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Abstract

Inverse problems are ubiquitous in natural sciences and refer to the challenging task of
inferring complex and potentially multi-modal posterior distributions over hidden param-
eters given a set of observations. Typically, a model of the physical process in the form
of differential equations is available but leads to intractable inference over its parameters.
While the forward propagation of parameters through the model simulates the evolution
of the system, the inverse problem of finding the parameters given the sequence of states
is not unique. In this work, we propose a generalisation of the Bayesian optimisation
framework to approximate inference. The resulting method learns approximations to the
posterior distribution by applying Stein variational gradient descent on top of estimates
from a Gaussian process model. Preliminary results demonstrate the method’s performance
on likelihood-free inference for reinforcement learning environments.

1. Introduction

We consider the problem of estimating parameters 8 of a physical system according to
observed data y. The forward model of the system is approximated by a computational
model that generates data ¥ based on the given parameter settings 8. In many cases, the
corresponding likelihood function p(§4|@) is not available, and one resorts to likelihood-
free methods, such as approximate Bayesian computation (ABC) (Robert, 2016), condi-
tional density estimation (Papamakarios and Murray, 2016), etc. For certain applications
in robotics and reinforcement learning, however, the number of simulations might be limited
by resource constraints, imposing challenges to current approaches.

Recent methods address the problem of efficiency in the use of simulations by either
constructing conditional density estimators from joint data {6;, yi}iN:l, using, for example,
mixture density networks (Papamakarios and Murray, 2016; Ramos et al., 2019), or by
sequentially learning approximations to the likelihood function (Gutmann and Corander,
2016; Papamakarios et al., 2019) and then running Markov chain Monte Carlo (MCMC).
In particular, Gutmann and Corander (2016) derive an active learning approach using
Bayesian optimisation (BO) (Shahriari et al., 2016) to propose parameters for simulations.
Their approach reduces the number of simulator runs from the typical thousands to a few
hundreds.
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This paper investigates an approach to combine the flexible representative power of
variational inference methods (Liu and Wang, 2016) with the data efficiency of Bayesian
optimisation. We present a Thompson sampling strategy (Russo and Van Roy, 2016) to
sequentially refine variational approximations to a black-box posterior. Parameters for new
simulations are proposed by running Stein variational gradient descent (SVGD) (Liu and
Wang, 2016) over samples from a Gaussian process (GP) (Rasmussen and Williams, 2006).
The approach is also equipped with a method to optimally subsample the variational ap-
proximations for batch evaluations of the simulator models at each round. In the following,
we present the derivation of our approach and preliminary experimental results.

2. Distributional Bayesian optimisation

Our goal is to estimate a distribution ¢ that approximates a posterior distribution p(8|y)
over simulator parameters & € © C R? given observations y from a target system. We
assume no access to a likelihood function p(y|@), but only to a discrepancy measure !
between simulator outputs and observations Ag, as in Gutmann and Corander (2016).

We take a Bayesian optimisation approach to find the optimal ¢* by minimising a dis-
crepancy between g and the target p:

q* € argminS(q,p) . (1)
qeQ

where S represents the kernelised Stein discrepancy (KSD) (Liu et al., 2016).2 We solve
Equation 1 via a black-box approach which does not require gradients of the target distri-
bution p nor its availability in closed form. The resulting BO algorithm is composed of a
GP model to form an approximate likelihood, a Thompson sampling acquisition function
to select candidate distributions and a kernel herding procedure to optimally select samples
of simulator parameters.

2.1. Modelling

A standard BO approach would place a GP to model the map from ¢’s parameters to
the corresponding KSD. However, such parameter space holds a weak connection with the
original © and is possibly higher-dimensional. We choose to bypass this step by learning ¢
directly via Stein variational gradient descent (SVGD) (Liu and Wang, 2016).

Applying SVGD directly to Equation 1 would require gradients of the target logp. In
our case, we have that:

Vologp(8ly) = Vglogp(y|0) + Vg logp(0) .

As p(y|0) is unavailable, we use a GP to model g : 8 — —Ag, which defines a synthetic
likelihood function (Gutmann and Corander, 2016), i.e.:

p(y|0) = p(y|6) oc e . (2)

1. The ABC literature offers a plenitude of choices for Ag. For a review, we refer the reader to Gutmann
and Corander (2016) and Robert (2016). Our choice for experiments is given in Section 3.
2. Background details on the KSD are presented in the appendix (Section A.1).
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The simulations-observations discrepancy Ag is possibly expensive to evaluate and not
differentiable, due to the need of running a black-box simulator. The GP then provides an
approximation which is cheap to evaluate and whose sample functions are differentiable for
smooth kernels, allowing us to apply SVGD in the BO loop.

2.2. A posterior sampling approach

We propose selecting candidate distributions g, € Q based on a GP posterior sampling
approach known as Thompson sampling (Russo and Van Roy, 2016), which has been suc-
cessfully applied to BO problems in the case of selecting point candidates @ € © (Chowdhury
and Gopalan, 2017; Kandasamy et al., 2018; Mutny and Krause, 2018). Thompson sam-
pling accounts for uncertainty in the model by sampling functions from the GP posterior.
For models based on finite feature maps, such as sparse spectrum Gaussian processes (SS-
GPs) (Lazaro-Gredilla et al., 2010), the Thompson sampling approach resumes to sampling
weights w,, from a multivariate Gaussian (Appendix A.2), so that:

gn(0) = 1o(0) + Wi p(8) , 0 €O, (3)

constitutes a sample from the posterior of a SSGP with mean function pg and feature map
¢. Recalling the objective in Equation 1, we can now define the acquisition function as:

h(Q‘Dn) = _S(%ﬁn) ) (4)

where p,(8) o p(8)e9"(® corresponds to an approximation to the target posterior p(0|y)
based on g,.

SVGD represents the variational distribution ¢ as a set of particles {6;}, forming an
empirical distribution. The particles are initialised as i.i.d. samples from the prior p(6) and
optimised via a sequence of smooth perturbations:

M
1 A
Oii1=0i: +1:€(0:1), ¢(0)= Vi Z k(0;+,0)Ve, logpn(0;t) + Ve, k(0;4,0), (5)
j=1

where k(0,60') = ¢(0)T¢(0’) corresponds to the SSGP kernel, and 7; is a small step size.
Intuitively, the first term in the definition of ¢ guides the particles to the local maxima of
log py,, i.e. the modes of p,,, while the second term encourages diversification by repelling
nearby particles.

In contrast to the true posterior, the gradients of log p,, are available as:

Vo logpn(0) = Vegn(8) + Velogp(6) . (6)

Gradients of sample functions are always defined for SSGP models with differentiable mean
functions, since the feature maps are smooth. For a uniform prior, which we use in experi-
ments, also note that Vg log p(6) = 0 almost everywhere.

2.3. Informative sampling via kernel herding

Having selected a distribution g¢,, we need to run evaluations of Ag from samples 6 ~ g,
to update the GP model with. Representing ¢ by a large number of particles M improves
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Algorithm 1: DBO
Input: f, 9, N, S
forne {1,...N} do
qn € argmax, o h(q|Dn-1) # Maximise acquisition function via SVGD

{0,,.1}2_, ~ Herding(gy, Dy—1) # Sample simulator parameters
forie{1,...,5} do
‘ Zni = —QAg, ; # Collect observation
end
Dy :=Dp—1 U {en,ia Zn,i}?zl
end

exploration of the approximate posterior surface, allowing SVGD to find distant modes.
However, we should not use the large number of particles directly as sample parameters to
run the simulator with, since simulations are expensive. Therefore, we select S < M query
parameters {6, ; }5321 C O by optimally subsampling the candidate g,,.

Kernel herding (Chen et al., 2010) constructs a set of samples which minimises the error
on empirical estimates for expectations under a given distribution ¢g. This error is bounded
by the maximum mean discrepancy (MMD) between the kernel embedding of ¢ and its sub-
sampled version (Muandet et al., 2016). In the case of SSGPs, the kernel herding procedure
resumes to the following algorithm:

011 = argmax ade)(O) (7)
0cO
o1 = o+ ’l/)q - ¢(9j+1) ) (8)

for j €{0,...,5—1} and ap = 9, = Eg¢[#(0)]. However, instead of naively herding with
the original feature map ¢, we make use of the information encoded by the GP to select
samples which will be the most informative for the model. Such information is encoded by
the GP posterior kernel:

kn(0,0') = o7 0(0)T AL $(6) . 9)
where 02A ! is the covariance matrix of the GP weights posterior (defined in Appendix A.2).
The posterior kernel provides an embedding for ¢ given by:

n 2 A1

which accounts for the previously observed locations in the GP data. Replacing 1, by g
in Equation 8 yields the sampling scheme we use. The distributional Bayesian optimisation
(DBO) algorithm is summarised in Algorithm 1.

3. Experiment

In this section, we present experimental results evaluating DBO in synthetic data scenarios.
As a baseline we compare the method against mixture density networks (MDNs), as in
Ramos et al. (2019), which were learnt from a dataset of parameters sampled from the prior
p(0) and the corresponding simulator outputs .
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Figure 1: On the left, we show the reference Cart-Pole log-posterior density estimate ob-
tained by ABC and interpolated by kernel density estimation. The parameters of
the target system are indicated by a yellow star. The middle plot shows particles
from DBO’s learnt distribution on top of the final GP mean discrepancies esti-
mate. The plot on the right shows a comparison against MDNs in terms of MMD
with respect to the reference posterior as a function of the number of simulations.

The experiment evaluates the proposed method on OpenAl Gym’s® cart-pole environ-
ment. We fix a given setting for its physics parameters 0" and generate a dataset y of 10
trajectories by executing randomly sampled actions. Summary statistics v were the same
as Ramos et al. (2019). The discrepancy was set to Ag := ||v4 — ¥™*||?/c%. We place a
uniform prior p(@) with bounds specific for the environment. Further details on the exper-
imental setup are described in Appendix B. An open-source implementation can be found
online 4.

The results in Figure 1 show that the mehtod is able to recover the target system’s
curve-shaped posterior and is able to obtain better approximations to the posterior when
compared to the MDN approach. We can also see that in terms of MMD, DBO is able to
provide a better overall approximation than the MDN.

4. Conclusion

This paper presented a Bayesian optimisation approach to inverse problems on simulator
parameters. Preliminary results demonstrated the potential of the method for reinforcement
learning applications. In particular, results show that distributional Bayesian optimisation
is able to provide a more sample-efficient approach than other likelihood-free inference meth-
ods when inferring parameters of a classical reinforcement learning environment. Future
work includes further scalability and theoretical analysis of the method.

3. OpenAI Gym: https://gym.openai.com
4. Code available at: https://github.com/rafaol/dbo-aabi2019
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Appendix A. Background
A.1. Kernelised Stein discrepancy

For a positive-definite kernel k : R x R* — R, the kernelised Stein discrepancy is given by:
S(4,P) = [Eonq[Spk(-, 0)]ll3a (11)

where S, represents the Stein operator for p and H;, denotes the reproducing kernel Hilbert
space (Scholkopf and Smola, 2002) associated with k. For any f € Hj, we have:

Spf(0) = f(8)Velogp(6) + Vo f(0) . (12)
Similar to other measures of divergence between distributions, we have that:
S(g;p) =0 < q=p, (13)

for strictly positive-definite kernels (Liu et al., 2016).

Liu and Wang (2016) present Stein variational gradient descent (SVGD) as an approach
to minimise the Kullback-Leibler (KL) divergence between ¢ and p based on the definition
of the KSD. For a class Q of empirical distributions obtained by a sequence of smooth
transforms, the vector {(0) = Eg~4[Spk(-, 8)] corresponds to the optimal perturbation to a
particle 0 in the support of g € Q.
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A.2. Sparse-spectrum Gaussian processes

Gaussian process (GP) models (Rasmussen and Williams, 2006) provide a flexible approach
to perform Bayesian inference over non-linear functions g : © — R, © C R%. One of the
main issues with conventional GP models, however, is the high computational cost of O(N?3)
in the inference process (Rasmussen and Williams, 2006), which can be a major drawback,
especially in the case of online learning with Bayesian optimisation. For this reason, we
make use of sparse spectrum Gaussian process (SSGP) regression (Lazaro-Gredilla et al.,
2010), which allows for fast incremental updates of the GP posterior (Gijsberts and Metta,
2013).

The main idea behind sparse spectrum GP models is the decomposition of the GP
covariance, or kernel, function k : ©® x ©® — R via Fourier series. As shown by Rahimi
and Recht (2007), the Fourier transform of any shift-invariant kernel & on R? yields a valid
probability distribution Py, so that k can be approximated as:

k(6,0') = Ew~p,[cos(w' (0 — 6)] = ()T ¢(6), (14)
where: .
¢°(0) = [of cos(w] )M, ¢°(0) = [opsin(w] )M, w; ~ Py, and o, = \/% Linear

scaling of the kernel by some o, > 0 can further be achieved by setting o, := %’ instead.

With this approximation, given a set of observations Dy = {6;, 2} ,, we can represent
any function g sampled from the SSGP posterior as g(8) = po(0) +w'¢(0), 6 € O, where:

w|Dy ~ N(Ay'by, 02AL), (16)
by = ®N(z — po), (17)
Ay =®N®) + 07T, (18)

with @ = [@(01),...,d(0y)] € R*M*N_ The posterior over g is then determined by:

9(0)[Dn ~ N(un(8), 07%(8)) (19)
N (0) == 10(8) + ¢() Ay by (20)
o%(0) = 02p(6) AL B(0) (21)

where py and 012\, denote the GP posterior mean and variance functions, respectively.

Fast incremental updates: To reduce the time complexity in the update of the GP
posterior when given a new observation pair (@ny1,2n+1), Gijsberts and Metta (2013)
propose using the decomposition:

byi1 =by + d(On+1)(2N+1 — o(ON+1)) (22)
Anir=ANn+ ¢(On41)P(On11)" . (23)
To avoid recomputing A]_VIH, one can instead keep track of its Cholesky factors. The latter

allows us to update the GP posterior with time complexity O(M?) (Gijsberts and Metta,
2013), which is constant with respect to the number of data points V.
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Appendix B. Experiment details

Our GP model was configured with the Matérn kernel set with smoothness parameter v := %
(Rasmussen and Williams, 2006). Other hyper-parameters include the kernel length-scales,
signal variance and noise variance, and were learnt as MAP estimates using previous BO
runs where the hyper-parameters had been adapted online. The GP mean function was set
as the log-prior probability logp(@). For the experimental results presented in the paper,
the hyper-parameters are fixed.

Stein variational gradient descent was run with the sparse-spectrum kernel k(0,0") :=
P(0)"p(0), 6,0 < O, for 1000 steps with 1000 particles using Adam (Kingma and Ba,
2015) at a learning rate of 0.01.

The mixture density networks were configured with 10 Gaussian components following
the experimental setup of Ramos et al. (2019). Neural network architectures were fully

connected multi-layer perceptrons with 2 hidden layers, each with 24 units.
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