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ABSTRACT

Forming perceptual groups and individuating objects in visual scenes is an essential
step towards visual intelligence. This ability is thought to arise in the brain from
computations implemented by bottom-up, horizontal, and top-down connections
between neurons. However, the relative contributions of these connections to
perceptual grouping are poorly understood. We address this question by systemati-
cally evaluating neural network architectures featuring combinations bottom-up,
horizontal, and top-down connections on two synthetic visual tasks, which stress
low-level “Gestalt” vs. high-level object cues for perceptual grouping. We show
that increasing the difficulty of either task strains learning for networks that rely
solely on bottom-up connections. Horizontal connections resolve straining on
tasks with Gestalt cues by supporting incremental grouping, whereas top-down
connections rescue learning on tasks with high-level object cues by modifying
coarse predictions about the position of the target object. Our findings dissociate
the computational roles of bottom-up, horizontal and top-down connectivity, and
demonstrate how a model featuring all of these interactions can more flexibly learn
to form perceptual groups.

1 INTRODUCTION

The ability to form perceptual groups and segment scenes into a discrete set of objects constitutes
a fundamental component of visual intelligence. Decades of research in biological vision have
suggested that biological visual systems extract these objects through visual routines for perceptual
grouping, which rely on feedforward (or bottom-up) and potentially feedback (or recurrent) processes
(Roelfsema, 2006; Roelfsema & Houtkamp, 2011; Wyatte et al., 2014). Feedforward processes group
scenes by encoding increasingly more complex feature conjunctions through a cascade of filtering,
rectification and normalization operations. As shown in Fig. 1a, these computations can be sufficient
to detect and localize objects in scenes with little or no background clutter, or when an object “pops
out” because of color, contrast, etc. (Nothdurft, 1991). However, as illustrated in Fig. 1b, visual
scenes are usually complex and contain objects interposed in background clutter. When this is the
case, feedforward processes alone are often insufficient for perceptual grouping (Herzog & Clarke,
2014; Pelli et al., 2004; Freeman et al., 2012; Freeman & Pelli, 2010), and it has been suggested that
our visual system leverages feedback mechanisms to refine an initially coarse scene segmentation
(Ullman, 1984; Roelfsema & Houtkamp, 2011; Treisman & Gelade, 1980; Lamme & Roelfsema,
2000).

To rough approximation, there are two distinct types of perceptual grouping routines that are associ-
ated with feedback computations. One routine involves grouping low-level visual features with their
neighbors according to Gestalt laws like similarity, good continuation, etc. (Fig. 1b, top; Jolicoeur
et al., 1986; 1991; Pringle & Egeth, 1988; Roelfsema et al., 1999; Houtkamp & Roelfsema, 2010;
Houtkamp et al., 2003; Roelfsema et al., 2002). Another routine is object-based and mediated by
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Figure 1: “Are both dots on the same object?” (a) Bottom-up grouping. Our visual system can
segregate an object from its background with rapid, bottom-up mechanisms, when the object is
dissimilar to its background. In this case, the object is said to “pop-out” from its background, making
it trivial to judge whether the two dots are on the same object surface or not. (b) Non-bottom-up
processes. Perceptual grouping mechanisms help segment a visual scene. (b, Top) The elements of a
behaviorally relevant perceptual object, such as a path formed by tracks in the snow, are transitively
grouped together according to low-level “Gestalt” principles. This allows the observer to trace a
path from one end to the other. (b, Bottom) Alternatively, observers may rely on prior knowledge or
semantic cues to segment an object from a cluttered background. (c) Synthetic grouping tasks. (c,
Top) The Pathfinder challenge (reproduced with permission from Linsley et al. (2018b) and inspired
by Houtkamp & Roelfsema 2010) involves answering a simple question: "Are the two dots connected
by a path?" This task can be easily solved with Gestalt grouping strategies. (c, Bottom) Here, we
introduce a novel “cluttered ABC” (cABC) challenge, inspired by Vecera & Farah (1997). The cABC
challenge asks the same question on visual stimuli for which Gestalt strategies are ineffective. Instead,
cABC taps into object-based strategies for perceptual grouping.

high-level expectations about the shape and structure of perceptual objects. In this routine, feedback
refines a coarse initial feedforward analysis of a scene with high-level hypotheses about the objects it
contains (Fig. 1b, bottom; Vecera & Farah, 1997; Vecera & O’Reilly, 1998; Vecera, 1993; Zemel
et al., 2002). Both of these feedback routines are iterative and rely on recurrent computations.

What are the neural circuits that implement Gestalt vs. object-based routines for perceptual grouping?
Visual neuroscience studies have suggested that these routines emerge from specific types of neural
interactions: (i) horizontal connections between neurons within an area, spanning spatial locations
and potentially feature selectivity (Stettler et al., 2002; Gilbert & Wiesel, 1989; McManus et al.,
2011; Bosking et al., 1997; Schmidt et al., 1997; Wannig et al., 2011), and (ii) descending top-down
connections from neurons in higher-to-lower areas (Ko & von der Heydt, 2018; Gilbert & Li, 2013;
Tang et al., 2018; Lamme et al., 1998; Murray et al., 2004; 2002). The anatomical and functional
properties of these feedback connections have been well-documented (see Gilbert & Li 2013 for a
review), but the relative contributions of horizontal vs. top-down connections for perceptual grouping
remains an open question.

Contributions Here we investigate the function of horizontal vs. top-down connections during
perceptual grouping. We evaluate each network on two perceptual grouping “challenges” that are
designed to be solved by either Gestalt or object-based visual routines. Our contributions are:

• We introduce a biologically-inspired deep recurrent neural network (RNN) architecture
featuring feedforward and feedback connections (the TD+H-CNN). We develop a range of
lesioned variants of this network for measuring the relative contributions of feedforward
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and feedback processing by selectively disabling either horizontal (TD-CNN), top-down
(H-CNN), or both types of connections (BU-CNN).

• We introduce the cluttered ABC challenge (cABC), a synthetic visual reasoning challenge
that requires object-based grouping strategies (Fig. 1c, bottom-right). We pair this dataset
with the Pathfinder challenge (Linsley et al. 2018b, Fig. 1c, top-right) which features low-
level Gestalt cues. Both challenges allow for a parametric control over image variability.
With these challenges, we investigate whether each of our models can learn to leverage
either object-level of Gestalt cues for grouping.

• We find that top-down connections are key for grouping objects when semantic cues are
present, whereas horizontal connections support grouping when they are not. Of the network
models tested (which included ResNets and U-Nets), only our recurrent model with the full
array of connections (the TD+H-CNN) solves both tasks across levels of difficulty.

• We compare model predictions to human psychophysics data on the same visual tasks
and show that human judgements are significantly more consistent with image predictions
from our TD+H-CNN than ResNet and U-Net models. This indicates that the strategies
used by the human visual system on difficult segmentation tasks are best matched by a
highly-recurrent model with bottom-up, horizontal, and top-down connections.

2 RELATED WORK

Recurrent neural networks Recurrent neural networks (RNNs) are a class of models that can be
trained with gradient descent to approximate discrete-time dynamical systems. RNNs are classically
featured in sequence learning, but have also begun to show promise in computer vision tasks.
One example of this includes autoregressive RNNs that learn the statistical relationship between
neighboring pixels for image generation (Van Den Oord et al., 2016). Another approach, successfully
applied to object recognition and super-resolution tasks, is to incorporate convolutional kernels into
RNNs (O’Reilly et al., 2013; Liang & Hu, 2015; Liao & Poggio, 2016; Kim et al., 2016; Zamir
et al., 2017). These convolutional RNNs share kernels across processing timesteps, allowing them to
achieve processing depth with a fraction of the parameters needed for a CNN of equivalent depth.
Such convolutional RNN models have also been used by multiple groups as a foundation for vision
models with biologically-inspired feedback mechanisms (Lotter et al., 2016; Spoerer et al., 2017;
Kietzmann et al., 2019; Wen et al., 2018; Linsley et al., 2018b; Nayebi et al., 2018a; Kar et al., 2019).

Here, we construct convolutional-RNN architectures using the feedback gated recurrent unit (fGRU)
proposed by Linsley et al. (2018a). The fGRU extends the horizontal gated recurrent unit (hGRU,
Linsley et al. 2018b), to implement (i) horizontal connections between units in a processing layer
separated by spatial location and/or feature channel, and (ii) top-down connections from units in
higher-to-lower network layers. The fGRU was applied to contour detection in natural and electron
microscopy images, where it was found to be more sample efficient than state-of-the-art models
(Linsley et al., 2020). We leverage a modified version of this architecture to study the relative
contributions of horizontal and top-down interactions for perceptual grouping.

Synthetic visual tasks There is a long history of using synthetic visual recognition challenges for
evaluating computer vision algorithms (Ullman, 1996; Fleuret et al., 2011). There is a popular dataset
of simple geometric shapes used to evaluate instance segmentation algorithms (featured in Reichert
& Serre 2014; Greff et al. 2016), and variants of the cluttered MNIST dataset and CAPTCHA datasets
have been helpful for testing model tolerance to visual clutter (e.g., Gregor et al. 2015; Sabbah et al.
2017; Spoerer et al. 2017; George et al. 2017a; Jaderberg et al. 2015; Sabour et al. 2017). Recent
synthetic challenges have sought to significantly ramp up task difficulty (Michaelis et al., 2018),
and/or to parameterically control intra-class image variability (Kim et al., 2018; Linsley et al., 2018b).
The current work follows this trend of developing novel synthetic stimuli that are tightly controlled for
low-level biases (unlike e.g., MNIST), and to design parametric controls (e.g., intra-class variability)
for task difficulty to try to strain network models.

In the current study, we begin with the “Pathfinder” challenge (Linsley et al., 2018b), which consists
of images with two white markers that may – or may not – be connected by a long path (Fig. 2). The
challenge illustrated how a shallow network with horizontal connections could recognize a connected
path by learning an efficient incremental grouping routine, while feedforward architectures (CNNs)
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Figure 2: An overview of the two synthetic visual reasoning challenges used: the “Pathfinder”
(top two rows) and the “cluttered ABC” (cABC, bottom two rows). On both tasks, a model
must judge whether the two white markers fall on the same or different paths/letters. For both, we
parametrically controlled task difficulty by adjusting intra-class image variability in the image dataset.
In the Pathfinder challenge, we increased the length of the target curve; in cABC, we decreased the
correlation between geometric transformations applied to the two letters while also increasing the
relative positional variability between letters.

with orders of magnitude more free parameters struggled to learn the same task. Our novel “cluttered
ABC” (cABC) challenge complements the Pathfinder challenge by posing the same task on images
that feature semantic objects rather than curves. Thus, cABC may be difficult to solve using the
same incremental grouping routine as Pathfinder, which could capture both objects in a single group
(Fig. 2).

3 SYNTHETIC PERCEPTUAL GROUPING CHALLENGES

Pathfinder and cABC challenges share a key similarity in their stimulus design: white shapes are
placed on a black background along with two circular and white “markers” (Fig. 2). These markers
are either placed on two different objects or the same object, and the task posed in both datasets is to
discriminate between these two alternatives. The two challenges depict different types of objects.
Images in the Pathfinder challenge contain two flexible curves, whereas the cABC challenge uses
overlapping English-alphabet characters that are transformed in appearance and position.

Local vs. object-level cues for perceptual grouping Differences in the types of shapes used in
the two challenges make them ideally suited for different feedback grouping routines. The Pathfinder
challenge features smooth and flexible curves, making it well suited for incremental Gestalt-based
grouping (Linsley et al., 2018b). Conversely, the English-alphabet characters in the cABC challenge
make it a good match for a grouping routine that relies on semantic-level object cues.
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The two synthetic challenges are designed to cause a high computational burden in models that rely on
sub-optimal grouping routines. For instance, cluttered, flexible curves in the Pathfinder challenge are
well-characterized by local continuity but have no set “global shape” or any semantic-level cues. This
makes the task difficult for feedforward models like ResNets because the number of fixed templates
that they must learn to solve it increases with the number of possible shapes the flexible paths may
take. In contrast, letters in cABC images are globally stable but locally degenerate (due to warping
and pixelation; see Appendix A for details of its design.), and letters may overlap with each other.
Because the strokes of overlapping letters form arbitrary conjunctions, a feedforward network needs
to learn a large number of templates to discriminate real from spurious stroke conjunctions.

Overall, we consider these challenges two extremes on a continuum of perceptual grouping cues
found in nature. On one hand, Pathfinder curves provide reliable Gestalt cues without any semantic
information. On the other hand, cABC letters are semantic but do not have local grouping cues. As
we describe in the following sections, human observers easily solve both challenges with minimal
training, indicating that biological vision is capable of relying on a single routine for perceptual
grouping.

Parameterization of image variability It is difficult to disentangle visual strategies of neural
network architecture choices using standard computer vision datasets. For instance, the relative
advantages of visual routines implemented by horizontal vs. top-down connections can be washed
out by neural networks latching onto trivial dataset biases. More importantly, the typical training
regime for deep learning involves big datasets, and in this regime, the ability of neural networks to
act as universal function approximators can make inductive biases less important.

We overcome these limitations with our synthetic challenges. Each challenge consists of three
limited-size datasets of different task difficulties (easy, intermediate and hard; characterized by
increasing levels of intra-class variability). We train and test network architectures on each of
the three datasets and measure how accuracy changes when the need for stronger generalization
capabilities arises as difficulty increases. This method, called “straining” (Kim et al., 2018; Linsley
et al., 2018b), dissociates an architecture’s expressiveness from other incidental factors tied to a
particular image domain. Architectures with appropriate inductive biases are more likely to generalize
as difficulty/intra-class variability increases compared to architectures that rely on low-bias routines
that can resemble “rote memorization” (Zhang et al., 2016).

Difficulty of Pathfinder challenge is parameterized by the length of target curves in the images (6-, 9-,
or 14-length; Linsley et al. 2018b). cABC challenge difficulty is controlled in two ways: first, by
increasing the number of possible relative positional arrangements between the two letters. Second,
by decreasing the correlation between random transformation parameters (rotation, scale and shear)
applied to each letter in an image. For instance, on the “Easy” difficulty dataset, letter transformations
are correlated: the centers of two letters are displaced by a distance uniformly sampled in an interval
between 25 and 30 pixels, and the same affine transformation is applied to both letters. In contrast,
letter transformations are independent: letters are randomly separated by 15 to 40 pixels, and random
affine transformations are independently sampled and applied to each. We balance the variation of
these random transformation parameters across the three difficulty levels so that the total variability
of individual letter shape remains constant (i.e., the number of transformations applied to each letter
in a dataset is the same across difficulty levels). Harder cABC datasets lead to increasingly varied
conjunctions between the strokes of overlapping letters, making them well suited for models that can
iteratively process semantic groups instead of learning fixed feature templates. See Appendix A for
more details about cABC generation.

4 NETWORK ARCHITECTURES

We test the role of horizontal vs. top-down connections for perceptual grouping using different
configurations of the same recurrent CNN architecture (Fig. 3b). This model is equipped with
recurrent modules called fGRUs (Linsley et al., 2018a), which can implement top-down and/or
horizontal feedback (Fig. 3b). By selectively disabling top-down connections, horizontal connections,
or both types of feedback, we directly compared the relative contributions of these connections for
solving Pathfinder and cABC tasks over a basic deep convolutional network “backbone” capable
of only feedforward computations. As an additional reference, we test representative feedforward
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architectures for computer vision: residual networks (He et al., 2016) and a U-Net (Ronneberger
et al., 2015).

The fGRU module The fGRU takes input from two unit populations: an external drive, X, and an
internal state, H. The fGRU integrates these two inputs to get an updated state for a given processing
timestep H[t], which is passed to the next layer. Each layer’s recurrent state is sequentially updated
during a single timestep, letting the model perform bottom-up to top-down sweeps of processing.
When applied to static images, timesteps of processing allow feedback connections to spread and
evolve, allowing units in different spatial positions and layers to interact with each other. This iterative
spread of activity is critical for implementing dynamic grouping strategies. On the final timestep
of processing, the fGRU hidden state H closest to image resolution is sent to a readout module to
compute a binary category prediction.

In our recurrent architecture (the TD+H-CNN), an fGRU module implements either horizontal or
top-down feedback. When implementing horizontal feedback, an fGRU takes as external drive (X)
the activities from a preceding convolutional layer and iteratively updates its evolving hidden state H
using spatial (horizontal) kernels (Fig. 3b, green fGRU).

In an alternative configuration, an fGRU can implement top-down feedback by taking as input hidden
state activities from two other fGRUs, one from a lower layer and the other from a high layer (Fig. 3b,
red fGRU). This top-down fGRU uses a local (1× 1) kernel to first suppress the low-level H(`)[t]

with the activity in H(`+1)[t], then a separate kernel to “facilitate” the residual activity, supporting
operations like sharpening or “filling-in”. Additional details regarding the fGRU module are in
Appendix C.
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Figure 3: We define a convolutional RNN model that can learn feedforward (gray), horizontal
(green), and/or top-down (red) connections to disentangle the contributions of each type of
connections for perceptual grouping. (a) A conceptual diagram of the TD+H-CNN architecture,
depicting three layers of activity and feedforward, horizontal, and top-down connections. (b) A
deep learning diagram of the TD+H-CNN, unraveled over processing timesteps. Bottom-up to
top-down passes of the input image allow recurrent horizontal (green fGRUs) and top-down (red
fGRU) interactions between units to evolve. This allows the model to implement complex grouping
strategies, like transitively linking target features together or selecting whole objects from clutter.

Recurrent networks with feedback Our full model architecture, which we call TD+H-CNN
(Fig. 3b), introduces three fGRU modules into a CNN to implement top-down (TD) and horizontal
(H) feedback. The architecture consists of a downsampling (Conv-pool) pathway and an upsampling
(Transpose Conv) pathway as in the U-Net (Ronneberger et al., 2015), and processes images in a
bottom-up to top-down loop through its entire architecture at every timestep. The downsampling
pathway lets the model implement feedforward and horizontal connections, and the upsampling
pathway lets it implement top-down interactions (conceptualized in Fig. 3b, red fGRU). The first two
fGRUs in the model learn horizontal connections at the lowest- and highest-level feature processing
layers, whereas the third fGRU learns top-down interactions between these two fGRUs.

We define three variants of the TD+H-CNN by lesioning fGRU modules for horizontal and/or top-
down connections: a top-down-only architecture (TD-CNN); a horizontal-only architecture (H-CNN);
and a feedforward-only architecture (“bottom-up” BU-CNN; see Appendix C for details).
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Figure 4: Pathfinder and cABC challenges disentangle the relative contributions of horizontal
vs. top-down connections for perceptual grouping. (a) Accuracies of human and neural network
models on three levels of the Pathfinder and cABC challenges. While human participants and the
TD+H-CNN model are able to solve all difficulties of each challenge, Pathfinder strains the TD-CNN
and cABC strains the H-CNN. (b) We visualized the computations learned by our networks using
images containing single markers (See Appendix B for details.) We found that H-CNN and TD-CNN
learn distinct strategies to solve Pathfinder and cABC challenges, respectively. The H-CNN solves
Pathfinder by iteratively grouping segments of a target path while suppressing background clutter.
The TD-CNN solves cABC by globally facilitating activity of a target letter while suppressing the
other letter. Model strategies are visualized by plotting the per-timestep L2 difference between hidden
states of the fGRU responsible for model predictions.

Reference networks We also measure the performance of popular neural network architectures on
Pathfinder and cABC. We tested three “Residual Network” (ResNets, He et al. 2016) with 18, 50, and
152 layers and a “U-Net” (Ronneberger et al., 2015) which uses a VGG16 encoder. Both model types
utilize skip connections to mix information between processing layers. However, the U-Net uses
skip connections to pass activities between layers of a downsampling encoder and an upsampling
decoder. This pattern of residual connections effectively makes the U-Net equivalent to a network
with top-down feedback that is simulated for one timestep.

5 EXPERIMENTS

Training In initial pilot experiments, we calibrated the difficulty of Pathfinder and cABC challenges
by identifying the smallest dataset size of the “easy” version of the challenges for which all models
exceeded 90% validation accuracy. For Pathfinder this was 60K images, and for cABC this was 45K,
and we used these image budgets for all difficulty levels of the respective challenges (with 10% held
out for evaluation).

Our objective was to understand whether models could learn these challenges on their image budgets.
We were interested in evaluating model sample efficiency, not absolute accuracy on a single dataset
nor speed of training (“wall-time”). Thus, we adopted early stopping criteria during training: training
continued until 10 straight epochs had passed without a reduction in validation loss or if 48 epochs of
training had elapsed. Models were trained with batches of 32 images and the Adam optimizer. We
trained each model with five random weight initializations and searched over learning rates [1e−3,
1e−4, 1e−5, 1e−6]. We report the best performance achieved by each model (according to validation
accuracy) out of the 20 training runs.

Screening feedback computations Our study revealed three main findings. First, we found that
human participants performed well on both Pathfinder and cABC challenges with no significant
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Figure 5: Pathfinder and cABC challenges are efficiently solved by visual strategies that depend
on feedback – not feedforward – processing. (a) Performance of feedforward models on each
difficulty of the two challenges. Deeper ResNet models solved Pathfinder, whereas the ResNet-18 and
U-Net solved cABC, indicating a trade-off between capacity vs. parameter efficiency for feedforward
strategies to Pathfinder vs. cABC, respectively (failures to generalize reflect overfitting). (b) The
number of parameters of each model (plotted as a multiple of the number of parameters in the
H-CNN) plotted against model performance on the hard dataset of each challenge. The H+TD-CNN
solves both challenges with an order-of-magnitude fewer parameters than reference ResNet and
U-Net models. (c) Correlations between human and leading model decisions on the hard dataset
of each challenge. The TD+H-CNN and its successful lesioned variants were significantly more
correlated with humans than successful feedforward reference models. Significance comparisons
with the worst feedforward reference model omitted due to space constraints. P-values are derived
from bootstrapped comparisons of model performance (Edgington, 1964). Error bars depict SEM; ∗:
p <0.05; ∗∗: p <0.01.

drop in accuracy as difficulty increased (Fig. 4a). The fact that each challenge has been designed to
feature a single cue for particular grouping (e.g., local Gestalt for Pathfinder and global semantics for
cABC) suggests that human participants were able to utilize a different grouping routine for each
challenge. Second, the pattern of accuracies from our recurrent architectures reveal complementary
contributions of horizontal vs. top-down connections (Fig. 4b). The H-CNN solved the Pathfinder
challenge with minimal straining as difficulty increased, but it struggled on the easy cABC dataset.
On the other hand, the TD-CNN performed well on the entire cABC challenge but struggled on the
Pathfinder challenge as difficulty increased. Together, these results suggest that top-down interactions
(from higher-to-lower layers) help process object-level grouping cues, whereas horizontal feedback
(between units in different feature columns/spatial locations in a layer) help process local Gestalt
grouping cues. Our recurrent architecture which possessed both types of feedback, the TD+H-CNN,
was able to solve both challenges at all levels of difficulties, roughly matching human performance.

All three of these recurrent models relied on recurrence to achieve their performance on these datasets.
In particular, an H-CNN with one processing timestep could not solve Pathfinder, and a TD-CNN
with one processing timestep could not solve cABC (Fig. S7). Separately, performance of the TD+H-
CNN was relatively robust to different model configurations, and deeper versions of the model still
performed well on both challenges (Fig. S8).

We also tested models on two controlled variants of the cABC challenge: one where the two letters
never touch or overlap (“position control”) and another where the two letters are rendered in different
pixel intensities (“luminance control”). No significant straining was found on these tasks for any
of our networks, confirming our initial hypothesis that local ambiguities and occlusion between the
letters makes top-down feedback important for grouping on cABC images (Fig. S5).
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In contrast to our recurrent architectures, its strictly-feedforward variant, the BU-CNN, struggled
on both challenges, demonstrating the importance of feedback for perceptual grouping (Fig. 5a).
Of the deep feedforward networks we tested, only the ResNet-50 and ResNet-152 were able to
solve the entire Pathfinder challenge, but these same architectures failed to solve cABC. In contrast,
the ResNet-18 and U-Net solved the cABC challenge, but strained on difficult Pathfinder datasets.
Overall, no feedforward architecture was general enough to learn both types of grouping strategies
efficiently, suggesting that these networks face a trade-off between Pathfinder vs. cABC performance.

We explored this tradeoff faced by ResNets in two ways. First, we tested whether the big ResNets
which failed to learn the hard cABC challenge could be rescued with larger training datasets. We
found that the ResNet-50 but not ResNet-152 was able to solve this task when trained on a dataset
that was 4× as large, demonstrating that ResNets are very sensitive to overfitting on cABC (and that
the ResNet-152 needs more than 4× as much data as a ResNet-18 to learn cABC). Second, we tested
whether the ResNet-18, which failed to learn the hard Pathfinder challenge, could be rescued by
increasing its capacity. Indeed, we found that a wide ResNet-18, with a similar number of parameters
as a ResNet-50, was able to perform better (although still far worse than the ResNet-50) on the hard
Pathfinder challenge (Fig. S8).

Modeling biological feedback Only the H+TD-CNN and human observers solved all levels of the
Pathfinder and cABC challenges. To what extent do the visual strategies learned by the H+TD-CNN
and other reference models in our experiments match those of humans for solving these tasks? We
investigated this with a large-scale psychophysics study, in which human participants categorized
exemplars from Pathfinder or cABC that were also viewed by the models (see Appendix D for
experiment details).

We recruited 648 participants on Amazon Mechanical Turk to complete a web-based psychophysics
experiments. Participants were given between 800ms-1300ms to categorize each image in Pathfinder,
and 800ms-1600ms to categorize each image in cABC (324 per challenge). Each participant viewed
a subset of the images in a challenge, which spanned all three levels of difficulty. The experiment
took approximately 2 minutes, and no participant viewed images from more than one challenge.

We gathered 20 human decisions for every image in the Pathfinder and cABC challenges, and
measured human performance on each image as a logit of the average accuracy across participants
(using average accuracy as a stand-in for “human confidence”). Focusing on the hard-difficulty
dataset, we used a two-step procedure to measure how much human decision variance each model
explained. First, we estimated a ceiling for human inter-rater reliability. We randomly (without
replacement) split participants for every image into half, recorded per-image accuracy for each group,
then recorded the correlation between groups. This correlation was then corrected for the split-half
procedure using a spearman-brown correction (Spearman, 1910). By repeating this procedure 1,000
times we built a distribution of inter-rater correlations. We took the 95th percentile score of this
distribution to represent the ceiling for inter-rater reliability. Second, we recorded the correlation
between each model’s logits and human logits, and calculated explained variance of human decisions
as model

humanceiling
.

Both the TD+H-CNN and the H-CNN explained a significantly greater fraction of human decision
variance on Pathfinder images than the 50- and 152-layer ResNets, which were also able to solve this
challenge (Fig. 5c; H-CNN > ResNet 152: p < 0.001; H-CNN > ResNet 50: p < 0.001; TD+H-CNN
> ResNet 152: p < 0.01; TD+H-CNN > ResNet 50: p < 0.001; p-values derived from a bootstrap test,
Edgington 1964). We also computed partial correlations between human and model scores on every
image, which controlled for model accuracy in the measured association. These partial correlations
also indicated that human decisions were significantly more correlated with the TD+H-CNN and
H-CNN than they were with either ResNet model (Explained variance/Partial correlation; H-CNN:
0.721/0.487; TD+H-CNN: 0.618/0.425; ResNet-152: 0.426/0.290; ResNet-50: 0.234/0.159).

We repeated this analysis for the cABC challenge. Once again, the recurrent models explained a
significantly greater fraction of human decisions than either the feedforward U-Net or ResNet 18 that
also solved the challenge (Fig. 5c; TD-CNN > U-Net: p < 0.01; TD-CNN > ResNet-18: p < 0.001;
TD+H-CNN > U-Net: p < 0.001; TD+H-CNN > ResNet-18: p < 0.001). Partial correlations also
reflected a similar pattern of associations (Explained variance/Partial correlation; TD+H-CNN:
0.633/0.437; TD-CNN: 0.538/0.376; U-Net: 0.324/0.190; ResNet-18: 0.249/0.176).
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6 DISCUSSION

Perceptual grouping is essential for reasoning about the visual world. Although it is known that
bottom-up, horizontal and top-down connections in the visual system are important for perceptual
grouping, their relative contributions are not well understood. We directly tested a long-held theory
related to the role of horizontal vs. top-down connections for perceptual grouping by screening neural
network architectures on controlled synthetic visual tasks. Without specifying any role for feedback
connections a priori, we found a dissociation between horizontal vs. top-down feedback connections
which emerged from training network architectures for classification. Our study provides direct
computational evidence for the distinct roles played by these cortical mechanisms.

Our study also demonstrates a clear limitation of network models that rely solely on feedforward
processing, including ResNets of arbitrary depths, which are strained by perceptual grouping tasks
that involve cluttered visual stimuli. Deep ResNets performed better on the Pathfinder challenge,
whereas the shallower ResNet-18 performed better on the cABC challenge. With more data, deep
ResNets performed better on cABC; with more width, the ResNet-18 performed better on Pathfinder.
We take this pattern of results as evidence that the architectures of feedforward models like ResNets
must be carefully tuned on complex visual tasks. Because Pathfinder does not have semantic cues, it
presents a greater computational burden for feedforward models than cABC, making it a better fit for
very deep feedforward architectures; because cABC has relatively small datasets, deeper ResNets
were quicker to overfit. The highly-recurrent TD+H-CNN was far more flexible and efficient than
the reference feedforward models, and made decisions on Pathfinder and cABC images that were
significantly more similar to those of human observers. Our study thus adds to a growing body of
literature (George et al., 2017b; Nayebi et al., 2018b; Linsley et al., 2018b;a; Kar et al., 2019) which
suggests that recurrent circuits are necessary to explain complex visual recognition processes.
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A CLUTTERED ABC

The goal of the cluttered ABC (cABC) challenge is to test the ability of models and humans to make
perceptual grouping judgements based solely on object-level semantic cues. Images in the challenge
depict a pair of letters positioned sufficiently close to each other to ensure frequent overlap. To
further minimize local image cues which might permit trivial solutions to the problem, we use fonts
as letter images that contain uniform and regular strokes with no distinct decorations. Two publicly
available fonts are chosen from the website https://www.dafont.com: “Futurist fixed-width”
and “Instruction”.

Random transformations including affine transformations, geometric distortions, and pixelation are
applied before placing each letter on the image to further eliminate local category cues. Positioning
and transformations of letters are applied randomly, and their variances are used to control image
variability in each difficulty level of the challenge.

Letter transformations Although each letter in the cABC challenge is sampled from just two
different fonts, we ensure that each letter appear in sufficiently varied forms by applying random
linear transformations to each letter. We use three different linear transformations in our challenge:
rotation, scaling, and shearing. Each type of transformation applied to an image uses three different
sets of parameters: two sets that are sampled and applied separately to each letter, and an additional
one one that is sampled once commonly applied to both letters. We call the first type of transformation
parameters “letter-wise” and the second type “common” transformation parameters. For example,
rotations applied to the first and the second letter are each described by the sum of letter-wise and
common rotational parameters, φ1 +φc and φ2 +φc, respectively. Scaling is described by the product
of letter-wise and common scale parameters, S1Sc and S2Sc. Shearing is described by the sum of
letter-wise and common shear parameters, E1 + Ec and E2 + Ec. Each shear parameter specifies the
value of the off-diagonal shear matrix applied to each letter image. Either vertical or horizontal shear
is applied to both letters in each image with shear axis randomly chosen with equal probability. The
random transformation procedure is visually detailed in Fig. S1.

We decompose each transformation to letter-wise and common transformation to independently
increase variability at the level of an image while keeping letter-wise variability constant. This
is achieved by gradually increasing variance of the letter-wise transformation parameters while
decreasing variance of the common parameters. See S1 for a summary of the distributions of random
transformation parameters used in the three levels of difficulty.

We apply additional, nonlinear transformations to letter images. First, geometric warping is applied
independently to each affine-transformed letter image by computing a “warp template” for each image.
A warp template is an image in same dimensions as each letter image, consisting of 10 randomly
placed Gaussians with sigma (width) of 20 pixels. Each pixel in a letter image is translated by a
displacement proportional to the gradient of the warp template in the corresponding location. This
process is depicted in Fig. S2. Second, the resulting letter image is “pixelated” by first partitioning
the letter image into a grid of 5×5 pixels. Each grid is filled with 255s (white) if and only if more
than 30% of the pixels are white, resulting in a binary letter image in 1

5 of the original resolution. The
squares then undergo random translation with displacement independently sampled for each axis. We
use normal distribution with standard deviation of 2 pixels truncated at two standard deviations.

Letter positioning We sample the positions of letters by first defining an invisible circle of radius
r placed at the center of the image. Two additional random variables, θ and ∆θ, are sampled to
specify two angular positions of the letters on the circle, θ and θ + ∆θ. r, θ and ∆θ are sampled
from uniform distributions whose ranges increases with difficulty level (Table S1). By sampling these
parameters from increasingly larger intervals, we increase relative positional variability of letters in
harder datasets. In easy difficulty, we choose r ∼ U(50, 60). In intermediate and hard difficulties, we
choose R ∼ U(40, 70) and R ∼ U(30, 80), respectively. For θ and ∆θ, we chose θ1 ∼ U(−30, 30)
and ∆θ ∼ U(170, 190) for the easy difficulty, θ1 ∼ U(−60, 60) and ∆θ ∼ U(110, 250) for the
intermediate difficulty, and θ1 ∼ U(−90, 90) and ∆θ ∼ U(70, 290) for the hard difficulty.

Letter images are placed on the sampled positions by aligning the positions of each letter’s “center of
mass”, which is defined by the average (x, y) coordinate of all the foreground pixels in each letter
image, with each of the sampled coordinates in an image.
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Figure S1: Visual depiction of the cABC image generation algorithm. (Top row) Generation
procedure of individual letter images. Two independently sampled letter categories are rendered
in a randomly sampled (but same) font. Each letter image undergoes three linear transformations –
scale, rotation and shear – as well as two steps of nonlinear transformations – warp and pixelation.
Transformation magnitudes are determined by random variables whose distributions differ between
levels of difficulties. (Bottom row) Positional sampling procedure. Two letters are placed on two
randomly chosen points on an invisible circle of radius r. Two angular positions on the circle are
sampled by first sampling the position of the first letter, θ, and then sampling the angular displacement
of the second letter relative to the first letter, ∆θ. Each letter is positioned by aligning its “center of
mass”, which is the average coordinate of white pixels in a letter image, with the coordinate of the
sampled position on the circle.

Letter image Warp mask Warped

Figure S2: Two example letter images undergoing geometric warping. A “warp template” for each
image is sampled by randomly overlaying 10 Gaussian images. Each pixel in a letter image is
translated by a displacement proportional to the gradient of its warp template in the corresponding
location.
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Parameters Easy Intermediate Hard
θ (degrees) U(−30, 30) U(−60, 60) U(−90, 90)
∆θ (degrees) U(170, 180) U(110, 180) U(70, 180)
r (pixels) U(25, 30) U(20, 35) U(15, 40)
φ1, φ2 (degrees) 0 N (0, 30√

2
) N (0, 30)

φc (degrees) N (0, 30) N (0, 30√
2
) 0

S1, S2 1 logN (1.5, 0, 1
2
√
2
) logN (1.5, 0, 12 )

Sc logN (1.5, 0, 12 ) logN (1.5, 0, 1
2
√
2
) 1

E1, E2 0 N (0, 2
10
√
2
) N (0, 2

10 )

Ec N (0, 2
10 ) N (0, 2

10
√
2
) 0

Table S1: Distributions of transformation parameters used in cluttered ABC challenge. U(a, b)
denotes uniform distribution with range [a, b]; N (µ, σ) denotes normal distribution with mean µ
and standard deviation σ; logN (z, µ, σ) denotes log-normal distribution with base z, mean µ and
standard deviation σ.

Luminance control Position control

Figure S3: Two control cABC challenges. In luminance control, two letters are rendered in different,
randomly sampled pixel intensity values. In positional control, two letters are always rendered without
touching or overlapping each other.

Cluttered ABCPathfinder
Input Output Input Output

Figure S4: Segmentation version of the two challenges. Here, a model is tasked with producing as
output an image which contains only the object which is marked in the input image.

B ADDITIONAL EXPERIMENTS

Control cABC challenges To further validate our implementation of the cABC, we added two
control cABC challenges in our study (Fig. S3). In the “luminance control” challenge, two letters
are rendered with a pair of uniformly sampled random pixel intensity values that are greater than
128 but always differ by at least 40 between the two letters. In the “positional control” challenge,
the letters are disallowed from touching or overlapping. Relative to the original challenge, the two
controls provide additional local grouping cues with which to determine the extent of each letter.
The luminance control challenge permits additional pixel-level cue with which a model can infer
image category by comparing the values of letter pixels surrounding two markers. Positional control
challenge provides unambiguous local Gestalt cue to solve the task. Ensuring that the two letters are
spatially separated has an additional effect of minimizing the amount of clutter to interfere the feature
extraction process in each letter.

In both control challenges, we found no straining effect in any of the models we tested. This
strengthens our initial assumption behind the design of cABC that the only way to efficiently solve
the default cABC challenge is to employ object-based grouping strategy. Because all networks
successfully solved the control challenges, the relative difficulty suffered by the H-CNN or reference
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Figure S5: Performance on two cABC-control challenges. Top-down feedback is critical when
local grouping cues are unavailable. We verify this by constructing two controlled versions of the
cABC challenge, where local Gestalt grouping cues are provided in the form of spatial segregation
between two letters (a), or in the form of luminance segregation (b). In both cases, the architectures
that lack top-down feedback mechanism can solve the challenge at all levels of difficulties.

Figure S6: fGRUs outperform GRUs and LSTMs on Pathfinder and cABC. Our recurrent hier-
archical architectures performed better on Pathfinder and cABC challenges when they used fGRUs
instead of either LSTMs (Hochreiter & Schmidhuber, 1997) or GRUs (Cho et al., 2014a).

feedforward networks on the original cABC couldn’t have been caused by idiosyncracies of image
features we used such as the average size of letters. These networks lack the mechanisms to separate
the mutually occluding letter strokes according to high-level hypothesis about the categories of letters
present in each image.

Segmentation challenges To further understand and visualize the nature of computations employed
by our recurrent architectures when solving the Pathfinder and the cABC challenge, we construct
a variant of each dataset where we pose a segmentation problem. Here, we modify each dataset by
placing only one marker per image instead of two. The task is to output a per-pixel prediction of
the object tagged by the marker (Figure S4). We train each model using 10 thousand images of the
cABC challenge and 40 thousand images of the Pathfinder challenge and validate using 400 images
in both challenges. We only use hard difficulty in each challenge. We use only the TD- and H-CNN
in this experiment. We replace the readout module in each of our recurrent architecture by two 1×
1 convolution layers with bias and rectification after each layer. We also include the “reference”
recurrent architectures in which the fGRU modules have been replaced by either LSTM Hochreiter &
Schmidhuber (1997) or GRU Cho et al. (2014a). Because the U-Net is a dense prediction architecture
by design, we simply remove the readout block that we used in the main categorization challenge.
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Figure S7: Recurrence improves fGRU model performance on Pathfinder and cABC. Each of
our recurrent models performed better when given 8-timesteps of recurrent processing instead of 1
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Figure S8: A comparison of different parameterizations of H+TD-CNN and ResNet-18 models
on Pathfinder and cABC. (a) We compared the original H+TD-CNN to a deeper version (5 instead
of 3 convolutional blocks between its low- and high-level fGRU modules). This deeper H+TD-CNN
performed similarly to the original version. We also tested whether widening the ResNet-18 could
rescue its performance on Pathfinder. Indeed, the wider ResNet-18 (matched in number of parameters
to ResNet-50) performed far better on Pathfinder than the original version, but was still far worse on
the task than a normal ResNet-50. (b) Performance of each of these models is plotted as a function of
their total free parameters. Variants of the TD+H-CNN are far more parameter efficient at solving
Pathfinder and cABC than variants of ResNet-18. Ellipses group variants of each model class.

We found that the target curves in the Pathfinder challenge is best segmented by H-CNN (0.79 f1
score), followed by H-CNN with GRU (0.72) and H-CNN with LSTM (0.69). No top-down-only
architecture was able to successfully solve this challenge (we set a cutoff of greater than 0.6 f1). The
cABC challenge is best segmented by the TD-CNN (0.83), followed by TD-CNN with LSTM (0.64)
and TD-CNN with GRU (0.62). Consistent with the main challenge, no purely horizontal architecture
was able to successfully solve this challenge. In short, we were able to reproduce the dissociation in
performance we found between horizontal and top-down connections in other recurrent architectures
(LSTM and GRU) as well, although these recurrent modules were less successful than the fGRU.
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We visualize the internal update performed by our recurrent networks by plotting the difference of
norm of each per-pixel feature vector at every timestep in the low-level recurrent state, H(1) (closest
to image resolution), vs. its immediately preceding timestep. Of course, this method does not reveal
the full extent of the computations taking place in the fGRU, but it at least serves as a proxy for
inferring the spatial layout of how activities evolve over timesteps (4b). More examples of both
sucessful and mistaken segmentations and the temporal evolution of internal activities of H-CNN (on
the Pathfinder challenge) TD-CNN (on the cABC challenge) are shown in Fig.S10 and Fig.S11

Using conventional recurrent layers We tested the performance of modifications of TD+H-CNN
by replacing the fGRU modules with conventional recurrent modules – LSTMs (Hochreiter &
Schmidhuber, 1997) and GRUs (Cho et al., 2014a). We found that neither of these architectures
matched the performance of our fGRU-based architecture on either grouping challenges S6. The
degradation of performance was most pronounced in Pathfinder. Similar to the findings in Linsley
et al. (2018b), we believe that the use of both multiplicative and additive interactions as well as the
separation of the suppressive and facilitatory stages in fGRU are critical for learning stable transitive
grouping in Pathfinder.

C NETWORK ARCHITECTURES

C.1 THE FGRU MODULE

At timestep t, the fGRU module takes two inputs, an instantaneous external drive X ∈ RH×W×K and
a persistent recurrent state H[t − 1] ∈ RH×W×K and produces as output an updated recurrent state
H[t]. Detailed description of its internal operation over a single iteration from [t− 1] to [t] is defined
by the following formulae. For clarity, tensors are bolded but kernels and parameters are not:

GI = sigmoid(BN(U I ∗H[t− 1]))

CI = BN(W I ∗ (H[t− 1]�GI))

Z =

[
X−

[
(αH[t− 1] + µ)CI

]
+

]
+

GE = sigmoid(BN(UE ∗ Z))

CE = BN(WE ∗ Z)

H̃ =
[
κ(CE + Z) + ω(CE ∗ Z)

]
+

H[t] = (1−GE)�H[t− 1] + GE � H̃

where BN(r; δ, ν) = ν + δ � r− Ê[r]√
V̂ar[r] + η

.

(1)

The evolution of the recurrent state H can be broadly described by two discrete stages. During the
first stage, H is combined with an extrinsic drive X. Interactions between units in the hidden state
are computed in CI by convolving H[t− 1] with a kernel W I . These interactions are next linearly
and multiplicatively combined with H[t− 1] via the k-dimensional learnable coefficients µ and α to
compute the intermediate “suppressed“ activity, Z.

The second stage involves updating H with a transformation of the intermediate activity Z. Here,
Z is convolved with the kernel WE to compute CE . A candidate output H̃[t] is calculated via the
k-dimensional learnable coefficients κ and ω, which control the linear and multiplicative terms of
self-interactions between CE and Z.

Two gates modulate the dynamics of both of these stages: the “gain” GI [t], which modulates channels
in H[t − 1] during the first stage, and the “mix” GE [t], which mixes a candidate H̃[t] with the
persistent H[t− 1] during the second stage. Both the gain and mix are transformed into the range
[0, 1] by a sigmoid nonlinearity. This two-stage computational structure in the fGRU captures complex
nonlinear interactions between units in X and H. Brackets [.] denote linear rectification. Separate
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applications of batch-norm are used on every timestep, where r ∈ Rd is the vector of activations that
will be normalized. The parameters δ, ν ∈ Rd control the scale and bias of normalized activities, η is
a regularization hyperparameter, and � is elementwise multiplication.

Learnable gates, like those in the fGRU, support RNN training. But there are multiple other heuristics
that also help optimize performance. We use several heuristics to train our models, including Chronos
initialization of fGRU gate biases (Tallec & Ollivier, 2018). We also initialized the learnable scale
parameter δ of fGRU normalizations to 0.1, since values near 0 optimize the dynamic range of
gradients passing through its sigmoidal gates (Cooijmans et al., 2017). Similarly, fGRU parameters
for learning additive suppression/facilitation (µ, κ) were initialized to 0, and parameters for learning
multiplicative suppression/facilitation (α, ω) were initialized to 0.1. Finally, when implementing top-
down connections, we incorporated an extra learnable gate, which we found improved the stability
of training. Consider the horizontal activities in two layers, H(l),H(2), and the function fGRU,
which implements top down connections. The introduction of this extra gate means that top-down
connections are learned as: H(l) = (1− sigmoid(β))� fGRU(H(l),H(l+1)) + sigmoid(β)�H(l),
where β ∈ RK is initialized to 0 and learns how to incorporate/ignore top-down connections.

The broad structure of the fGRU is related to the Gated Recurrent Unit (GRU, (Cho et al., 2014b)).
Nevertheless, one of the main aspects in which the fGRU diverges from the GRU is that its state
update is carried out via two discrete steps of processing instead of one. This is inspired by a
computational neuroscience model of contextual effects in visual cortex (see Mély et al. 2018 for
details). Unlike that model, the fGRU allows for both additive and multiplicative combinations
following each step of convolution, which potentially encourages a more diverse range of nonlinear
computations to be learned (Linsley et al., 2018b;a).

C.2 ARCHITECTURE DETAILS

Using the fGRU module, we constrcut three recurrent convolutional architectures as well as one
feedforward variant. First, the H+TD-CNN (Fig. S9a) is equipped with both top-down and horizontal
connections. The TD-CNN (Fig. S9b) is constructed by selectively lesioning the horizontal connec-
tions in the H+TD-CNN. The H-CNN (Fig. S9c) is constructed by selectively lesioning the top-down
connections in the H+TD-CNN, essentially making recurrence only take place within the low-level
fGRU. Lastly the BU-CNN (Fig. S9d) is constructed by disabling both types of recurrence, turning
our recurrent archecture into a feedforward encoder-decoder network. All experiments were run with
NVIDIA Titan X GPUs.

TD+H-CNN Our main recurrent network architecture, TD+H-CNN, is built on a convolutional and
transpose-convolutional “backbone”. An input image X is first processed by a “Conv” block which
consists of two convolutional layers of 7×7 kernels with 20 output channels and a ReLU activation
applied between. The resulting feature activity is sent to the first fGRU module (fGRU(1)), which is
equipped with 15×15 kernels with 20 output channels to carry out horizontal interactions. fGRU(1)

iteratively updates its recurrent state, H(1). The output undergoes a batch normalization and a pooling
layer with a 2×2 pool kernel with 2×2 strides which then passes through the downsampling block
consisting of two convolutional “stacks” (Fig. S9a, The gray box named “DS”). Each stack consists
of three convolutional layers with 3×3 kernels, each followed by a ReLU activations and a batch
normalization layer. The convolutional stacks increase the number of output channels from 20 to 32 to
128, respectively, while they progressively downsample the activity via a 2×2 pool-stride layer after
each stack. The resulting activity is fed to another fGRU module in the top layer, fGRU(2), where
it is integrated with the higher-level recurrent state, H(2). The kernels in fGRU(2), unlike fGRU(1),
is strictly local with 1×1 filter size. This essentially makes fGRU(2) a persistent memory module
without performing any spatial integration over timesteps. The output of this fGRU module then
passes through the “upsampling” block which consists of two transpose convolutional stacks (Fig. S9a,
The gray box named “US”),. Each stack consists of one transpose convolutional layer of 4×4 kernels.
Each stack also reduces the number of output channels from 128 to 32 to 12, respectively, while it
progressively upsamples the activity via a 2×2 stride. Each transpose convolutional layer is followed
by a ReLU activations and a batch normalization layer. The resulting activity, which now has the
same shape as the output of the initial fGRU, is sent to the third fGRU module (fGRU(3)) where it
is integrated with the recurrent state of fGRU(1), H(1). This module plays the role of integrating
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top-down activity (originating form “US”) and bottom-up activity (originating from fGRU(1)) via
1×1 kernels. To summarize, fGRU(1) in our architecture implements horizontal feedback in the first
layer while the fGRU(3) implements top-down feedback.

The above steps repeat over 8 timesteps, and in the 8th timestep, the final recurrent activity from
fGRU(1), H(1), is extracted from the network and passed through batch normalization. The resulting
activity is processed by the “Readout” block which consists of two convolutional layers of 1×1
kernels with a global max-pooling layer between. Each convolutional layer has one output channel
and uses ReLU activations.

Lesioned architectures Our top-down-only architecture, the TD-CNN, is identical to the TD+H-
CNN, but its horizontal connections have been disabled by replacing the spatial kernel of fGRU(1)

with a 1× 1 kernel, thereby preventing spatial propagation of activities within the fGRU altogether.
Thus, its recurrent updates in the low-level layer are only driven by top-down feedback (in fGRU(3)).
The H-CNN is implemented by disabling fGRU(3). This effectively lesions both the downsampling
and upsampling pathways entirely from contributing to the final output. As a result, its final category
decision is determined entirely by low-level horizontal propagation of activities in the netwrok.

Lastly, we construct the purely feedforward architecture, called the BU-CNN, by lesioning both
horizontal and top-down feedback. It replaces the spatial kernel in fGRU(1) by a 1 × 1 kernel
and disables fGRU(3). By running for only one timestep, the BU-CNN is equivalent to a deep
convolutional encoder-decoder network.

Feedforward reference networks Because U-Nets (Ronneberger et al., 2015) are designed for
dense image predictions, we attach the same readout block that we use to decode fGRU activities
(H(1)) to the output layer of a U-Net, which pairs a VGG16 as its downsampling architecture, with
upsampling + convolutional layers to transform its encodings into the same resolution as the input
image.

D HUMAN EXPERIMENTS

We devised psychophysics categorization experiments to understand the visual processes underlying
the ability to solve tasks that encourage perceptual grouping.

These visual categorization experiments adopted a paradigm similar to Eberhardt et al. (2016), where
stimuli were flashed quickly and participants had to respond within a fixed period of time. We
conducted separate experiments for the “Pathfinder” and the “cluttered ABC” challenge datasets.
Participants had several possible response time (RT) widows for responding to stimuli in each dataset.
For “Pathfinder”, we considered {800, 1050, 1300} ms RT windows, while for the “cluttered ABC”,
we consider {800, 1200, 1600} ms. We recruited 324 participants for each experiment (648 overall)
from Amazon Mechanical Turk (www.mturk.com).

The “Pathfinder” and the “cluttered ABC” are binary categorization challenges with “Same” and
“Different” as the possible responses. For both experiments, we present 90 stimuli to each participant
and assign a single RT to that participant. These 90 stimuli consist of three sets of 30, corresponding
to the three level of difficulties present in the challenge datasets. We randomize the order of the three
difficulties (sets of 30 stimuli) across participants as well as the assignment of keys to class “Same”
and “Different”. Participant accuracy is shown in Fig. 4.

Stimulus generation We generated a short video for each stimuli image from the challenge dataset
based on the response time allowed from the onset of stimuli. We generated three stimulus videos for
each challenge image, correponding to the three different response times chosen. In each stimulus
video, we included an image of a cross (black plus sign overlaid on a white background) for 1000 ms
before the onset of stimulus that is shown for RT ms. The stimuli were stored as .webm videos and
presented for 1000+RT ms during the experiments. We created a video so that the cross image and
the stimulus image are seamlessly combined and shown without delays, which would otherwise be
caused by loading their separate images in the browser, which introduces noise in stimulus timing.
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Figure S9: Our recurrent convolutional architectures. Feedforward or bottom-up connections
(gray) pass information from lower-order to higher-order layers; horizontal connections (green) pass
information between units in the same layer separated by spatial location and/or channels; top-down
connections (red) pass information from higher-order to lower-order layers. We use “feedback” as an
umbrella term for both top-down and horizontal connections as these can only be implemented in a
model with recurrent activity that supports incremental updates to model units.

We selected a set of 200 images per difficulty in both challenges (600/challenge). Each participant
responded to 30 images from each difficulty. We collected responses to the 600 images in each
challenge from 18 different participants.

Psychophysics experiment We conducted separate experiments for: (1) Pathfinder and (2) cABC
images. The image dataset used for each experiment consisted of three difficulties - easy, intermediate
and hard. Participants were assigned three blocks of trials, each having stimuli from a single difficulty
level. The order of these three blocks is randomized and balanced across participants. The keys for
responses to the stimuli are set to be + and -. Their assignment to “Same” and “Different” class label
is randomized across participants as well.

Each experiment began with a training phase, where participants responded to 6 trials without a time
limit. This phase ensured that participants understood the task and the type of image stimuli. Next,
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participants went through 15 trials, 5 from each difficulty level, where they responded by pressing +
or - within a limited response period. For this set of images, participants were given feedback on
whether their response was correct or incorrect. After this block of “training” trials, each participant
completed 90 “test” trials and responded with either “Same” or “Different” in the stipulated amount
of response time, without feedback on their performance. Participants were given time to rest and
the difficulty level of the viewed images changed after every 30 trials. Before starting a new block
of trials, a representative image from that difficulty level was shown and instructions were given to
respond as quickly as possible.

Experiments were implemented using jsPsych and custom javascript functions. We used the .webm
format to ensure fast loading times. Videos were rendered at 256× 256 pixels.

Processing Responses To generate the final results from human responses on the two categorization
tasks, we filtered responses rendered in less than 450 ms, which we deem unreliable responses
following the criteria of Eberhardt et al. (2016).
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Figure S10: Activity time-courses for the Pathfinder challenge (Hard).
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Figure S11: Activity time-courses for the cABC challenge (Hard).
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