
Published as a conference paper at ICLR 2019

STROKENET: A NEURAL PAINTING ENVIRONMENT

Ningyuan Zheng, Yifan Jiang & Dingjiang Huang
School of Data Science and Engineering, East China Normal University
{10165101164, 10153903133}@stu.ecnu.edu.cn,
djhuang@dase.ecnu.edu.cn

ABSTRACT

We’ve seen tremendous success of image generating models these years. Gener-
ating images through a neural network is usually pixel-based, which is fundamen-
tally different from how humans create artwork using brushes. To imitate human
drawing, interactions between the environment and the agent is required to allow
trials. However, the environment is usually non-differentiable, leading to slow
convergence and massive computation. In this paper we try to address the discrete
nature of software environment with an intermediate, differentiable simulation.
We present StrokeNet, a novel model where the agent is trained upon a well-
crafted neural approximation of the painting environment. With this approach,
our agent was able to learn to write characters such as MNIST digits faster than
reinforcement learning approaches in an unsupervised manner. Our primary con-
tribution is the neural simulation of a real-world environment. Furthermore, the
agent trained with the emulated environment is able to directly transfer its skills
to real-world software. 1

1 INTRODUCTION

To learn drawing or writing, a person first observes (encodes) the target image visually and uses
a pen or a brush to scribble (decode), to reconstruct the original image. For an experienced painter,
he or she foresees the consequences before taking any move, and could choose the optimal action.

Stroke-based image generation is fairly different from traditional image generation problems
due to the intermediate rendering program. Raster-based deep learning approaches for image gen-
eration allow effective optimization using back-propagation. While for stroke-based approaches,
rather than learning to generate the image, it is more of learning to manipulate the painting program.

An intuitive yet potentially effective way to tackle the problem is to first learn this mapping
from “stroke data” to the resulting image with a neural network, which is analogous to learning
painting experience. An advantage of such a mapping over software is that it provides a continuous
transformation. For any painting program, the pixel values of an image are calcuated based on the
coordinate points along the trajectory of an action. Specific pixels are indexed by the discrete pixel
coordinates, which cuts the gradient flow with respect to the action. In our implementation, the
indexing is done by an MLP described in Section 3.

We further define “drawing” by giving a formal definition of “stroke”. In our context, a “stroke”
consists of color, brush radius, and a sequence of tuples containing the coordinate and pressure of
each point along the trajectory. We will later describe this in detail in Section 3.

Based on these ideas, we train a differentiable approximator of our painting software, which we
call a “generator”. We then tested the generator by training a vanilla CNN as an agent that encodes
the image into “stroke” data as an input for the environment. Our proposed architecture, StrokeNet,
basically comprises the two components, a generator and an agent.

Finally, an agent is trained to write and draw pictures of several popular datasets upon the
generator. For the MNIST (LeCun & Cortes, 2010) digits, we evaluated the quality of the agent
with a classifier trained solely on the original MNIST dataset, and tested the classifier on generated

1Code for the model at: https://github.com/vexilligera/strokenet.

1

https://github.com/vexilligera/strokenet


Published as a conference paper at ICLR 2019

images. We also compared our method with others to show the efficiency. We explored the latent
space of the agent as well.

2 RELATED WORK

Generative models such as VAEs(Kingma & Welling, 2013; Sohn et al., 2015) and
GANs(Goodfellow et al., 2014; Mirza & Osindero, 2014; Radford et al., 2015; Arjovsky et al.,
2017) have achieved huge success in image generation in recent years. These models generate im-
ages directly to pixel-level and thus could be trained through back-propagation effectively.

To mimic human drawing, attempts have been made by both graphics and machine learning
communities. Traditionally, trial-and-error algorithms(Hertzmann, 2003) are designed to optimize
stroke placement by minimizing an energy function, incorporating heuristics, e.g., constraining the
number of strokes. Concept learning is another example tackling this problem using Bayesian pro-
gram learning (Lake et al., 2015). Recent deep learning based approaches generally falls into two
categories: RNN-based approaches and reinforcement learning.

For RNN-based approaches such as SketchRNN (Ha & Eck, 2017) and handwriting generation
with RNN by Graves (Graves, 2013), they both rely on sequential datasets. Thus for unpaired data,
those models cannot be applied.

Another popular solution is to adopt reinforcement learning such as “artist agent”(Xie et al.,
2012) and SPIRAL (Ganin et al., 2018). These methods train an agent that interact with the painting
environment. For reinforcement learning tasks with large, continuous action space like this, the
training process can be computationally costly and it could take the agent tens of epochs to converge.

To mitigate this situation, we simulate the environment in a differentiable manner much alike
the idea in World Models (Ha & Schmidhuber, 2018; Schmidhuber, 1990; 2018), where an agent
learns from a neural network simulated environment. Similar approach is also used in character
reconstruction for background denoising(Huang et al., 2018). In our scenario, we train our gener-
ator (auto-encoder) by parts for flexible stroke sequence length and image resolution, discussed in
Section 3 and 4.

Differentiable rendering is an extensively researched topic in computer graphics. It is used to
solve inverse rendering problems. Some differentiable renderers explicitly model the relationship
between the parameters and observations (Loper & Black, 2014), others use neural network to
approximate the result (Nguyen-Phuoc et al., 2018) since neural nets are powerful function approx-
imators. While little has been done on simulating 2D rendering process adopted in digital painting
software, we used a generator neural network to meet our needs.

3 STROKENET ARCHITECTURE AND ENVIRONMENT

3.1 STROKE

We define a single stroke as follows,

s = {(c, r), (x1, y1, p1), · · · , (xn, yn, pn)}, n = 16, (1)

where c ∈ R3 stands for RGB color, scalar r for brush radius, and tuple (xi, yi, pi) for an anchor
point on the stroke, consisting of x, y coordinate and pressure p, and n is the maximum number of
points in a single stroke, in this case, 16. These values are normalized such that the coordinates
correspond to the default OpenGL coordinate system.

ck, r, pi ∈ [0, 1], xi, yi ∈ [−1, 1], (2)

for k = 1, 2, 3 and i = 1, 2, · · · , n. We used absolute coordinates for each point. It is notable
that compared to the QuickDraw (Ha & Eck, 2017) dataset which contains longer lines, our strokes
consist of much fewer points. We consider many trajectory points redundant since the stroke lines
can be fitted by spline curves with fewer anchor points. For example, to fit a straight line, only
two end-points are needed regardless of the length, in other words, stroke curves are usually scale-
invariant. However, if we are to sample the data from a user input, we could have dozens of points
along the trajectory. Hence we made the assumption of being able to represent curves with a few

2



Published as a conference paper at ICLR 2019

x1, y1, p1

x2, y2, p2 

… 

xn, yn, pn 

Convolution + LeakyReLU Average Pooling Fully Connected + (Leaky) ReLU Deconvolution + LeakyReLU(tanh) + BatchNorm 

REDUCE 

C
O

N
C

A
T

[color, radius] 

RESHAPE

256 × 256 × 16 

128 × 128 × 32 

64 × 64 × 64 

32 × 32 × 128 

16 × 16 × 128 

1024 

256 

2 

32 

16 

32 × 32 × 1 

64 × 64 × 1 

64 × 64 × 16 

64 × 64 × 16 

6
4 ×

 6
4 ×

 256
 

6
4 ×

 6
4 ×

 512
 

6
4
×
6
4
×
1
2
8

 

128 × 128 × 64 

256 

1024 

4096 

1024 

256 × 256 × 1 

256 × 256 × 1 

Agent Generator 

Stroke Data 

P
R

E
S

S
U

R
E 

C
O

O
R

D
IN

A
T

E 
B

R
U

S
H

 

POSITION

ENCODER 

Figure 1: StrokeNet architecture. The generator part of the model outputs 256 × 256 images. The
position encoder encodes input coordinate into 64 × 64 spatial feature for each point. The agent
decodes different information about the stroke using three parallel FC-decoders.

anchors. We later showed that a single stroke with only 16 anchors is able to fit most MNIST digits
and generate twisted lines in Section 5. We further assumed that longer and more complicated lines
can be decomposed into simple segments and extended our experiments to include recurrent drawing
of multiple strokes to generate more complex drawings.

3.2 GENERATOR

The outline of the StrokeNet architecture is shown in Figure 1. The generator takes s as input,
and projects the stroke data with two MLPs. One is the position encoder which encodes (xi, yi, pi)
into 64 × 64 feature maps, the other, brush encoder encodes the color and radius of the brush
to a single 64 × 64 feature map. The color c′ is a single gray scale scalar whose value equals to
1
3

∑3
k=1 ck, while color strokes are approximated by channel mixing described in Section 3.4. The

features are then concatenated and passed to the (de)convolution layers.

To preserve the sequential and pressure information of each point (xi, yi, pi), the position
encoder first maps (xi, yi) to the corresponding position onto a 64 × 64 matrix by putting a bright
dot on that point. This is modeled by a 2D Gaussian function with its peak scaled to 1, which
simplifies to:

gi(x, y) = exp[−1

2
((x− xi)2 + (y − yi)2)], (3)

for i = 1, 2, · · · , n where the value is calculated for each point (x, y) on the 64 × 64 map. Denote
this mapping from (xi, yi) to R64×64 as pos:

mi = pi · pos(xi, yi), mi ∈ R64×64. (4)
By multiplying the corresponding pressure pi, we now have n position features, in our setup, sixteen.
This part of the generator is trained separately with random coordinates until it generates accurate
and reliable signals.

However, if we directly feed these features into the (de)convolutional layers of the network, the
generator fails partly due to the sparsity of the single brightness feature. Instead, we take every two
neighbouring feature maps and add them together (denoted by “reduce” in Figure 1.),

fi = mi +mi+1, i = 1, 2, · · · , n− 1. (5)

Now, each feature map fi represents a segment of the stroke. By learning to connect and
curve the n − 1 “segments”, we are able to reconstruct the stroke. By appending the encoded
color and radius data we now have the feature with shape 64 × 64 × n. We then feed the features
into three (de)convolutional layers with batch-normalization (Ioffe & Szegedy, 2015) activated by
LeakyReLU (Xu et al., 2015). The last layer is activated by tanh.

3



Published as a conference paper at ICLR 2019

  
 

   

B
ru

sh
 D

at
a 

C
o

o
rd

in
at

e
 

P
re

ss
u

re
 

G
en

er
at

o
r 

×
 

+
 

C
N

N
 

C
N

N
 

F 
C

  
1 

F 
C

  
2
 

Next Frame 

Target Image 

Previous Frame 

Blend 

Concat 

Figure 2: Recurrent version of StrokeNet. Two separate CNNs are used as encoders for the agent.

3.3 AGENT

The agent is a VGG (Simonyan & Zisserman, 2014)-like CNN that encodes the target image
into its underlying stroke representation s. Three parallel FC-decoders with different activations are
used to decode position (tanh), pressure (sigmoid) and brush data (sigmoid) from the feature. We
used average-pooling instead of max-pooling to improve gradient flow. For the recurrent version of
StrokeNet, two separate CNNs are trained for the target image and the drawing frame, as shown in
Figure 2. In practice the target image feature is computed once for all steps.

3.4 ENVIRONMENT

We first built a painting software using JavaScript and WebGL. We later tailored this web
application for our experiment. 2 The spline used to fit the anchor points is centripetal Catmull-
Rom (Catmull & Rom, 1974; Barry & Goldman, 1988). A desirable feature about Catmull-Rom
spline is that the curve goes through all control points, unlike the more commonly used Bezier curve
(Sederberg & Farouki, 1992).

We then interpolate through the sampled points and draw circles around each center point as
shown in Figure 3. For each pixel inside a circle, its color depends on various factors including
attributes of the brush, blending algorithm, etc. Our generator is trained on the naive brush. When
it comes to the color blending of two frames, the generator is fed with the mean value of input
RGB color as a gray scale scalar, and its output is treated as an alpha map. Normalization and
alpha-blending is then performed to yield the next color frame, to simulate real blending algorithm
underlying the software. Denote the generator output at time-step t by q(t) ∈ R256×256, the frame
image by r(t) ∈ R3×256×256, RGB color of the brush by c ∈ R3, the blending process is approxi-
mated as follows,

n(t) =
q(t)

max
1≤i,j≤256

q
(t)
ij

, (6)

r
(t)
k = (J − n(t))r(t−1)k + ckn

(t) (7)
for k = 1, 2, 3 corresponding to the RGB channels, where J denotes a 256× 256 all-one matrix.

4 TRAINING METHODS

4.1 DATASET FOR GENERATOR

For the generator, we synthesize a large amount of samples, each of length n. We would like to
capture both the randomness and the smoothness of human writing, thus it is natural to incorporate
chaos, most notably, the motion of three-body (Nielsen et al., 2001).

2Code for the web application available at: https://github.com/vexilligera/drawwebapp.

4

https://github.com/vexilligera/drawwebapp


Published as a conference paper at ICLR 2019

Start 

End 

Figure 3: Illustration of how a stroke is rendered. Figure 4: Images from our three-body dataset.

There is no closed-form solution to three-body problem, and error accumulates in simulation
using numerical methods, leading to unpredictable and chaotic results. We simulate three-body mo-
tion in space (z-component for pressure) with random initial conditions and sample the trajectories
as strokes for our dataset. The simulation is done with a set of equations using Newton’s universal
law of gravitation: 

~F1 = Gm1m2

‖P2−P1‖32
(P2 − P1) +

Gm1m3

‖P3−P1‖32
(P3 − P1)

~F2 = Gm1m2

‖P1−P2‖32
(P1 − P2) +

Gm2m3

‖P3−P2‖32
(P3 − P2)

~F3 = Gm1m3

‖P1−P3‖32
(P1 − P3) +

Gm2m3

‖P2−P3‖32
(P2 − P3)

, (8)

where Pi(i = 1, 2, 3, Pi ∈ R3) denotes the position of the three objects respectively, ~Fi denotes the
gravitational force exerted on the ith object. In our simulation we set mass m1 = m2 = m3 = 1
and gravitational constant G = 5 × 10−5. We also always keep our camera (origin point) at the
center of the triangle formed by the three objects to maintain relatively stable “footage”.

Using this method we collected about 600K images since there is virtually no cost to generate
samples. Samples from the dataset are shown in Figure 4.

4.2 DATASETS FOR AGENT

To prove the effectivess of our neural environment, we trained an agent to perform drawing task
on several popular datasets, from characters to drawings, with the generator part frozen. For MNIST
and Omniglot, we trained an agent to draw the characters within one stroke. We later trained the
recurrent StrokeNet on more complex datasets like QuickDraw and KanjiVG (Ofusa et al., 2017).
We resized all the input images to 256× 256 with anti-alias and paddings.

4.3 TRAINING METHODOLOGY

At first we train the position encoder guided by function pos that maps a coordinate to a 64×64
matrix with l2 distance to measure the loss. Next we freeze the position encoder and train the other
parts of the generator, again with l2 loss to measure the performance on the three-body dataset. It
can be found that smaller batch size results in more accurate images. We trained the generator with
a batch size of 64 until the loss no longer improves. We then set the batch size to 32 to sharpen the
neural network.

To train the agent, we freeze the generator. Denote the agent loss as lagent, the generated
image and ground-truth image as igen and igt respectively, the loss is defined as:

lagent = ‖igen − igt‖22 +
λ

n− 1

n−1∑
k=1

‖Pk − Pk+1‖22 , (9)

where Pk = [xk, yk, pk]
T is the data describing the kth anchor point on the stroke. Here the summa-

tion term constrains the average distance between neighbouring points, where λ denotes the penalty
strength. If we drop this term, the agent fails to learn the correct order of the points in a stroke
because the generator itself is, after all, not robust to all cases of input, and is very likely to produce
wrong results for sequences with large gaps between neighbouring points.

5



Published as a conference paper at ICLR 2019

5 EXPERIMENTS

All experiments are conducted on a single NVIDIA Tesla P40 GPU. We first experimented
with single step StrokeNet on MNIST and Omniglot, then we experimented recurrent StrokeNet
with QuickDraw and Kanji. For the MNIST dataset, we later enforced a Gaussian prior to the latent
variable and explored the latent space of the agent by linear interpolation. Finally, for a quantitative
evaluation of the model, we trained a classifier on MNIST, and tested the classifier with images
generated by the agent. The close accuracies indicate the quality of the generated images.

5.1 SINGLE-STEP STROKENET

It can be seen that a single stroke provides rich expressive power for different shapes. The
generator generalizes well to unseen stroke patterns other than the synthesized three-body dataset.
On the Omniglot dataset, since many characters consist of multiple strokes while the agent can only
draw one, the agent tries to capture the contour of the character.

Figure 5: Agent trained on MNIST. MNIST sam-
ple (left), generator output (middle), WebApp re-
construction (right). 1.5 epochs.

Figure 6: Agent trained on Omniglot dataset
learns to “sketch” the characters. Layout is the
same as Figure 5. 104 iterations.

5.2 RECURRENT-STEP STROKENET

For more complex datasets, multiple steps of strokes are needed. Again the agent does pretty
well to capture the contour of the given image. However, it seems that the agent has trouble to
recover the details of the pictures, and tends to smear inside the boundaries with thick strokes.

Figure 7: Agent trained on QuickDraw. Sam-
ple (left), reconstruction (right). 6 recurrent steps.
300K-image subset, 5 epochs, 105 iterations.

Figure 8: Agent trained on KanjiVG dataset.
Evaluated on a test-set of simple characters. 105

iterations. 8 recurrent steps.

6



Published as a conference paper at ICLR 2019

Figure 9: Latent space interpolation. Leftmost
and rightmost columns are images from MNIST
dataset. Middles are the rendered images with in-
terpolation factors varying from 0 to 1.

(      - ) + = 

(      - ) + = 

(a) Skewness

(b) Width

Figure 10: Latent space arithmetics. (a) and (b)
demonstrate different attributes of the digits.

5.3 LATENT SPACE EXPLORATION

To convert the agent into a latent space generative model, we experimented with the VAE
version of the agent, where the feature obtained from the last layer of CNN is projected into two
vectors representing the means µ and standard deviations (activated by softplus) σ, both of 1024
dimensions. A vector noise of i.i.d. Gaussian U ∼ N(0, I) is sampled, latent variable z is given by

z = µ+ σ � U. (10)

We did latent space interpolation with the agent trained on MNIST. The simple data led to easily
interpretable results. Since the images are generated by strokes, the digits transform smoothly to
one another. That is to say, the results looked as if we were directly interpolating the stroke data.
Results are shown in Figure 9 and 10.

5.4 PERFORMANCE EVALUATION

In order to evaluate the agent, we trained a 5-layer CNN classifier solely on pre-processed
MNIST dataset, which is also the input to the MNIST agent. The size of the image is 256× 256, so
there is some performance drop to the classification task compared to standard 28× 28 images. The
classifier is then used to evaluate the paired test-set image generated by the agent. The accuracies
reflect the quality of the generated images. We also compared the l2 loss with SPIRAL on MNIST
to illustrate that our method has the advantage of faster convergence over reinforcement learning
approaches, shown in Figure 11.

TEST DATA ACCURACY

Pre-processed images 90.82%
Agent Output (3 steps) 88.43%
Agent Output (1 step) 79.33%
Agent Output (1 step, VAE) 67.21%

Table 1: MNIST Classification Accuracies
0 1.5 108

0.12

0.1

0.08

0.06

0.04

0.02

0
107106

Training frames
105 .

MNIST Loss Comparison

L2
SPIRAL, D
SPIRAL, D (blind)

StrokeNet (ours)

Figure 11: Comparison of loss curves between
StrokeNet (ours) and SPIRAL.

7



Published as a conference paper at ICLR 2019

(a)  (b) (c)

Figure 12: 16-step color image reconstruction.
(a) Mona Lisa. (b) Successful reconstruction in-
cludes use of different colors. (c) Fail to use dif-
ferent colors.

(a) 

(b)

Figure 13: Comparison of stroke orders between
human and agent. We can see the stroke order is
completely chaotic compared to natural order.

6 DISCUSSION

For future work, there are several major improvements we want to make both to the network
structure and to the algorithm.

The recurrent structure adopted here is of the simplest form. We use this setup because we
consider drawing as a Markov process, where the current action only depends on what the agent
sees, the target image and the previous frame. More advanced structures like LSTM (Hochreiter &
Schmidhuber, 1997) or GRU (Chung et al., 2014) may boost the performance. A stop sign can be
also introduced to determine when to stop drawing, which can be useful in character reconstruction.
For the agent, various attention mechanism could be incorporated to help the agent focus on undrawn
regions, so that smear and blurry scribbles might be prevented.

Secondly, The generator and the agent were trained as two separate parts throughout the ex-
periment. We can somehow train them as a whole: during the training of the agent, store all the
intermediate stroke data. After a period of training, sample images from the real environment with
the stroke data just collected, and train the generator with the data. By doing so in an iterative
manner, the generator could fit better to the current agent and provide more reliable reconstructions,
while a changing generator may potentially provide more valuable overall gradients.

It is also found useful to add a bit of randomness to the learning rate. Since different decoders
of the agent learn at different rates, stochasticity results in more appealing results. For example,
the agent usually fails to generalize to color images because it always sticks with one global aver-
age color (as shown in Figure 12). However, it sometimes generates appealing results with some
randomness added during the training. As a result of this immobility, the way agent writes is dull
compared to humans and reinforcement learning agents like SPIRAL. For instance, when writing
the digit “8”, the agent is simply writing “3” with endpoints closed. Also, the agent avoids to make
intersecting strokes over all datasets, although such actions are harmless and should be totally en-
couraged and explored! Thus, random sampling techniques could be added to the decision making
process to encourage bolder moves. Finally, for the evaluation metrics, the naive l2 loss can be
combined with adversarial learning. If paired sequential data is available, we believe adding it to
training will also improve the results.

7 CONCLUSION

In this paper we bring a proof-of-concept that an agent is able to learn from its neural simulation
of an environment. Especially when the environment is deterministic given the action, or contains
a huge action space, the proposed approach could be useful. Our primary contribution is that we
devised a model-based method to approximate non-differentiable environment with neural network,
and the agent trained with our method converges quickly on several datasets. It is able to adapt
its skills to real world. Hopefully such approaches can be useful when dealing with more difficult
reinforcement learning problems.

8



Published as a conference paper at ICLR 2019

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural Science Foundation of China
(U1711262, U1811264, 11501204). We thank our anonymous reviewers for their valuable feed-
back and opinions.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 214–223,
International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Phillip J. Barry and Ronald N. Goldman. A recursive evaluation algorithm for a class of catmull-
rom splines. SIGGRAPH Comput. Graph., 22(4):199–204, June 1988. ISSN 0097-8930. doi:
10.1145/378456.378511.

Edwin Catmull and Raphael Rom. A class of local interpolating splines. Computer Aided Geometric
Design, pp. 317–326, 1974.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. CoRR, abs/1804.01118, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Pro-
cessing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.

David Ha and Douglas Eck. A neural representation of sketch drawings. CoRR, abs/1704.03477,
2017.

David Ha and Jürgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018.

Aaron Hertzmann. A survey of stroke-based rendering. IEEE Computer Graphics and Applications,
23:70–81, 2003.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Zhewei Huang, Wen Heng, Yuanzheng Tao, and Shuchang Zhou. Stroke-based character recon-
struction. arXiv preprint arXiv:1806.08990, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,
2013.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 2015.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Matthew M. Loper and Michael J. Black. OpenDR: An approximate differentiable renderer. In
Computer Vision – ECCV 2014, volume 8695 of Lecture Notes in Computer Science, pp. 154–
169. Springer International Publishing, September 2014.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784,
2014.

9



Published as a conference paper at ICLR 2019

Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yong-Liang Yang. Rendernet: A deep
convolutional network for differentiable rendering from 3d shapes. arXiv preprint arXiv,
abs/1806.06575, 2018.

E. Nielsen, D.V. Fedorov, A.S. Jensen, and E. Garrido. The three-body problem with short-range
interactions. Physics Reports, 347(5):373 – 459, 2001. ISSN 0370-1573. doi: https://doi.org/10.
1016/S0370-1573(00)00107-1.

Kenichiro Ofusa, Tomo Miyazaki, Yoshihiro Sugaya, and Shinichiro Omachi. Glyph-based data
augmentation for accurate kanji character recognition. In 14th IAPR International Conference
on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November 9-15, 2017, pp.
597–602. IEEE, 2017. ISBN 978-1-5386-3586-5. doi: https://doi.org/10.1109/ICDAR.2017.103.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

Jürgen Schmidhuber. Making the world differentiable: On using self-supervised fully recurrent
neural networks for dynamic reinforcement learning and planning in non-stationary environments.
Technical report, 1990.

Jürgen Schmidhuber. One big net for everything. CoRR, abs/1802.08864, 2018.

Thomas W. Sederberg and Rida T. Farouki. Approximation by interval bezier curves. IEEE Com-
puter Graphics and Applications, 12(5):87–95, 1992. doi: http://doi.ieeecomputersociety.org/10.
1109/38.156018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 28, pp. 3483–3491. Curran
Associates, Inc., 2015.

Ning Xie, Hirotaka Hachiya, and Masashi Sugiyama. Artist agent: A reinforcement learning ap-
proach to automatic stroke generation in oriental ink painting. CoRR, abs/1206.4634, 2012.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. CoRR, abs/1505.00853, 2015.

10



Published as a conference paper at ICLR 2019

8 APPENDIX

8.1 ENVIRONMENT DETAILS

Let Pi = [xi, yi]
T denote the coordinate of a sampled point. For a curve defined by points

P0, P1, P2, P3, the spline can be produced by:

C =
t2 − t
t2 − t1

B1 +
t− t1
t2 − t1

B2, (11)

where
B1 =

t2 − t
t2 − t0

A1 +
t− t0
t2 − t0

A2, B2 =
t3 − t
t3 − t1

A2 +
t− t1
t3 − t1

A3,

A1 =
t1 − t
t1 − t0

P0 +
t− t0
t1 − t0

P1, A2 =
t2 − t
t2 − t1

P1 +
t− t1
t2 − t1

P2,

A3 =
t3 − t
t3 − t2

P2 +
t− t2
t3 − t2

P3, ti+1 = ‖Pi+1 − Pi‖α2 + ti.

(12)

with α = 0.5, t0 = 0 and i = 0, 1, 2, 3

By interpolating t from t1 to t2 linearly, we generate the curve between P1 and P2. The pressure
values between neighbouring points are interpolated linearly.

8.2 LOSSES

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

4
0
0
0
0

4
5
0
0
0

5
0
0
0
0

5
5
0
0
0

6
0
0
0
0

6
5
0
0
0

L
2

  
L

o
ss

Iterations

Position Encoder Loss

(a) Loss of encoder when trained separately at first.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Epoch0 Epoch1 Epoch2 Epoch3 Epoch4

L
2
  

L
o
ss

Epochs

Generator Loss Function

(b) Loss of generator trained on our 600K dataset.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 150 300 450 600 750 900 1050 1200

L
2

  
L

o
ss

Iterations

Agent Loss Function (MNIST) 

(c) Agent trained on MNIST, λ = 200.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5000 10000 15000 20000 25000 30000

L
2

  
L

o
ss

Iterations

Agent Loss Function (Omniglot)

(d) Agent trained on Omniglot, λ = 200.

Figure 14: Training loss of generator and agent. The agent loss equals to the l2 distance between
the generator output and agent input plus the penalty term constraining the average point distance
within a stroke. For (c) and (d) the learning rate is set to 10−4, batch size equals to 64.

11



Published as a conference paper at ICLR 2019

8.3 MISCELLANEOUS RESULTS

Figure 15: A trained StrokeNet generates images
that resemble the output of painting software. The
first row depicts results generated by our model
(left) and by the software (right) given the same
input. The second row shows the model could pro-
duce strokes with color and texture using simple
arithmetic operations. The third and fourth row
shows the model’s ability to draw MNIST digits
(left) on both its own generative model (middle)
and real-world painting software (right).

(a) (c) 

(b)

Figure 16: (a) A trained position encoder maps
two (xi, yi, pi) tuples to two feature maps. (b)
Each pair of neighbouring features are added to-
gether to eliminate sparsity and preserve sequen-
tial information. (c) A trained brush encoder en-
codes color and radius information into a spatial
feature which is later concatenated to the end of
position features.

Figure 17: The generator tries to predict what the
real environment would ouput given the same in-
put stroke data. Software output (left), generator
prediction (right).

Figure 18: Interpolation across four digits. In the
corners are the four MNIST samples.

12


	Introduction
	Related Work
	StrokeNet Architecture and Environment
	Stroke
	Generator
	Agent
	 Environment

	Training Methods
	Dataset for Generator
	Datasets for Agent
	Training Methodology

	Experiments
	Single-Step StrokeNet
	Recurrent-Step StrokeNet
	Latent Space Exploration
	Performance Evaluation

	Discussion
	Conclusion
	Appendix
	Environment Details
	Losses
	Miscellaneous Results


