeed, usually) are
in between pixel centres. The second component relates to the reward function, discussed below.
Reward function: Our goal is for the agent to follow the centreline of an axon, which needs to be
expressed via an appropriate reward function. The base reward is the average integral of intensity
between the agent’s current and next location. To achieve subpixel accuracy, the spatial distribution
of image intensities is resampled at subpixel locations, using bilinear interpolation, to calculate the
reward function using the integral of intensity along straight line segments. As extra heuristics that
we found to be empirically useful, we also provide a negative reward if the agent does not move,
and also penalise switching directions more than once (defined as an action that is > 90◦ from the
previous action).6

3.2. Agent

The policy and value function of the agent are represented by separate CNNs, and are depicted in
Figure 2, along with their respective inputs. The output of the actor network is a set of parameters for
two independent beta distributions, from which actions (displacements in the x and y coordinates of
the agent) can be sampled.7 During training we sample actions, but during testing we use the means
of the distributions, which results in a deterministic policy for evaluation. As the support of the beta

5. As our synthetic data is slightly lower resolution than our real data, we use 1.5× the window size on the real data,
downscaled to 11×11px.

6. Reward pseudocode can be found in Appendix B.
7. We restrict the output parameters to be greater than 1 so that the beta distributions are unimodal.
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Figure 2: Inputs and architectures of the actor and the critic. All views are centered on the agent
at every step, with dimensions given in pixels. The window and the downscaled window
contain the pixel intensity values from the neuron image; the historical path contains only
information about the agent’s previous positions and the ground truth. The state contains
4 timesteps of this information. Both CNNs contain 2 convolutional (Conv) and 2 fully-
connected (Lin) layers. We also show the number of channels (C), kernel size (KS) and
output size (OS).

distribution is finite, we map samples from the policy ∈ [0,1] to pixel displacements ∈ [−4,4] in the
environment. The output of the critic network is a single value representing the value function.

Both networks are updated according to the PPO algorithm (Schulman et al., 2017) with dis-
count γ = 0.99, PPO clipping value ε = 0.2 and GAE (Schulman et al., 2016) eligibility trace value
λ = 0.95. After collecting a batch of 32 episodes, each network is updated 10 times within PPO’s
internal loop. We use the Adam optimiser (Kingma and Ba, 2015) with a learning rate of 0.0005
and an L2 weight decay factor of 0.0003.8

4. Experiments

4.1. Datasets

We evaluated our DRL tracker on several synthetic datasets and a microscopy dataset (Figure 3).
For all datasets we manually specified all start points (required for Vaa3D (Peng et al., 2010) and
our DRL tracker; see subsection 4.2).

Synthetic datasets: Real, labelled data is often difficult to obtain (due to paucity of data, noise,
etc.), and so we built a simulator to generate artificial images for training and validation. We simu-
lated single axons by fitting polynomial splines to constrained random walks through 2D space, and
adding Gaussian noise to the background. We tuned the intensity and noise settings as shown in Fig-
ure 3a to pretrain our tracker for the real data, but also trained trackers successfully on other settings,

8. Training pseudocode can be found in Appendix C.
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(a) SI (b) SI-RC (c) SI-W (d) SI-EN (e) SI-SN (f) MI (g) MI-GT

Figure 3: Examples of the 7 datasets used: synthetic (SI), synthetic reduced contrast (SI-RC), syn-
thetic wide (SI-W), synthetic extra noise (SI-EN), synthetic structured noise (SI-SN), and
microscopy images (MI). (a) is a synthetic image with the standard settings (background
and axon intensities + Gaussian noise) that we use for pretraining the tracker for the MI
dataset. (b), (c), (d) and (e) are synthetic images with different simulator settings. (f) was
collected from a mouse somatosensory cortex using two-photon microscopy (Bass et al.,
2017) with ground truth (GT) (g) labelled manually.

(a) Kernel density estimates of intensity
distribution

(b) Eigenvalue spectrum

Figure 4: Quantitative comparison of synthetic and real microscopy images. (a) Kernel density es-
timates of pixel intensities for microscopy data vs synthetic; also shown, samples drawn
from spatial white noise (W-Random) with a gamma distribution approximately match-
ing that of real images. (b) The top 20 eigenvalue components of real data, synthetic
environment, and that of white noise approximately matching the distribution of the real
data. See Appendix D.1 for details.

showing that our algorithm generalises to these particular conditions: lower contrast (Figure 3b),
wider structures (Figure 3c), extra noise (Figure 3d) and structured (Poisson) noise (Figure 3e).
Microscopy dataset: In the second stage, we tested our tracker on a mouse cortical axon dataset
(Bass et al., 2017). We took a subset of 20 2D images (produced from a 3D stack), and manually
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produced corresponding labels.9 To generate the 2D images, we used a max projection of the 3D
stack. The labels are in the form of ground truth binary images of the same size, in which the
corresponding axons were segmented, and axon centerlines labelled manually using the Vaa3D
software (Peng et al., 2010). We compare kernel density estimates and eigenvalue spectra of the
synthetic (SI) and real images (MI) in Figure 4. As shown in Figure 4a, the SI data matches the
decay in the pixel intensity values, but does not fit the low intensity pixels as well. Figure 4b
demonstrates that the SI data has some level of spatial structure, but is closer to noise in comparison
to the MI data.

4.2. Training and Testing

Training for each synthetic dataset was performed on 32,000 synthetic images.10 For each synthetic
dataset we validated our hyperparameters on a held-out set of 3,600 synthetic images, for a 9:1 train-
ing/validation split. We then tested our best model trained on the SI dataset on the 20 microscopy
images. For our fine-tuned model, due to the lack of labelled data we used a k-fold method in which
we fine-tuned the original model on 15 images and tested on the remaining 5, repeated on 4 subsets
of the data.

Two measures were used to assess performance: coverage and mean absolute error. The cov-
erage is the percentage of the axons (keypoints defined by the labels) on which the traced points
were within 3px, while the error is the average perpendicular distance between axon and trace key-
points.11 These metrics complement each other, as coverage quantifies how robust a tracker is (e.g.,
in the presence of sharp bends), while accuracy is the end goal. We compared our performance
against that of trackers implemented in the Vaa3D software (Peng et al., 2010): both the default
Vaa3D neuron reconstruction algorithm, which also requires start and end points as inputs, as well
as the APP2 neuron tracer (Xiao and Peng, 2013), which does not require start and end points.

The coverage and error of the DRL tracker is very high and very low, respectively, on the
synthetic validation sets, with little difference between the different image conditions (Table 1).
The performance of the DRL tracker trained on the standard synthetic dataset (SI) drops when it
is then applied to the microscopy dataset (84.10% / 1.88±2.23px). This is not too far from the
performance of Vaa3D, which is specialised for this kind of data (92.26% / 0.89±0.84px), which is
promising given that our tracker was never trained on real data, and does not incorporate any prior
knowledge about microscopy data. APP2 performs the worst (81.82% / 1.61±2.82px), highlighting
the difficulty of performing endpoint localisation as well as tracing. We can improve coverage by
fine-tuning on a very small amount of labelled data (89.08% / 1.82±2.13px), suggesting that our
two-phase training could be viable when a moderate amount of labelled data is available, or if an
existing, hand-engineered tracker is not available at all. Average results are available in Table 2
with the per-image summary statistics available in Table 5 and the distribution of errors available in
Figures 6 and 7.

As we use a stochastic policy, we can characterise the uncertainty of the DRL tracker by
evaluating its entropy at any state.12 There is a significant difference between the average en-

9. Note that producing centreline labels is a time-consuming process requiring an expert, restricting the amount of
labelled data that we were able to procure.

10. Training on each synthetic dataset takes less than 5 hours on a GeForce 1080Ti.
11. If any tracker has an error over 11px for more than 5 consecutive timesteps we consider tracking lost and exclude

these periods from our average distance error measure; we include raw results in Figure 7.
12. Note that the entropy of the beta distribution is upper-bounded by 0.
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Table 1: Validation performance: coverage (%) and average error ±1 standard deviation (px) of
DRL trackers, trained on different sets of synthetic images and validated on corresponding
simulator settings.

SI SI-RC SI-W SI-EN SI-SN

Cov. Error Cov. Error Cov. Error Cov. Error Cov. Error

93.37 0.64±0.88 94.13 0.68±0.88 94.62 0.39±0.82 96.18 0.53±0.66 94.72 0.59±0.76

Table 2: Test performance: coverage (%) and average error ±1 standard deviation (px) of trackers,
averaged over all microscopy images. DRL represents the performance of the agent trained
on SI data alone, and DRL (FT) represents the performance of the DRL agent after fine-
tuning on the MI data.

DRL DRL (FT) APP2 Vaa3D

Cov. Error Cov. Error Cov. Error Cov. Error

84.10 1.88±2.23 89.08 1.82±2.13 81.82 1.61±2.82 92.26 0.89±0.84

tropy within (< 3px) and outside (≥ 3px) the threshold: 0.91 on average for the DRL tracker
(p < 0.00001, paired t-test), and 0.78 for the fine-tuned DRL tracker (p < 0.00001, paired t-test)13,
indicating a quantitative increase in the trackers’ uncertainty if they stray from an axon. The ability
to extract such a value is in contrast to traditional trackers such as Vaa3D, which typically do not
quantify their uncertainty.

5. Conclusion

We proposed a new approach to tracking thin biological structures, such as axons and blood ves-
sels, that is capable of producing subpixel-level traces. This first involved formulating tracking such
structures as a reinforcement learning problem (Zhang et al., 2018). We then introduced a tracker
based on a combination of state-of-the-art deep reinforcement learning (DRL) techniques (Schul-
man et al., 2017; Chou et al., 2017; Schulman et al., 2016; Pinto et al., 2017), and exposed it to
an environment which simulates the physical processes of imaging. Our DRL tracker was close to
the performance, with respect to coverage, of the current standard for tracing neurons (Peng et al.,
2010), despite only being trained on simpler, synthetic data. Further, this is achieved without an
explicit segmentation being applied as a pre-processing step.

We were able to improve coverage performance by fine-tuning the tracker on a small amount of
real data, which makes our method viable for semi-supervised settings. A promising direction for
future work is to incorporate synthetic data from conditional generative models during training in
order to improve the realism of the synthetic data, and hence performance on real data; for example,
the CapsPix2Pix model (Bass et al., 2019), from which synthetic images were utilised to improve

13. See Table 6 for the per-image breakdown.
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the performance of segmentation models trained on the same microscopy dataset that we used in
our work (Bass et al., 2017).

Finally, we were able to extract a quantitative measure of uncertainty, which corresponded to
how well the tracker performed. While it appears that the uncertainty is well-calibrated, i.e., the
values are significantly different when the agent is on- and off-track, the distribution of values
also differ between images. Developing automated methods that stop tracking in test images using
entropy is an interesting avenue for future work.

Our proposed method can naturally be applied to tracking elongated structures in other types
biomedical images, and, furthermore, could serve as a building block for future research aimed at
3D subpixel tracking of elongated structures, for boundary trackers, and for other tasks that are
currently difficult to fully automate. On the other hand, this also opens up a challenging new task
for testing DRL algorithms, which are typically evaluated on video games with simple graphics
(Bellemare et al., 2013) or simple control tasks with symbolic inputs (Brockman et al., 2016).
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Appendix A. Neural Network Architectures

Tables 3 and 4 contain the network architectures for the policy and value networks, respectively. We
use ReLU nonlinearities between all hidden layers.

Table 3: Actor/policy network. The output of the network is two pairs of α and β parameters for
two beta distributions corresponding to displacements in the x and y coordinates. We
use a softplus nonlinearity and add 1 to the outputs of the final layer to ensure that these
parameters are > 1; this is done so that the beta distributions are always unimodal.

Layer type Input
channels

Input
size

Kernel
size

Stride Padding Output
channels

Output
size

Convolution 12 11×11 5×5 1 2 32 11×11
Convolution 32 11×11 3×3 1 1 32 13×13
Linear - 5408 - - - - 512
Linear - 512 - - - - 4

Table 4: Critic/value network. The output of the network is a single real number representing the
state’s value function.

Layer type Input
channels

Input
size

Kernel
size

Stride Padding Output
channels

Output
size

Convolution 16 11×11 5×5 1 2 32 11×11
Convolution 32 11×11 3×3 1 1 32 13×13
Linear - 5408 - - - - 512
Linear - 512 - - - - 1
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Appendix B. Reward Function

Algorithm 1: DRL Axon Tracking Algorithms - Reward Calculation

1: Input: current agent position pt , current action at , previous action at−1, ground truth centreline
image IG, counter k

2: Output: reward rt+1
3: Next agent position pt+1← pt +at

4: Distance travelled d←‖pt − pt−1‖
5: if d == 0 then
6: rt+1 = -1
7: else
8: Sample 100 points S between pt and pt+1

9: Reward rt+1← ∑
|S|
s=1 IG (xs,ys)

10: if angle between at−1 and at > 90◦ then
11: k← k+1
12: end if
13: if k (mod 2) == 1 then
14: rt+1←−rt+1
15: end if
16: end if

return rt
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Appendix C. Training Algorithm

Algorithm 2: DRL Axon Tracking Algorithms - Training

1: Set the batch size M and the max length of each episode N
2: Initialize the actor-network A(sa|θ a)
3: Initialize the critic-network C(sc|θ c)
4: repeat
5: for i = 1 to M do
6: Initialize the position of agent p0
7: Initialize the counter k← 0
8: Initialize the initial unit direction vector v0
9: Initialize the initial state for actor-network sa

10: Initialize the initial state for critic-network sc

11: for t = 1 to N do
12: Select the action at = A(sa|θ a);
13: Input the action at into the simulator and get s′a, s′c, rt , terminal;
14: Store the transition (sa, sc, rt , terminal);
15: if terminal then
16: break;
17: end if
18: sa← s′a, sc← s′c;
19: end for
20: end for
21: Update the actor-network A(sa|θ a) by using PPO
22: Update the critic-network C(sc|θ c) by using PPO
23: until A(sa|θ a) and C(sc|θ c) are converged

Appendix D. Further Experimental Results

D.1. Plausibility of Synthetic Environment

The use of synthetic environments for training DRL agents is common in robotics and autonomous
driving, but less so for image interpretation. In any use of simulation environments, the size of the
“reality gap” is a key factor in determining the ability to transfer the agent into a real environment or
task. Here, we describe the experiments to compare the synthetic environment with real microscopy
data.

We drew 20 images from the synthetic environments, and compared pixel intensity statistics and
second-order spatial statistics through eigen spectral analysis of the covariance matrices estimated
from randomly selected image patches. We also applied this analysis to white noise spatial fields,
and to 20 real microscopy images.

Firstly, from each of the 20 synthetic and 20 microscopy images analysed, we randomly selected
200 25×25 pixel spatial patches, yielding 4,000 patches. We then applied a kernel density estimate
to this data, using a Gaussian kernel of bandwidth 0.5 to produce estimates of image intensity in
Figure 4a.
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         Real

Synthetic

Figure 5: Eigenimages produced by finding the most important 10 eigenvalues for real image
patches and for synthetic patches. Note the similarity of the first 5 eigenimages in the
top and bottom rows, though there is a polarity change visible in many patches, and clear
differences for eigenimages 6-10.

Once we had the histogram of pixel intensities for real images, we fit a gamma distribution to
the intensity data, obtaining tight confidence intervals for the parameters (shape parameter 1.934±
0.003 with 95% confidence, and scale parameter of 7.699±0.014 with 95% confidence). We then
used these parameters to synthesise gamma-distributed white noise fields.

We also estimated the covariance matrix for each of the 3 sets of 4,000 image patches. The
eigenvalue spectra (eigenvalue normalised by sum of absolute eigenvalues) for the top 20 compo-
nents are shown in Figure 4b. The associated top 10 eigenimages corresponding to the microscopy
and synthetic environments are presented in Figure 5. The eigenimages corresponding to white
noise are essentially noise fields, and are not shown.

D.2. Error analysis during tracking

Figure 6: Distribution of errors (p(error) vs. error (px)) accumulated over 3,400 track locations in
all 20 images.

147



DEEP REINFORCEMENT LEARNING FOR SUBPIXEL NEURAL TRACKING

Table 5: Coverage (%) and average error ±1 standard deviation (px) of trackers on individual mi-
croscopy images.

ID DRL DRL (fine-tuned) APP2 Vaa3D

Cov. Error Cov. Error Cov. Error Cov. Error

1 87.24 1.49±1.60 83.73 1.94±2.50 98.88 1.58±2.10 95.93 1.00±0.91
2 86.01 1.41±1.40 89.66 1.62±1.80 79.68 1.47±1.70 91.97 1.11±1.40
3 94.24 1.90±2.30 94.96 1.78±2.60 99.28 0.93±1.10 98.32 0.79±0.60
4 95.75 1.22±0.94 92.99 1.10±1.30 94.27 0.75±0.96 99.79 0.88±1.20
5 94.68 1.43±1.10 85.69 2.58±2.60 91.41 1.50±2.30 95.71 0.72±0.80
6 78.16 3.78±3.50 92.29 1.78±2.00 92.51 1.47±2.60 91.22 0.90±0.61
7 92.27 1.75±1.20 92.05 1.45±1.40 97.73 1.15±1.30 95.91 0.89±0.79
8 75.72 2.06±1.60 83.39 2.06±1.60 81.47 1.13±1.00 84.35 1.11±0.80
9 49.26 3.79±4.20 92.65 3.50±3.10 35.54 3.98±6.00 94.61 1.49±1.10
10 94.18 1.50±0.49 94.63 1.36±0.41 56.82 2.13±2.1 97.54 1.05±0.77
11 92.22 4.49±4.50 95.56 2.36±2.60 92.96 2.10±3.80 98.52 0.73±0.48
12 72.43 2.06±2.60 76.47 1.46±1.40 79.82 1.13±1.70 90.54 1.01±0.82
13 94.40 1.24±0.96 96.86 1.37±1.50 85.93 3.20±4.70 96.72 0.82±0.68
14 88.73 3.06±2.70 95.77 3.69±3.30 100.00 1.22±1.30 95.21 1.06±0.88
15 88.12 1.41±1.40 86.42 1.97±2.40 73.92 1.76±2.70 68.06 0.74±0.57
16 96.95 1.13±1.10 97.97 1.25±2.60 98.99 0.61±0.45 99.32 0.68±0.55
17 70.14 1.59±1.80 73.44 1.58±1.60 86.06 2.54±4.80 89.46 0.81±0.67
18 66.18 2.10±2.60 70.70 1.57±1.80 48.77 0.62±0.57 67.94 0.64±0.50
19 98.38 0.82±0.75 99.08 1.05±0.79 99.31 0.60±0.58 99.77 0.55±0.42
20 66.85 1.64±1.90 87.23 1.93±2.10 43.00 0.56±0.53 94.40 0.71±0.64

Total 84.10 1.88±2.23 89.08 1.82±2.13 81.82 1.61±2.82 92.26 0.89±0.84
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Vaa3D: Errors on track

Figure 7: Error distribution (px) of trackers on individual microscopy images, without filtering cri-
terion (left; error range of 0-100px) and with (right; error range of 0-10px). Whiskers set
to 0.25× inter-quartile range, for purposes of visibility and comparison.
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Table 6: Average entropy ± 1 standard deviation within and outside the threshold (< 3px/≥ 3px).
The entropy significantly increases as the tracker passes the threshold for both the DRL
tracker (p < 0.00001) and the DRL tracker after fine-tuning (FT) (p < 0.00001). p-values
were calculated using a two-tailed paired t-test on all points within all images.

DRL DRL (FT)

ID Within Outside Within Outside

1 −4.63±0.83 −3.59±0.99 −3.39±0.67 −2.27±1.13
2 −4.17±0.79 −3.43±0.92 −2.83±0.56 −2.06±0.84
3 −4.16±0.64 −3.89±0.65 −2.97±0.55 −2.97±0.62
4 −4.65±0.93 −2.41±0.80 −2.79±0.62 −1.08±0.91
5 −3.96±0.87 −4.09±1.11 −2.63±0.77 −1.21±1.09
6 −3.43±0.93 −2.31±0.70 −2.13±0.68 −0.95±0.58
7 −4.34±0.82 −3.75±0.84 −3.18±0.60 −2.84±0.51
8 −3.86±0.83 −2.60±0.80 −2.75±0.51 −2.52±0.50
9 −2.85±0.75 −2.30±0.85 −2.36±0.60 −1.77±0.84
10 −3.60±0.32 −4.63±1.30 −3.35±0.28 −3.80±0.0
11 −4.23±0.90 −2.58±0.71 −3.34±0.63 −2.03±0.69
12 −3.65±0.87 −2.32±0.70 −2.94±0.62 −2.35±0.46
13 −4.21±0.94 −3.84±0.88 −3.41±0.56 −2.75±0.58
14 −4.26±0.82 −2.99±0.66 −3.43±0.53 −2.59±0.74
15 −4.51±0.79 −2.95±0.89 −3.55±0.45 −2.77±0.55
16 −3.28±1.02 −2.52±0.54 −2.63±0.53 −1.97±0.68
17 −4.16±0.88 −2.25±0.72 −3.23±0.55 −2.21±0.78
18 −3.58±1.20 −2.25±0.67 −2.75±0.62 −1.38±0.75
19 −4.77±0.68 −4.54±1.17 −3.33±0.44 −2.91±0.24
20 −3.54±1.30 −2.39±0.84 −2.75±0.78 −1.85±0.73

Total −3.99±0.49 −3.08±0.79 −2.99±0.38 −2.21±0.70
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