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Abstract

A key problem in explainable AI planning is to elucidate deci-
sion rationales. User questions in this context are often con-
trastive, taking the form “Why do A rather than B?”. An-
swering such a question requires a statement about the space
of possible plans. We propose to do so through plan-property
dependencies, where plan properties are Boolean properties
of plans the user is interested in, and dependencies are en-
tailment relations in plan space. The answer to the above
question then consists of those properties C entailed by B.
We introduce a formal framework for such dependency anal-
ysis. We instantiate and operationalize that framework for
the case of dependencies between goals in oversubscription
planning. More powerful plan properties can be compiled
into that special case. We show experimentally that, in a va-
riety of benchmarks, the suggested analyses can be feasible
and produce compact answers for human inspection.

Introduction
Explainable AI (XAI) is concerned with making AI sys-
tems’ decisions more lucid and thus trustworthy. AI plan-
ning is relevant to XAI as a decision-making methodology,
model-based and thus suited to provide explanations in prin-
ciple. Consequently, research on explainable AI planning
(XAIP) has received increasing interest in recent years (e. g.
(Seegebarth et al. 2012; Smith 2012; Langley et al. 2017;
Fox et al. 2017; Chakraborti et al. 2017; 2019)).

A recent analysis (Miller 2019) of lessons to be learned
for XAI from social sciences highlights that user questions
are often contrastive. A question “Why this?” actually
means “Why this rather than something else that I would ex-
pect?”. To address such queries, explanatory systems should
analyse alternative solutions, and support the user in under-
standing the consequences of the “something else” in ques-
tion. AI planning fits well for this kind of analysis. Two
prior works designed variants thereof (Fox et al. 2017;
Miller 2018). The work by Fox et al. is the starting point
of our work here.

Fox et al. suggest, given a plan π and a user question
“Why does π start with action A rather than B?”, to gen-
erate a new plan π′ starting with B, and answer the question
based on comparing the two plans: undesirable properties
of π′ serve to explain the previous decision. While this idea
is natural, a key weakness is that there may be differences

between π and π′ unrelated to the use of A vs. B. Many
comparison aspects (e. g. which other actions are used, or
which “soft” objectives are satisfied) may be affected by ar-
bitrary decisions in the planner’s search.

Here we address the same kind of explanation problem,
but we replace the existential answer generating a single al-
ternative plan π′ with a universal answer determining shared
properties of all possible such alternatives. In this way, the
analysis we propose aims at explaining the space of possible
plans, rather than pointing out examples.

Our proposed analysis works at the level of plan prop-
erties: Boolean functions on plans that capture aspects of
plans the user cares about (whether or not the plan starts with
a particular action, whether or not a particular soft objective
is satisfied, etc). We assume that the set P of plan proper-
ties of interest is given as part of the input.1 Our analysis
then determines the dependencies across plan properties,
i. e., plan-space entailments which we define as follows.
The “plan space” is the set Π of candidate plans to be con-
sidered (canonically, the set of plans for an input planning
task). A plan property p entails another property p′ in Π if
every π ∈ Π that satisfies p also satisfies p′. A user question
“Why does the current plan π satisfy p rather than q?” can
then be answered in terms of the properties q′ not true in π
but entailed by q: things that will necessarily change when
satisfying q.

Our approach also supports iterative planning, along the
lines suggested by Smith (2012). Given a current plan π ∈ Π
and a user question “Why achieve p rather than q?”, if the
consequences of q are tolerable to the user, she may choose
to enforce q, gradually narrowing the plan-candidate space
Π.

We remark that our approach can be viewed as an inter-
mediate between domain/task analysis (e. g. (Fox and Long
1998)), which our approach generalizes; and model check-
ing applied to planning models, which our approach is an
instance of (related to (Vaquero et al. 2013)).

Our contributions are as follows. We conceptualize
the explainability problems we address, through a generic
framework making minimal assumptions on the planning
context (Section ). We instantiate the framework with goal-

1An interesting yet challenging question for future work is how
one can automatically identify relevant plan properties.



fact conjunction dependencies in oversubscription planning
(e. g. (Smith 2004; Domshlak and Mirkis 2015)), and devise
analysis algorithms for that purpose (Section ). We show
that more general plan properties – in particular, action-
set properties – can be compiled into goal facts and thus
into that analysis (Section ). We give an illustrative ex-
ample (Section ), and we evaluate our techniques on inter-
national planning competition (IPC) benchmarks modified
for oversubscription planning, and on IPC benchmarks ex-
tended with action-set properties (Section ). We find that, in
a variety of benchmark studies, the suggested analyses can
be feasible and produce compact answers for human inspec-
tion.

Generic Framework
We assume some formalism defining planning tasks τ . We
do not need any assumptions about that formalism, except
that it defines a concept of plans π, where that concept
can again be arbitrary (action sequence/schedule/partial or-
der/etc). Our definitions are relative to a set Π of plans of
interest. The canonical setup we have in mind is that where
Π is induced by τ , e. g. as the set of action sequences appli-
cable in the initial state, or as the set of plans that achieve a
goal. It could also be useful in some cases though to focus
the analysis on a small set of candidate plans listed as part
of the input.

Plan Properties and Property Entailment
Plan properties, in their most general form, are simply func-
tions mapping a task and plan to a Boolean value indicating
whether or not the property is satisfied:

Definition 1 (Plan Property). Denoting by T the set of all
tasks and by P the set of all plans, a plan property is a par-
tial function p : T ×P 7→ {true, false}. Given a task τ and
a set of plans Π, we say that p is a plan property defined on
τ and Π if its domain includes {(τ, π) | π ∈ Π}.

Example plan properties are goal facts/goal formulas
(true at end of plan?), temporal plan trajectory constraints,
constraints on subsets of actions used/not used, deadlines,
bounds on resource consumption, etc. We expect that, typi-
cally, p will be computable in time polynomial in the size of
its input (though that is not a requirement of our framework).

We assume a set P of plan properties as part of our input.
P may be exponentially large in the size of its specification
though. An example we will explore later is that where the
user is interested in dependencies between subsets of a setG
of soft-goal facts. The set P of interest then are the conjunc-
tions φ over G (functions checking whether φ is true at the
end of a plan), but the input to our analysis specifies only G.

The kind of dependency our framework focuses on is en-
tailment over plan properties, in the space of truth-value as-
signments induced by the plan-candidate set Π:

Definition 2 (Π-Entailment). Let τ be a task, Π a set of
plans, and P a set of plan properties defined on τ and Π.

Let π ∈ Π. We identify π with the truth-value assignment
π : P 7→ {true, false} where π(p) := p(τ, π). We identify
Π with the set of such truth-value assignments. We say that

π satisfies p, written π |= p, if π(p) = true . We denote by
MΠ(p) := {π | π ∈ Π, π |= p} the models of p.

We say that p Π-entails q, written Π |= p ⇒ q, if
MΠ(p) ⊆ MΠ(q). We say that p and q are Π-equivalent,
written Π |= p ⇔ q, if MΠ(p) = MΠ(q). We denote
[p]Π := {q | q ∈ P,Π |= p⇔ q}.

This definition essentially just views plans π ∈ Π as truth-
value assignments in the obvious manner. Entailment and
equivalence over plan properties are then defined straightfor-
wardly, with Π in the role traditionally taken by a knowledge
base that restricts the truth-value assignments under consid-
eration. Observe that formulas over plan properties can be
encoded as individual plan properties, so that defining Π-
entailment over individual plan properties is enough to per-
mit logical combinations thereof.

Importantly, the role of Π as a knowledge base means that
Π-entailment is more than standard entailment: the latter im-
plies the former, but not vice versa. As a simple example,
say the plan properties P are propositional formulas φ over
facts, evaluated at the end of the plan. Then φ ⇒ ψ implies
that Π |= φ ⇒ ψ, simply because any (plan-end) state that
satisfies φ must satisfy ψ. But not vice versa: e. g. if facts
p, q are mutex in the task then Π |= p ⇒ ¬q. As a more
motivating example, say the plan properties are soft goals
(like having scientific observations in satellite planning) as
well as resource preferences (like consuming at most a given
amount of energy). Then entailments of interest can take the
form Π |= p⇒ ¬(q1 ∧ q2 ∧ q3) saying that we cannot have
p without foregoing either of q1 or q2 or q3. Note that this is
an entailment specific to Π, which may not hold in general
(e. g. if cheaper actions are available, or if cheaper plans are
admitted by removing some other hard goals). The identifi-
cation of such specific entailments – specific to the space Π
of plans considered – is central to our framework.

Plan-Space Explanations
Our plan-space explanations are based on the Π-entailment
relation on P given the knowledge base Π:

Definition 3 (PDO, cPDO). Let τ be a task, Π a set of plans,
and P a set of plan properties defined on τ and Π.

The plan-property dependency order (PDO) for Π and P
is the partial order ⇒Π over the equivalence classes [p]Π,
where [p]Π ⇒Π [q]Π iff Π |= p⇒ q.

A concrete PDO (cPDO) replaces each equivalence class
[p]Π with exactly one p ∈ [p]Π.

The PDO makes explicit how the plan properties P de-
pend on each other. For all contrastive user questions of the
form “Why r rather than p?”, the answer can be directly ex-
tracted from the PDO, in terms of the properties entailed by
p. For example, the answer may be “we cannot have p with-
out foregoing either of q1 or q2 or q3”.

However, the PDO and the answers it provides can be
large. A concrete PDO can be a practical proxy if equiva-
lence classes are large. Beyond that, it is clearly important
to identify (i) more compact and/or (ii) more restricted plan-
space explanations. We introduce variants of both here.



Regarding (i), in our concrete instantiation of this frame-
work we use subsumption over Π-entailment relations, re-
lying on an easy-to-test sufficient criterion for Π-entailment:

Definition 4 (Dominant cPDO). Let τ be a task, Π a set of
plans, and P a set of plan properties defined on τ and Π.

Let⇒suff⊆ P × P be such that, if p ⇒suff q, then Π |=
p⇒ q. In a cPDO, we say that p⇒Π q subsumes p′ ⇒Π q′

given⇒suff if p′ ⇒suff p and q ⇒suff q′.
A dominant cPDO (dcPDO) for Π and P given⇒suff is

the subset of non-subsumed p⇒Π q in a cPDO.

An entailment p ⇒Π q subsumes another one p′ ⇒Π q′

if its left-hand side is weaker (p′ ⇒suff p) and its right-
hand side is stronger (q ⇒suff q′): in this case, p′ ⇒Π q′

follows from p ⇒Π q. A dominant cPDO thus selects only
the strongest Π-entailments in a cPDO, as a more compact
representation of the information present in that cPDO.

The role of⇒suff here is to qualify the amount of infor-
mation we are allowed to use in identifying this compact
representation. This is important because, if we show com-
pacted information to a user, then the user should be able to
de-compact this information – to obtain whichever informa-
tion the user is actually interested in – effortlessly. A simple
restriction is for⇒suff to be computable in polynomial time,
but cognitive abilities may necessitate stronger restrictions.
Here we will consider goal-fact conjunctions and disjunc-
tions, and use the trivial ⇒suff where larger conjunctions
are stronger while larger disjunctions are weaker.

As a simple form of (ii) more restricted plan-space expla-
nations, we will employ the restriction of focus to a prede-
fined subset D of dependencies of interest:

Definition 5 (Restricted (dc)PDO). Let τ be a task, Π a set
of plans, and P a set of plan properties defined on τ and Π.

LetD ⊆ P×P be any binary relation on plan properties.
Then a (dc)PDO for D results from ignoring Π-entailments
Π |= p⇒ q where (p, q) 6∈ D.

Some words are in order regarding complexity. Testing Π-
entailment encompasses the plan existence problem even for
extremely simple plan properties (asking whether the plan
achieves a fact p). This is exacerbated by the size of the
PDO. Certainly, a (dc)PDO should ideally be computed of-
fline, prior to interaction with a user.

Goal Dependencies
We now instantiate our framework with a concrete use case:
dependencies between goals in oversubscription planning,
where the question addressed is which combinations of
(soft) goals exclude which other combinations. In Section ,
we will show how to compile a more powerful plan property
language into this special case.

Planning Framework
Most of the techniques we introduce in what follows are ap-
plicable to a broad range of planning frameworks. Neverthe-
less, for a concrete exposition, henceforth we consider the
finite-domain representation (FDR) framework (Bäckström
and Nebel 1995; Helmert 2009), with finite-domain state

variables as used in the Fast Downward system (Helmert
2006) on which our implementation is based.

An FDR task τ is a tuple τ = (V,A, c, I,G) where V is
the set of variables, A is the set of actions, c : A 7→ R+

0 is
the action cost function, I is the initial state, and G is the
goal. A state, in particular I , is a complete assignment to V ;
G is a partial assignment to V ; each action a ∈ A has a pre-
condition prea and an effect eff a, both partial assignments
to V . We will refer to variable-value pairs v = d as facts,
and we will identify partial variable assignments with sets of
facts. An action a is applicable in a state s if prea ⊆ s. The
outcome state s[[a]] is like s except that s[[a]](v) = eff a(v)
for those v on which eff a is defined. The outcome state of
an iteratively applicable action sequence π is denoted s[[π]].

We address an oversubscription variant of FDR, where an
oversubscription planning (OSP) task is a tuple τ = (V,
A, c, I,G, b) exactly like an FDR task but with an additional
cost bound b ∈ R+

0 . Intuitively, the goals G are “soft”, and
the challenge is to achieve a maximally valuable subset of
G within the cost bound. OSP frameworks in the literature
employ notions (e. g. goal-fact rewards) of what it means to
be “maximally valuable”. Here we assume instead that the
user’s preferences over the soft goals are difficult to spec-
ify and/or elicitate, so that an in-depth characterization of
the trade-offs between different goal sets – their dependen-
cies – is of interest. In the terms of our framework, this
means that the set Π of plans is simply the set of all ac-
tion sequences π = 〈a1, . . . , an〉 applicable in I and where∑n
i=1 c(ai) ≤ b. An analysis over suitable sets of proper-

ties P and dependencies D then yields the desired trade-off
information.

Plan Properties
The plan properties we consider here are characterized by
propositional formulas over goals:

Definition 6 (Goal Properties). Let τ = (V,A, c, I,G, b) be
an OSP task, and Π its set of plans.

A goal property for τ is a function pφ : Π 7→
{true, false} where φ is a propositional formula over the
atomsG, and pφ(π) = true iff φ evaluates to true under the
truth value assignment where g ∈ G is true iff g ∈ I[[π]].

We identify goal properties pφ with the characterizing for-
mulas φ. We consider a class of properties and dependencies
identifying exclusions between goal conjunctions:

Definition 7 (Goal Exclusion). Let τ = (V,A, c, I,G, b) be
an OSP task, and Π its set of plans.

The PDO for goal exclusion (PDO-GE) is the PDO for
Π, the property set PGE := {

∧
a∈A g | A ⊆ G}∪{¬

∧
g∈B b

| B ⊆ G}, and the dependency set DGE := {(
∧
a∈A a,

¬
∧
b∈B b) | A ∩B = ∅}.

We restrict focus to goal conjunctions and negations
thereof, and we are interested only in implications of the
form Π |=

∧
a∈A a ⇒ ¬

∧
b∈B b stating that, if we achieve

all of A, we have to forego at least one of B. The PDO-GE
then explains to the user how exactly different goal subsets
exclude each other, identifying the fine-grained trade-off.



Given the restriction to DGE, the equivalence classes in
the PDO-GE are singletons. Hence there is a unique cPDO-
GE, that we identify with the PDO-GE itself.

For compacting the information presented to a user,
we use the sufficient criterion for entailment where∧
a∈A′ g ⇒suff

∧
a∈A a iff A′ ⊇ A and ¬

∧
b∈B b ⇒suff

¬
∧
b∈B′ g iff B ⊆ B′. The dominant PDO-GE thus selects

the entailments with minimal left-hand side conjunctions ex-
cluding minimal right-hand side conjunctions.

Computing the Dominant PDO-GE
The dominant PDO-GE can be read off the minimal unsolv-
able goal subsets (MUGS), where G′ ⊆ G is a MUGS if
G′ cannot be achieved but every G′′ ( G′ can:
Proposition 1 (PDO-GE from MUGS). Let τ = (V,A, c, I,
G, b) be an OSP task, and Π its set of plans.

Then Π |=
∧
a∈A a⇒ ¬

∧
b∈B b is in the dominant PDO-

GE if and only if A ∪B is a MUGS.
Proof. A Π-entailment Π |=

∧
a∈A a ⇒ ¬

∧
b∈B b clearly

holds iff A ∪ B is unsolvable. Dominant entailments in the
PDO-GE result from set-inclusion minimal A and B, corre-
sponding to the set-inclusion minimality of MUGS.

Our computational problem thus boils down to computing
all MUGS. This can be done through a search over goal sets,
that we refer to as systematic weakening (SysW):
(1) the start node of the search is G;
(2) each search step selects an open nodeG′, calls a planner

to test whetherG′ is solvable in τ , caches the result, and
expands G′ if it is unsolvable;

(3) the children of a node G′ are those G′′ ⊂ G′ where
|G′′| = |G′| − 1.

Upon termination, the MUGS are those nodes G′ all of
whose children are solvable.

Dually, systematic strenghtening (SysS) starts from ∅,
with search steps expanding solvable nodes, and children
adding one more goal fact. Upon termination, the MUGS
can be easily obtained from the unsolvable search nodes.

In both SysW and SysS, every goal set can be reached
from the start node by permutations of the same goal-fact
removal/addition steps. We avoid duplicate planner calls by
caching. We give goal sets unique integer IDs, for fast cache
lookup, and to fix the expansion order so that we always
know whether or not we have generated a node before.

As a non-trivial search enhancement, we created synergy
with recent nogood learning techniques, conjunction learn-
ing (Steinmetz and Hoffmann 2017b) and trap learning
(Steinmetz and Hoffmann 2017a). These techniques refine
dead-end detection methods (nogoods) based on the unsolv-
able states encountered in state space search on a planning
task. As the children tasks in our searches are closely re-
lated to their parents, the refined nogoods are likely to be
useful still. So we transfer the nogoods along search paths,
resulting in iteratively stronger and stronger nogoods. For
both conjunction learning and trap learning, the nogoods
learned depend on the goal, so that only some of the nogoods
remain valid for transfer in SysW where children remove
goals. We designed simple methods to identify this nogood

subset, keeping track of goal dependencies in conjunction
learning, and re-asserting trap validity in trap learning.

Yu et al. (2017) perform an analysis related to MUGS,
to suggest goals to drop in oversubscribed situations. They
address conditional temporal problems (a form of condi-
tional temporal plans), and leverage previous conflict anal-
ysis methods in that area. It remains a question for future
work whether such conflict analysis could inspire different
analysis methods in our planning framework.

Compilations into Goal Dependencies
The analysis of goal properties just described can be used
to analyze more complex properties that can be compiled
into goal facts. Given the well-known power of compila-
tion in planning languages (e. g. (Gazen and Knoblock 1997;
Nebel 2000; Edelkamp 2006; Palacios and Geffner 2009;
Baier et al. 2009)), there is large potential in this idea. As
an example, here we consider what we refer to as action-set
properties:

Definition 8 (Action-Set Properties). Let τ = (V,A, c, I,G,
b) be an OSP task, Π its set of plans, and A1, . . . , An ⊆ A.

An action-set property for τ andA1, . . . , An is a function
pφ : Π 7→ {true, false} where φ is a propositional formula
over the atoms A1, . . . , An, and pφ(π) = true iff φ evalu-
ates to true under the truth value assignment where Ai is
true iff π contains at least one action from Ai.

As before, we identify action-set properties pφ with the
characterizing formulas φ. Arguably, action-set properties
are practically relevant. They allow to express things like
“objective x is covered by satellite y”, “route x is not used”,
“passengers x and y ride in the same vehicle”, etc. At the
same time, the simple syntax of action-set properties lends
itself to effective compilation, as follows.

Given τ , Π, and A1, . . . , An as in Definition 8, to obtain
a compiled task τ ′

1) introduce Boolean flags isUsed i that are initially false
and set to true by any action from Ai;

2) introduce formula-evaluation state variables and actions
evaluating each pφ based on these (following (Gazen
and Knoblock 1997; Nebel 2000)), setting Boolean flags
isTrueφ storing the outcome values;

3) introduce a separate 1) planning phase vs. 2) formula-
evaluation phase, and a switch action allowing to go from
1) to 2).

Then the planning-phase prefixes in τ ′ are in one-to-one cor-
respondence with Π, and given such a prefix π the evaluation
phase in τ ′ can achieve isTrueφ iff pφ(π) = true .

Now say that we want to analyze the dependencies across
a given set P of action-set properties (e. g. possible unde-
sirable consequences of not using route X). We are given
τ , Π, and P ; we want to compute the PDO for prop-
erty exclusion over P , i. e., the dependencies of the form
Π |=

∧
φ∈A φ ⇒ ¬

∧
ψ∈B ψ. With the above, this can be

done by instead computing the PDO-GE for τ ′ with goal set
{isTrueφ | φ ∈ P}, and identifying each isTrueφ with φ in
the outcome.



Clearly, similar compilation techniques can be used for
much more powerful property languages. In a preliminary
exploration, we implemented a compilation for LTL prop-
erties based on previous work (Edelkamp 2006; Baier et al.
2009). Our results indicate that this renders the PDO analy-
sis infeasible computationally. It remains an open question
how LTL properties can be addressed more effectively.

An Illustrative Example
To illustrate our approach and the kind of explanations it
provides, consider the IPC NoMystery domain, a classi-
cal transportation domain with fuel consumption. We con-
sider the example task with two trucks and three packages
as illustrated below. Fuel costs are indicated at road seg-
ments (initial fuel is 16 for T0 and 7 for T1). The pack-
ages are initially at L0 (shown in blue); their goal locations
are L4, L3,and L5 (shown in red). We define three kinds

L0

P0, P1, P2

L1 T1

L2

L3

P1

L4

P0

L5

T0 P2

5
2

34 1
2

5

5

4

of action-set properties
for this domain: uses Ti
(Lx, Ly) (truck Ti drives at
least once from Lx to Ly
or vice versa); doesn’t use
Ti (Lx, Ly) (the opposite);
same truck Px Py (both
packages are delivered by
the same truck). In our ex-
ample task, we consider six instances of these properties: 1.
uses T0 (L2, L3); 2. same truck P1 P2; 3. uses T0 (L4, L3);
4. same truck P2 P0; 5. doesn’t use T0 (L0, L5); 6. uses T1

(L5, L4).
We fix the package destinations as hard goals, defining

the set of plans Π considered. Computing the MUGS over
the six action-set properties using the algorithms previously
described, it turns out there are seven minimal unsolvable
subsets of these properties, each of size three.

Say now that the current plan uses T0 only, and includes
the action (drive T0 L5 L0). The user might ask ”Why don’t
you avoid the road L0 − L5, which has a lot of traffic at the
moment?”. Answering this question in terms of contrastive
explanation, as previously discussed, corresponds to forcing
property 5 to be satisfied. At the same time, the plan already
satisfies properties 2 and 4. However, one of the MUGS is
{2, 4, 5}, and hence the answer to the user question would
be: Because if you don’t use that road, then you would not
be able to deliver all packages using a single truck.

Experiments
We implemented our approach in Fast Downward (FD)
(Helmert 2006). We evaluate it, in turn, on IPC benchmarks
modified for oversubscription planning, and on a selection
of IPC benchmarks extended with action-set properties.

In all experiments, the base planner called by our SysS
and SysW algorithms on each search node employs hFF

(Hoffmann and Nebel 2001) for search guidance. The ex-
periments were run on a cluster of Intel E5-2660 machines
running at 2.20 GHz, with time (memory) cut-offs of 30
minutes (4 GB).

Oversubscription Planning
To evaluate our analysis of goal dependencies as per Sec-
tion , we modified all optimal-planning STRIPS IPC do-
mains up to IPC’18. Following Domshlak and Mirkis
(2015), for each benchmark task we ran an optimal plan-
ner (A∗with hLM-cut (Helmert and Domshlak 2009)) to de-
termine the optimal plan cost C, then obtained OSP tasks
by setting the cost bound to b = x ∗ C where x ∈
{0.25, 0.5, 0.75}. Our benchmark set consists of 46 do-
mains, and contains those tasks solved by the optimal plan-
ner, and where the number of goal facts is < 32. We
extended conjunction learning (Steinmetz and Hoffmann
2017b) to deal with cost bounds, thus enabling nogood
learning and transfer in SysS and SysW.

Figure 1 shows our data. Consider first the coverage data
(leftmost two parts). To have some sort of measure of how
computationally difficult our proposed analysis is, we use
reference points from classical planning. First, the hLM-cut

column gives coverage for A∗ with hLM-cut run on the orig-
inal IPC instance without a cost bound. This provides a
comparison to solvable optimal planning. Second, the hC
columns give coverage for search, with nogood learning, on
the respective cost-bounded instances, when all goals must
be achieved and thus the task is unsolvable. This provides
a comparison to proving unsolvability, in the same situation
where our approach computes all MUGS. It is expected that
our algorithms, solving a more complex problem, will per-
form worse than the reference points.2 The question is, how
much worse?

As a short summary of the answer provided by Figure 1 to
that question, compared to the hLM-cut reference point, taking
the per-domain best of our four algorithm configurations, for
x = 0.25 we get equal coverage in 36 of the 46 domains, and
in that sense are “not much worse” than optimal planning.
For larger cost bounds, the solvable goal subsets become
larger, and accordingly our analysis becomes harder. For
x = 0.5 we get equal coverage in 23 domains, for x = 0.75
in 13. The comparison to the hC proving-unsolvability ref-
erence points is qualitatively similar, with equal coverage in
38, 25, and 20 domains for x = 0.25, 0.5, 0.75 respectively.
Overall, it seems fair to say that our analyses can be feasible
in many cases, in the sense of not being more infeasible than
the most closely related classical planning problems.

While comparing our algorithm configurations against
each other is not our focus here, observe in the rightmost
part of Figure 1 that both SysS and SysW suffer from larger
cost bounds, but that is less so for SysW. This is because, for
small cost bounds, solvable goal sets are small and thus SysS
terminates earlier; while for large cost bounds, solvable goal
sets are large and thus SysW terminates earlier. Conjunction
learning (hC in the table) is moderately beneficial.

Consider finally the #MUGS part of Figure 1. Observe
that, if the user asks a question “Why r rather than p?”,
the answer are the properties entailed by p, represented here

2Indeed, the first reference point is an upper bound to our cov-
erage, as only solved instances are included in our benchmark set;
and the second reference point is an upper bound for SysW as it
constitutes the first search node in that algorithm.



Reference Points Coverage, x = #MUGS, x = Search Tree Fraction, x =

hLM-cut hC 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
x = SysS SysW SysS SysW SysS SysW Sys Sys Sys

domain - 0.25 0.5 0.75 hC hC hC hC hC hC avg max S W S W S W
agricola (20) 0 - - - - - - - - - - - - - - - - - - - - - - - - - - -
airport (50) 28 28 24 17 25 26 24 27 19 21 19 21 19 16 19 16 2.7 2.0 1.2 11 5 4 0.67 0.76 0.88 0.71 1.00 0.61
barman (34) 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 3.0 3.0 1.0 3 3 1 0.50 0.88 0.88 0.88 - -
blocks (35) 28 28 28 28 28 28 27 28 23 27 21 27 18 24 17 26 7.6 10.8 14.1 39 30 57 0.19 0.97 0.39 0.93 0.78 0.72
childsnack (20) 0 - - - - - - - - - - - - - - - - - - - - - - - - - - -
data-network (20) 12 12 12 12 12 12 12 12 12 12 12 12 11 12 11 12 1.7 1.5 1.2 3 3 2 0.83 0.65 0.88 0.65 0.92 0.61
depot (22) 7 7 7 6 7 7 7 7 7 7 7 7 4 3 4 3 4.0 7.0 4.5 6 12 10 0.34 0.94 0.52 0.91 0.89 0.68
driverlog (18) 13 13 13 11 13 13 13 13 10 11 10 12 8 10 7 10 7.0 18.2 8.7 22 45 17 0.19 0.98 0.58 0.86 0.85 0.50
elevators (50) 40 40 40 35 40 40 40 40 40 37 38 37 35 26 31 26 3.9 4.9 3.2 8 13 8 0.37 0.94 0.67 0.89 0.92 0.71
floortile (36) 13 13 13 6 7 7 6 8 2 2 2 2 2 1 2 2 175.6 66.0 31.5 697 71 33 0.12 0.99 0.67 0.80 0.97 0.28
freecell (80) 15 15 15 13 15 15 15 15 15 15 15 15 14 13 13 13 4.0 4.7 3.4 4 6 5 0.31 0.94 0.60 0.94 0.88 0.76
ged (20) 15 15 15 11 15 15 15 15 15 10 10 10 10 7 10 7 9.2 38.7 12.5 18 101 38 0.23 0.90 0.47 0.80 0.58 0.70
grid (5) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.5 1.5 1.0 2 2 1 0.81 0.69 0.81 0.69 1.00 0.56
gripper (14) 7 7 7 5 7 5 5 5 4 4 4 4 4 3 4 3 458.3 87.0 39.5 1820 252 120 0.21 0.98 0.65 0.88 0.96 0.46
hiking (20) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1.4 1.4 1.0 2 2 1 0.89 0.61 0.89 0.61 1.00 0.61
logistics (60) 26 26 26 20 24 26 21 26 15 19 14 20 12 13 12 15 6.3 6.0 2.9 25 22 7 0.31 0.95 0.68 0.84 0.90 0.63
miconic (150) 141 120 76 50 66 66 55 64 45 40 44 43 41 36 40 36 76.0 24.1 8.4 363 98 36 0.33 0.91 0.73 0.82 0.95 0.61
movie (30) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 7.0 35.0 21.0 7 35 21 0.06 0.99 0.50 0.94 0.94 0.50
mprime (35) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 1.3 1.2 1.2 2 2 2 0.90 0.59 0.92 0.59 0.93 0.59
mystery (30) 17 17 17 17 17 17 17 17 17 17 17 17 15 17 15 17 1.4 1.4 1.2 2 2 2 0.88 0.63 0.88 0.63 0.92 0.63
nomystery (20) 14 14 14 13 14 14 14 14 10 12 10 12 8 8 8 8 7.3 18.5 5.8 18 47 13 0.20 0.96 0.63 0.92 0.87 0.61
openstacks (77) 47 45 45 43 45 45 37 43 45 43 29 41 42 42 22 33 15.3 14.2 12.3 25 25 23 0.06 0.99 0.05 0.99 0.18 0.97
org-syn (20) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5.1 5.1 5.1 12 12 12 0.23 0.94 0.23 0.94 0.23 0.94
org-syn-s (13) 10 10 10 9 8 8 7 8 8 8 7 8 7 6 6 6 5.2 7.2 8.3 12 28 36 0.20 0.95 0.23 0.95 0.32 0.89
parcprinter (26) 24 20 20 20 10 10 10 14 10 10 10 14 10 10 10 12 3.8 8.2 5.0 14 24 10 0.44 0.98 0.61 0.95 0.72 0.85
parking (40) 5 5 5 1 5 5 4 5 0 1 0 1 0 0 0 0 36.8 31.0 - 79 31 - 0.02 0.99 - - - -
pathways (23) 5 5 5 5 5 5 5 5 4 5 4 5 4 4 4 4 3.2 3.8 1.8 6 10 3 0.53 0.81 0.77 0.77 0.91 0.70
pegsol (2) 2 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 7.0 23.5 64.0 8 41 122 - - - - - -
pipesworld-nt (50) 17 17 17 17 17 17 17 17 17 17 16 17 16 14 16 14 3.7 6.4 3.8 8 31 17 0.44 0.89 0.73 0.84 0.88 0.66
pipesworld-t (50) 12 12 12 11 12 12 12 12 11 11 11 11 9 11 9 10 3.6 5.0 3.7 7 15 12 0.43 0.94 0.67 0.87 0.90 0.63
psr-small (50) 49 49 49 49 48 48 49 49 47 47 48 49 46 46 48 48 3.7 2.7 2.0 20 13 9 0.76 0.63 0.94 0.55 0.97 0.47
rovers (31) 8 8 8 7 8 8 8 8 7 7 7 7 6 5 6 4 18.0 11.4 3.8 95 35 12 0.36 0.93 0.74 0.84 0.91 0.59
satellite (19) 7 7 7 6 7 7 7 7 6 6 6 7 4 5 4 6 5.6 26.9 14.7 7 76 36 0.19 0.97 0.49 0.94 0.88 0.73
scanalyzer (40) 23 21 21 13 9 15 9 13 9 9 9 9 9 5 9 9 20.9 36.7 31.2 46 103 43 0.25 0.99 0.53 0.86 0.75 0.83
snake (17) 7 7 7 4 6 6 6 6 3 3 3 3 3 1 2 1 10.5 21.0 44.3 16 27 77 0.13 0.92 0.32 0.86 0.58 0.73
sokoban (50) 50 50 49 41 50 50 49 50 46 43 45 43 40 30 40 28 6.6 4.1 1.8 56 36 10 0.60 0.85 0.86 0.71 0.95 0.51
storage (30) 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 14 3.6 3.7 2.1 10 10 5 0.62 0.81 0.85 0.75 0.98 0.57
termes (20) 6 6 4 1 6 6 5 6 5 1 1 2 1 0 0 0 3.2 2.6 3.0 8 6 3 0.37 0.72 0.53 0.53 - -
tetris (17) 6 6 6 5 6 6 5 6 4 3 3 3 3 2 3 2 29.7 32.8 7.3 81 82 11 0.26 0.98 0.81 0.77 0.97 0.41
tidybot (40) 23 23 23 19 23 23 23 23 23 22 23 22 13 13 7 14 3.1 3.3 3.4 4 6 6 0.38 0.92 0.41 0.92 0.75 0.84
tpp (30) 7 7 7 6 7 7 7 7 6 7 6 6 6 5 6 5 4.1 8.9 4.2 9 25 11 0.43 0.86 0.67 0.83 0.96 0.66
transport (70) 23 23 23 22 23 23 23 23 23 23 23 23 23 22 22 22 3.5 3.7 2.1 5 10 6 0.43 0.91 0.59 0.88 0.73 0.69
trucks (30) 10 10 10 8 10 10 9 10 6 7 6 7 5 3 5 4 15.7 17.1 5.0 36 31 8 0.23 0.97 0.70 0.89 0.93 0.65
visitall (14) 14 13 13 13 13 13 10 10 9 10 8 10 6 6 7 8 97.4 111.6 46.5 307 380 150 0.20 0.93 0.41 0.90 0.79 0.75
woodworking (35) 29 25 25 25 23 23 12 15 9 9 5 9 5 5 5 5 267.3 95.0 16.8 1030 192 26 0.02 0.99 0.27 0.93 0.72 0.52
zenotravel (20) 13 13 12 9 13 13 12 13 9 9 8 9 8 9 8 9 10.4 4.0 2.6 36 6 4 0.36 0.94 0.67 0.89 0.87 0.66
Sum (1583) 862 828 776 670 733 740 688 732 630 624 592 636 556 517 523 528

Figure 1: Results on IPC benchmarks modified for oversubscription planning. Reference Points: related classical planning
tasks (see text). Coverage: of our MUGS algorithms SysS and SysW, with vs. without conjunction learning hC . #MUGS:
average/maximum number of MUGS, indicating explanation size (see text). Search Tree Fraction: fraction of worst-case
search tree explored. Best performance in each part shown in boldface. Cost bounds set to x times optimal cost.

through the smallest conjunctions excluded by p. The num-
ber of such conjunctions is at most the number of MUGS. So
#MUGS corresponds to worst-case answer/explanation size.
As the data shows, that size is often small, of a scale that
seems feasible for human inspection.

Action-Set Properties
To evaluate the use of our framework with more complex
plan properties, beyond goal facts, we experimented with the
compilation of action-set properties as per Section . We se-
lected four IPC domains for extension with action-set prop-
erties, namely NoMystery, Rovers, and TPP as considered in
resource-constrained planning (Nakhost et al. 2012), where
minimum resource requirements are known as per available
problem generators; plus the Blocksworld as an intuitively
rather differently structured domain. In all four domains, we
use discrete resource consumption encoded into the STRIPS
model, enabling the use of trap learning (Steinmetz and
Hoffmann 2017a) which turns out to be highly beneficial
here.

In Blocksworld, we include two gripper hands and the
action-set properties ask whether a given gripper is used to
pick up a given block, or to stack a given pair of blocks. In
NoMystery, the properties are as in our illustrative example
(Section ). In Rovers, the properties ask whether a given
rover or camera is used for a given observation. In TPP,

they ask whether given road segments are used, and whether
given goods are bought at given markets. In all cases, we
vary the number of action-set properties between 1 and 10.
We fix the original goal facts as hard goals, and we set the
available resources to x ∈ {1.0, 1.5, 2.0} times the mini-
mum needed to allow for costlier plans satisfying some of
the properties.

We created benchmark tasks with size parameters around
the borderline of computational feasibility for our analyses,
given our time/memory limits. In Blocksworld, we used 5
– 8 blocks; in NoMystery, our tasks have 2 trucks, 6 loca-
tions, and 4 – 7 packages; in Rovers, they have 2 rovers, 5
waypoints, and 4 – 7 science objectives; in TPP, we use 5
markets, 1 depot, and 4 – 7 goods. In all domains, we vary
the number of goal facts (and associated objects) between 4
and 7. We create 10 base instances for each size-parameter
setting, which are then modified for our experiments with
different initial resource levels, and action-set properties to
be considered.

To have some comparison measure for performance,
again we use classical-planning reference points, based on
A∗ with hLM-cut, and on search with trap learning, respec-
tively. We now run these reference points on tasks where all
(original goal facts plus) action-set properties are hard goals.
These tasks may be solvable (in which case A∗ with hLM-cut

tends to be better) or unsolvable (in which case trap learning
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Figure 2: Coverage results on IPC benchmarks extended with action-set properties.

tends to be better). The configurations of our own algorithm
are SysS and SysW as before, now with vs. without trap
learning (and transfer).

Figure 2 shows the coverage data. For space reasons, we
show only one row per domain, fixing the number of hard
goals at the feasibility borderline. Smaller numbers of goal
facts tend to be quite easy, larger ones mostly infeasible,
with variance depending on the domain and algorithm.

Conclusion
We introduced a framework for plan-space explanation via
plan-property dependencies. We believe that the framework
is useful conceptually as a problem formulation shaping a
relevant part of XAIP. Our techniques for first instantiations
of the framework exhibit reasonable performance in IPC
benchmark studies. The computed explanations are often
small and thus potentially feasible for human inspection.

In future work, the effectiveness of these explanations for
human users remains to be evaluated in user studies. An-
other important question is how to address deeper “why”
questions, asking for the reasons behind an entailment Π |=
p ⇒ q. Possible ideas are to include additional properties
into P , elucidating the causal chain between p and q; or to
find a minimal relaxation (superset) of the plan set Π for
which p no longer entails q, thus elucidating the circum-
stances under which that entailment holds. Last but not least,
of course our framework and algorithms can and should be

extended to richer planning frameworks and plan property
languages.
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