
Under review as a conference paper at ICLR 2020

SPECTRA: SPARSE ENTITY-CENTRIC TRANSITIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning an agent that interacts with objects is ubiquituous in many RL tasks.
In most of them the agent’s actions have sparse effects : only a small subset of
objects in the visual scene will be affected by the action taken. We introduce
SPECTRA, a model for learning slot-structured transitions from raw visual ob-
servations that embodies this sparsity assumption. Our model is composed of a
perception module that decomposes the visual scene into a set of latent objects
representations (i.e. slot-structured) and a transition module that predicts the
next latent set slot-wise and in a sparse way. We show that learning a perception
module jointly with a sparse slot-structured transition model not only biases the
model towards more entity-centric perceptual groupings but also enables intrinsic
exploration strategy that aims at maximizing the number of objects changed in the
agents trajectory.

1 INTRODUCTION

Recent model-free deep reinforcement learning (DRL) approaches have achieved human-level per-
formance in a wide range of tasks such as games (Mnih et al., 2015). A critical known drawback
of these approaches is the vast amount of experience required to achieve good performance. The
promise of model-based DRL is to improve sample-efficiency and generalization capacity across
tasks. However model-based algorithms pose strong requirements about the models used. They
have to make accurate predictions about the future states which can be very hard when dealing with
high dimensional inputs such as images. Thus one of the core challenge in model-based DRL is
learning accurate and computationally efficient transition models through interacting with the envi-
ronment. Buesing et al. (2018) developed state-space models techniques to reduce computational
complexity by making predictions at a higher level of abstraction, rather than at the level of raw
pixel observations. However these methods focused on learning a state-space model that doesn’t
capture the compositional nature of observations: the visual scene is represented by a single latent
vector and thus cannot be expected to generalize well to different objects layouts.

Extensive work in cognitive science (Baillargeon et al., 1985; Spelke, 2013) indeed show that hu-
man perception is structured around objects. Object-oriented MDPs (Diuk et al., 2008) show the
benefit of using object-oriented representations for structured exploration although the framework
as it is presented requires hand-crafted symbolic representations. Bengio (2017) proposed as a prior
(the consciousness prior) that the dependency between high-level variables (such as those describing
actions, states and their changes) be represented by a sparse factor graph, i.e., with few high-level
variables at a time interacting closely, and inference performed sequentially using attention mecha-
nisms to select a few relevant variables at each step.

Besides, a recent line of work (Greff et al., 2017; van Steenkiste et al., 2018; Eslami et al., 2016;
Kosiorek et al., 2018; Greff et al., 2019; Burgess et al., 2019) has focused on unsupervised ways to
decompose a raw visual scene in terms of objects. They rely on a slot-structured representation (see
Figure 1) of the scene where the latent space is a set of vectors and each vector of the set is supposed
to represent an “object” (which we refer to as “entity”) of the scene. However, to the best of our
knowledge, Watters et al. (2019) is the only work that investigates the usefulness of slot-structured
representations for RL. They introduced a method to learn a transition model that is applied to all
the slots of their latent scene representation. Extending their work, we go further and posit that
slot-wise transformations should be sparse and that the perception module should be learned jointly
with the transition model.

1

Under review as a conference paper at ICLR 2020

Figure 1: A: SPECTRA. Illustration of an entity-centric transition model. B: Naive Perception mod-
ule with a CNN-based encoder and a slot-wise decoder. Hyperparameters description in Appendix
A.

We introduce Sparse Entity-Centric Transitions (SPECTRA), an entity-centric action-conditioned
transition model that embodies the fact that the agents actions have sparse effects: that means that
each action will change only a few slots in the latent set and let the remaining ones unchanged. This
is motivated by the physical consideration that agent interventions are localized in time and space.
Our contribution is motivated by three advantages:

− Sparse transitions enable transferable model learning. The intuition here is that the spar-
sity of the transitions will bias the model towards learning primitive transformations (e.g.
how pushing a box affects the state of a box being pushed etc) rather than configuration-
dependent transformations, the former being more directly transferable to environments
with increased combinatorial complexity.

− Sparse transitions enable a perception module (when trained jointly) to be biased towards
more meaningful perceptual groupings, thus giving potentially better representations that
can be used for downstream tasks, compared to representations learned from static data.

− Sparse transitions enable an exploration strategy that learns to predict actions that will
change the state of as many entities as possible in the environment without relying on
pixels error loss.

2 RELATED WORK

Unsupervised visual scene decomposition. Learning good representations of complex visual
scenes is a challenging problem for AI models that is far from solved. Recent work (Greff et al.,
2017; van Steenkiste et al., 2018; Eslami et al., 2016; Kosiorek et al., 2018; Greff et al., 2019;
Burgess et al., 2019) has focused on learning models that discover objects in the visual scene. Gr-
eff et al. (2019) further advocates for the importance of learning to segment and represent objects
jointly. Like us they approach the problem from a spatial mixture perspective. van Steenkiste et al.
(2018) and Kosiorek et al. (2018) build upon Greff et al. (2017) and Eslami et al. (2016) respectively
by incorporating next-step prediction as part of the training objective in order to guide the network
to learn about essential properties of objects. As specified in van Steenkiste et al. (2019) we also be-
lieve that objects are task-dependent and that learning a slot-based representations along with sparse
transitions bias the perception module towards entity-centric perceptual groupings and that those
structured representations could be better suited for RL downstream tasks.

2

Under review as a conference paper at ICLR 2020

Slot-based representation for RL. Recent advances in deep reinforcement learning are in part
driven by a capacity to learn good representations that can be used by an agent to update its policy.
Zambaldi et al. (2018) showed the importance of having structured representations and computation
when it comes to tasks that explicitly targets relational reasoning. Watters et al. (2019) also show
the importance of learning representations of the world in terms of objects in a simple model-based
setting. Zambaldi et al. (2018) focuses on task-dependent structured computation. They use a self-
attention mechanism (Vaswani et al., 2017) to model an actor-critic based agent where vectors in the
set are supposed to represent entities in the current observation. Like Watters et al. (2019) we take
a model-based approach: our aim is to learn task-independent slot-based representations that can be
further used in downstream tasks. We leave the RL part for future work and focus on how learning
those representations jointly with a sparse transition model may help learn a better transition model.

3 SPECTRA

Our model is composed of two main components: a perception module and a transition module
(section 3.1). The way we formulated the transition implicitly defines an exploration policy (section
3.3) that aims at changing the states of as many entities as possible.

Choice of Environment. Here we are interested in environments containing entities an agent can
interact with and where actions only affect a few of them. Sokoban is thus a good testbed for our
model. It consists of a difficult puzzle domain requiring an agent to push a set of boxes onto goal
locations. Irreversible wrong moves can make the puzzle unsolvable. Each room is composed of
walls, boxes, targets, floor and the agent avatar. The agent can take 9 different actions (no-op, 4
types of push and 4 types of move).

Fully Observed vs Learned Entities. The whole point is to work with slot-based representations
learned from a raw pixels input. There is no guarantee that those learned slots will effectively
correspond to entities in the image. We thus distinguish two versions of the environment (that
correspond to two different levels of abstraction):

− Fully observed entities: the input is structured. Each entity corresponds to a spatial loca-
tion in the grid. Entities are thus represented by their one-hot label and indexed by their
x-y coordinate. This will be referred to as the fully observed setting. There is no need for a
perception module in this setting.

− Raw pixels input: the input is unstructured. We need to infer the latent entities represen-
tations. This will be referred to as the latent setting.

3.1 MODEL OVERVIEW

The idea is to learn an action-conditioned model of the world where at each time step the following
take place:

− Pairwise Interactions: Each slot in the set gathers relevant information about the slots
conditioned on the action taken

− Active entity selection : Select slots that will be modified by the action taken
− Update: Update the selected slots and let the other ones remain unchanged.

Ideally, slots would correspond to unsupervisedly learned entity-centric representations of a raw
visual input like it is done by Burgess et al. (2019); Greff et al. (2019). We show that learning
such perception modules jointly with the sparse transition biases the perceptual groupings to be
entity-centric.

Perception module. The perception module is composed of an encoder fenc and a decoder fdec.
The encoder maps the input image x to a set of K latent entities such that at time-step t we have
fenc(x

t) = st ∈ RK×p. It thus outputs a slot-based representation of the scene where each slot
is represented in the same way and is supposed to capture properties of one entity of the scene.
Like (Burgess et al., 2019; Greff et al., 2019) we model the input image xt with a spatial Gaussian

3

Under review as a conference paper at ICLR 2020

Mixture Model. Each slot stk is decoded by the same decoder fdec into a pixel-wise mean µik and a
pixel-wise assignment mt

ik (non-negative and summing to 1 over k). Assuming that the pixels i are
independent conditioned on st, the conditional likelihood thus becomes:

pθ(x
t|st) =

D∏
i=1

∑
k

mt
ikN (xt

i ;µ
t
ik, σ

2) with µtik,m
t
ik = fdec(s

t
k)i.

As our main goal is to investigate how sparse transitions bias the groupings of entities, in our exper-
iments we use a very simple perception module represented in Figure 1. We leave it for future work
to incorporate more sophisticated perception modules.

Pairwise interactions. In order to estimate the transition dynamics, we want to select relevant
entities (represented at time t by the set st ∈ RK×p) that will be affected by the action taken, so
we model the fact that each entity needs to gather useful information from entities interacting with
the agent (i.e. is the agent close ? is the agent blocked by a wall or a box ? etc..). To that end we
propose to use a self-attention mechanism (Vaswani et al., 2017). From the k-th entity representation
stk at time t, we extract a row-vector key Kt

k, a row-vector query Qtk and a row-vector value V tk
conditioned on the action taken such that (aggregating the rows into corresponding matrices and
ignoring the temporal indices):

s̃ = softmax(
KQT√

d
)V

where the softmax is applied separately on each row. In practice we concatenate the results of several
attention heads to use it as input to the entity selection phase.

Entity selection. Once the entities are informed w.r.t. possible pairwise interactions the model
needs to select which of these entities will be affected by the action taken at. Selection of the entities
are regulated by a selection gate (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) computed slot-
wise as:

f tk = σ(MLP ([s̃tk; a
t])) (1)

where f tk can be interpreted as the probability for an entity to be selected.

Update. Finally, each selected entity is updated conditioned on its state stk at time-step t and the
action taken at. We thus simply have:

st+1
k = f tkfθ([s

t
k, a

t]) + (1− f tk)stk
fθ is a learned action-conditioned transformation that is applied slot-wise. We posit that enforcing
the transitions to be slot-wise and implicitly sparse will bias the model towards learning more prim-
itive transformations. We verify this assumption in next subsection in the simpler case where the
entities are fully observed (and not inferred with a perception module).

4 EXPERIMENTS

In this work we demonstrate three advantages of entity-centric representations learned by SPEC-
TRA:

− Implicitly imposing the transitions to be sparse will enable us to learn transition models
that will transfer better to environments with increased combinatorial complexity. Section
4.1.

− Learning slot-based representations jointly with a sparse transition model will bias the per-
ceptual groupings to be entity-centric. Section 4.2.

− Finally we investigate the usefulness of the implicit exploration scheme induced by SPEC-
TRA when learning the model jointly. Section 4.3.

4

Under review as a conference paper at ICLR 2020

Figure 2: left: Full and sparse settings are trained on environment containing one box and evaluated
out-of-distribution on two boxes. We plotted the validation losses of both settings during training.
The full connectivity architecture is unable to achieve out-of-distribution generalization to an envi-
ronment with two boxes. right: Illustration of what the model has to learn in the fully observed
setting: to be correct the model needs to map any concatenation of [agent,move] to a vacated po-
sition = floor and to select only the right entities to be changed. The learned mappings are general
rules that are directly transferable to settings with more boxes.

4.1 LEARNED PRIMITIVE TRANSFORMATIONS

In this section we show that sparse selection in the transitions yields learned slot-wise transforma-
tions that are transferable to out-of-distribution settings with increased combinatorial complexity.
We restrict ourselves to the fully observed setting. Like (Zambaldi et al., 2018) the entities corre-
spond to a spatial location in the 7× 7 grid. Each entity sk is thus described in terms of its label to
which we append its x-y coordinate. The results in Figure 2 are intuitive; to learn the right transitions
with our formulation, the model is forced to:

− select only the relevant entities to be updated.

− learn the right primitive transformation (e.g. if the agent slot is selected to be modified
by any of the move actions, then its position is vacated, so the model should map any
concatenation of [agent, move] to the floor label etc...). See Figure 2, right.

Here entity representations are not learned and thus correspond to their labels. We thus train the
model with a simple cross-entropy loss. We are interested in comparing two settings:

− Sparse setting: the transformation is still done slot-wise to selected entities only. Each slot
contains the label and x-y coordinate of the entity only. The transformation is applied to a
concatenation of the entity label and the action [label,action].

− Full setting: the transformation is still done slot-wise but this time each slot in s̃t potentially
contains information about all the other slots in the set. The transformation is applied to
a concatenation of the entity representation s̃tk and the action [tildestk,action]. Thus we
hypothesize that the transformation module will learn configuration-dependent rules (e.g.
if an agent is close to a box and a wall, and 3 steps ahead there is a target to be reached,
and it takes a move action to do so) that will not be easily transferable to environments with
increased complexity and a wider variety of contexts.

Both settings are illustrated in Figure 7 of the Appendix. In Figure 2 we reported the evolution of
training and evaluation losses of both the full and the sparse settings when the models are trained in
a 7x7 environment with one box and evaluated in a 7x7 environment with two boxes.

4.2 STRUCTURED REPRESENTATION LEARNING

In this section we demonstrate how learning a perception module along with sparse transitions will
bias this module towards learning entity-centric perceptual groupings of the raw pixel input. In

5

Under review as a conference paper at ICLR 2020

Figure 3: Comparison of slot-wise masked decodings when the perception module is trained sep-
arately or jointly with the sparse transitions. We show the reconstruction associated with the slots
that contain information about the agent. When the perception module is trained jointly, slots in the
learned latent set are biased to be entity-centric (here agent-centric).

order to verify this intuition we compare in Figure 3 the reconstructions from the perception module
when it is trained separately vs jointly with the sparse transition module. In this experiment the
input is not structured anymore but just a raw 112x112x3 pixel image. We used a simple perception
module as described in Figure 1.

We thus distinguish two losses, a reconstruction loss

Lpercep =
D∑
i=1

log
∑
k

mt
ikN (xt

i ;µ
t
ik, σ

2)

and a transition loss

Ltrans =
D∑
i=1

log
∑
k

m̂t+1
ik N (xt+1

i ; µ̂t+1
ik , σ2)

with µtik,m
t
ik = fdec(s

t
k)i, s

t = fenc(x
t), µ̂t+1

ik , m̂t+1
ik = fdec(ŝ

t+1
k)i, and ŝt+1

k = ftrans(s
t
k) is

the future state predicted by the transition function.

fdec, fenc and ftrans are respectively the decoder, the encoder and the transition modules. For the
joint training (resp. separate training) setting, gradients from Ltrans are back-propagated through
parameters of fenc and ftrans (resp. ftrans only). In both settings, gradients from Lpercep are
back-propagated through parameters of fenc and fdec.

In Figure 3 we put particular attention on the masked reconstructions from slots containing visual
information about the agent. We can directly notice that the perceptual groupings done by the
encoder, when it is trained jointly with the transition module, are agent-centric: the information
about the agent is contained in one slot only (whereas it is often contained in several slots in the
separate training settings). Moreover, in Figure 4 we see the joint training setting leading to a better
transition model: we hypothesize that the transformations are easier to learn specifically because
they have to focus on the effects of the actions taken on entities, i.e., involving a few strongly
dependent variables at a time rather than more global but more specific configurations involving all
the variables in the state, as suggested by Bengio (2017).

6

Under review as a conference paper at ICLR 2020

Figure 4: Loss vs training updates, with training is done in pixel space, transitions are sampled
randomly and results are averaged over 3 runs. left: Validation perception loss Lpercep of joint and
separate training right: Validation transition loss Ltrans of joint and separate training. Separate
training is better in terms of perception loss but joint training gives a better transition model. We
posit that this is because the slots are biased to be entity-centric and transformations involving only
relevant entities are easier to learn.

Figure 5: Reconstructions of a slot for different levels of its activation gate (Eq. 1). Transformations
learned when the perception module is trained jointly vs separately from the sparse transitions.
When the training is done end-to-end, transformations seem to be more interpretable. We posit that
this is because the slots are biased to be entity-centric as shown in Figure 3. It is interesting to
notice that enough changes appear for an activation gate value of fk = 0.1. We may want to explore
an explicit sparsity constraint for the selection mechanism.

7

Under review as a conference paper at ICLR 2020

Figure 6: Comparison is done against randomly sampled transitions. left: Number of entities
changed in the 1-step buffer during training. As expected, the number of transitions with 2 spa-
tial locations changed in the grid increases whereas the ones with no location changed decreases.
We also notice a slight increase in the number of transitions with 3 spatial locations changed (corre-
sponding to the agent moving a box!). Training is done in the fully observed setting. right: Training
done in pixel space. Again here, the number of transitions with two spatial locations changed in
the grid increases whereas the ones with no location changed decreases. However the number of of
transitions with the agent that moves a box did not increase.

We also visualized the transformations learned by both settings. To do so, we manually increased
the value of the update gate fk for a few slots k. An example is given in Figure 5 and additional
ones are given in section B of the Appendix.

4.3 INTRINSIC EXPLORATION STRATEGY

In many environments a uniformly random policy is insufficient to produce action and observation
sequences representative enough to be useful for downstream tasks. In this paper we suggest to
learn an exploration policy jointly with the model, based on an intrinsic reward that depends on the
transition model itself and exploits its entity-centric structure to quantify the diversity of aspects of
the environment modified by exploratory behavior. Our model learns to first select entities that will
be changed and then learns how to transform the selected entities. Similar to the empowerment
intrinsic objectives (Klyubin et al., 2005; Kumar, 2018), a natural exploration strategy in settings
like Sokoban would be to follow trajectories that overall have as many entities being selected as
possible. If the agent indeed never pushes a box on target when learning its transition model, it will
not be able to transfer its knowledge to a task where it has to push all the boxes on all the targets.
We thus suggest to learn a policy that maximizes the number of entities selected, as predicted by
the current model. We alternate between policy update and model update.

We used a 10-step DQN for the exploration policy and have the DQN and the model share the same
1-step replay buffer. The DQN policy is ε-greedy with ε decaying from 1 to 0.3. In order to train the
DQN we used the following intrinsic 1-step reward:

r(st, at) =
∑
k

1(ft
k≥h) (2)

with h a chosen threshold for the update gate value. We expect this training strategy to promote
trajectories with as many entities that will have their state changed as possible. We thus expect the
agent to learn not to get stuck, aim for the boxes, push them etc... In order to validate that intuition,
we first conduct experiments in the fully observed setting. In this setting we consider the following
types of moves:

− valid move: Whenever the agent takes a move action in a valid direction, two entities will
have their state changed: the initial location of the agent and the next one.

− valid push : Whenever the agent takes a push action and a box is available to be pushed in
the chosen directions, three entities will have their state changed: the initial location of the
agent, the initial location of the box and the next location of the box.

8

Under review as a conference paper at ICLR 2020

− blocked push : Whenever the agent takes a push action when there is no box to push in the
chosen direction, nothing happens.

− blocked move: Whenever the agent takes a move action in a non-valid direction (against a
wall, a box etc...), nothing happens.

With our suggested training strategy we expect the agent to promote trajectories with more tran-
sitions of type valid move than blocked move and blocked push and hopefully with the number of
valid push transitions increased as well. During training, we thus monitor the true number of entities
changed in the transitions stored in the shared 1-step buffer. We also performed the same experiment
in the raw input pixels setting and monitored the true number of entities changed in the 1-step buffer
during training. Results are reported in Figure 6 and confirm our hypothesis: the agent learns to
avoid actions that will result in no changes in the environment (blocked push and blocked move.
Details of the hyperparameters are given in Appendix.

5 CONCLUSION

We have introduced SPECTRA, a novel model to learn a sparse slot-structured transition model. We
provided evidence to show that sparsity in the transitions yields models that learns more primitive
transformations (rather than configuration-dependent) and thus transfer better to out-of-distribution
environments with increased combinatorial complexity. We also demonstrated that the implicit spar-
sity of the transitions enables an exploration strategy that aims at maximizing the number of entities
that be will be modified on the agent’s trajectory. In Figure 6 we showed that with this simple explo-
ration strategy the agent leans to avoid actions that will not change the environment (blocked move
and blocked push). Preliminary results in pixel space show that SPECTRA biases even a simple per-
ception module towards perceptual groupings that are entity-centric. In Figure 5 we also showed the
benefit of jointly training the perception (encoder) module and the transition module. We anticipate
that our model could be improved by incorporating a more sophisticated perception module. In the
future we aim to use SPECTRA to investigate possible uses in model-based reinforcement learning.

REFERENCES

Rene Baillargeon, Elizabeth Spelke, and Stan Wasserman. Object permanence in five-month-old
infants. Cognition, 20:191–208, 09 1985. doi: 10.1016/0010-0277(85)90008-3.

Yoshua Bengio. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

Lars Buesing, Theophane Weber, Sebastien Racaniere, S. M. Ali Eslami, Danilo Rezende, David P.
Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, and Daan Wierstra. Learn-
ing and querying fast generative models for reinforcement learning, 2018.

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
tation, 2019.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for effi-
cient reinforcement learning. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pp. 240–247, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-
4. doi: 10.1145/1390156.1390187. URL http://doi.acm.org/10.1145/1390156.
1390187.

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray
Kavukcuoglu, and Geoffrey E. Hinton. Attend, infer, repeat: Fast scene understanding with
generative models, 2016.

Klaus Greff, Sjoerd van Steenkiste, and Jrgen Schmidhuber. Neural expectation maximization, 2017.

9

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://doi.acm.org/10.1145/1390156.1390187
http://doi.acm.org/10.1145/1390156.1390187

Under review as a conference paper at ICLR 2020

Klaus Greff, Raphal Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning
with iterative variational inference, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.
doi.org/10.1162/neco.1997.9.8.1735.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be empow-
ered. In European Conference on Artificial Life, pp. 744–753. Springer, 2005.

Adam R. Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential attend, infer,
repeat: Generative modelling of moving objects, 2018.

Navneet Madhu Kumar. Empowerment-driven exploration using mutual information estimation.
arXiv preprint arXiv:1810.05533, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter W.
Battaglia, and Timothy P. Lillicrap. A simple neural network module for relational reasoning.
CoRR, abs/1706.01427, 2017. URL http://arxiv.org/abs/1706.01427.

Elizabeth S. Spelke. Where perceiving ends and thinking begins: The apprehension of objects in
infancy. 2013.

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jrgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions, 2018.

Sjoerd van Steenkiste, Klaus Greff, and Jürgen Schmidhuber. A perspective on objects and
systematic generalization in model-based RL. CoRR, abs/1906.01035, 2019. URL http:
//arxiv.org/abs/1906.01035.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P. Burgess, and Alexander Lerchner.
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven
exploration, 2019.

Thophane Weber, Sbastien Racanire, David P. Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez
Rezende, Adria Puigdomnech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu,
Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-augmented agents
for deep reinforcement learning, 2017.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Relational
deep reinforcement learning, 2018.

A ARCHITECTURE AND HYPERPARAMETERS

A.1 FULLY OBSERVED SETTING

In the fully observed setting the input at time t is a set ot ∈ {0, 1}N×7 corresponding to one-hot
labels (that can be agent (off and on target), box (off and on target), wall, target and floor). of each
entity in a 7 × 7 grid (N = 49). We also append their normalized x − y coordinates so that the

10

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1906.01035
http://arxiv.org/abs/1906.01035

Under review as a conference paper at ICLR 2020

Figure 7: Transition model with and without selection phase.

final input to the transition model is a set st ∈ {0, 1}N×9. Like detailed previously in Figure 7,
the transition model is composed of two modules: the selection module and the transformation
module.

In section 4.1 we also distinguished between the sparse and the full setting and they are described
in 7. In the full setting, there is no more selection bottleneck and the transition module is a simple
transformer-like architecture.

Selection module. The selection module is a transformer-like architecture. It takes as input at time
step t the concatenation et = [st, at] of the set st and the action at. The selection module is then
composed of 2 attention heads where is head is stack of 3 attention blocks (Vaswani et al., 2017;
Zambaldi et al., 2018). The 3 blocks are 1-layer MLP that output key, query and value vectors of
channels size 32, 64, 64 respectively. The first two blocks are followed byRELU non linearities and
the last one doesn’t have any. The output of the attention phase is thus the concatenation of values
obtained from the 2 attentions heads s̃t ∈ RN×112. To obtain the selection binary selection variables
we then simply apply slot-wise a single layer MLP to the concatenation ẽt = [s̃t, at] followed by a
logSoftmax non-linearity in order to compute the log-probabilities of each entity to be modified by
the action taken. The output of the selection module is thus a set of log-probabilities lt ∈ RN×2.

Transformation module. The transformation module is a simple shared 2-layers MLP that is
applied slot-wise to the the concatenation et = [st, at] of the input set st ∈ {0, 1}N×9 and the
action taken. It outputs channels of sizes 16, 7 respectively. The first layer is followed by a RELU
non-linearity and the last one by a logSoftmax non-linearity in order to compute the log-probabilities
of the label of each predicted entity.

Full setting. In the full setting, we don’t have a selection bottleneck anymore. The transformation
module is thus directly applied to the output of the attention phase ẽt = [s̃t, at]. It consits this
time of a simple shared 3-layers MLP that is applied slot-wise and outputs channels of sizes 64, 32,
7 respectively. The first two layers are followed by a RELU non-linearity and the last one by a
logSoftmax non-linearity .

A.2 LATENT SETTING

In the latent setting the input at time t is a raw pixels (RGB) image ot ∈ R112×112×3. In the
latent setting, the transition model is composed of a perception module, a selection module and a
transformation module.

Perception module. When dealing with unstructured input we first need a way to extract entities
latent representations. For this work we used a very simple and naive perception module, with an

11

Under review as a conference paper at ICLR 2020

encoder similar to what is done by Zambaldi et al. (2018); Santoro et al. (2017). Like detailed
in Figure 1, we use a CNN to parse pixel inputs into k feature maps of size n × n, where k is
the number of output channels of the CNN. We choose arbitrarily n = 4 and didn’t perform any
hyperparameter search for the CNN architecture. We then concatenate x and y coordinates to each
k-dimensional pixel feature-vector to indicate the pixels position in the map. We treat the resulting
pixel-feature vectors as the set of entities st ∈ RN×k where here N = n2 = 16. We denote as
stcoord ∈ RN×k+2 the entities set to which we have appended the x-y position in the map.

As our loss is a pixel loss we also need a decoder that decodes each entity stk,coord of the set st back
to its corresponding mean µtk and mask mt

k. The CNN of the encoder outputs channels of size (16,
32, 32, 32, 32). All layers (except the last one) are followed by RELU non-linearities. Kernel sizes
are (3, 3, 4, 3) and strides (2, 2, 2, 2, 1). The decoder is composed of a 2-layers MLP followed by
a stack of transposed convolutions. The MLP outputs channels of sizes (7× 34, 7× 7× 34) with a
RELU non-linearity between the 2 layers. The output is then resized to 7 × 7 × 34 map that will
be fed to the convolution part. For the convolution part, it outputs maps of channel sizes (4, 4, 4, 4,
4) with RELU non-linearities between each layer. The kernel sizes are (3, 3, 5, 4).

Selection and Tranformation modules. The selection and transformation module are very sim-
ilar to the fully observed setting, except that they operate on the latent space, so we do not apply
LogSofmax non-linearities for the transformation part. The input of the selection module is stcoord
and the input to the transformation module is st. The selection module is composed of 2 attention
heads where is head is stack of 3 attention blocks (Vaswani et al., 2017; Zambaldi et al., 2018). The
3 blocks are 1-layer MLP that output key, query and value vectors of channels size 34, 16, 16 re-
spectively. The first two blocks are followed by RELU non linearities and the last one doesn’t have
any. The output of the attention phase is thus the concatenation of values obtained from the 2 at-
tentions heads s̃t ∈ RN×32. To obtain the selection binary selection variables we then simply apply
slot-wise a 3-layers MLP of channels sizes 16, 32, 32 respectively to the concatenation ẽt = [s̃t, at]
followed by a Softmax non-linearity in order to compute the probabilities of each entity to be modi-
fied by the action taken. The output of the selection module is thus a set of probabilities pt ∈ RN×2.
The transformation module is a simple 2-layers MLP of channels sizes 32,32 respectively with a
RELU non-linearity between the two layers.

B ADDITIONAL VISUALISATIONS

In this section we reported additional visualizations similar to Figure 3 and 5 where we monitor:

− Differences in slot-wise masked decodings of the perception module when it is trained
jointly and separately from the sparse transitions.

− Differences in the slot-wise transformations earned by the transition model when it is
trained separately and jointly with the perception module.

We notice that joint training enables to learn slot-structured representation that are entity-centric
and thus enable to learn better transition models. The transformations learned are especially visually
more interpretable.

12

Under review as a conference paper at ICLR 2020

Figure 8: Additional visualisations of masked decodings from joint and separate training settings.

13

Under review as a conference paper at ICLR 2020

Figure 9: Additional visualisations of masked decodings from joint and separate training settings.

14

Under review as a conference paper at ICLR 2020

Figure 10: Additional visualisations of masked decodings from joint and separate training settings.

15

Under review as a conference paper at ICLR 2020

Figure 11: Additional visualisations of the transformations learned when the perception module is
trained jointly and separately from the transitions. Joint training yield more visually interpretable
and localized transformations of the slots.

16

	Introduction
	Related Work
	SPECTRA
	Model overview

	Experiments
	Learned Primitive Transformations
	Structured Representation Learning
	Intrinsic Exploration Strategy

	Conclusion
	Architecture and Hyperparameters
	Fully observed setting
	Latent setting

	Additional Visualisations

