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Semantic Diversity by Phonetics
for Accurate and Robust Machine Translation

Abstract

Neural Machine Translation (NMT) learns
from examples, and thus often lacks robust-
ness against noise. Previous work has shown
that integrating noise into the training process
is effective at improving such robustness, but
this solution can be inefficient due to the expo-
nential number of string perturbations, i.e., ex-
ponential in the number of words or characters.
To robustify the translation input, we treat hu-
man phonetic interaction throughout history as
a pre-compiled computational device. This de-
vice implements a many-to-one function that
converts text into phonetics. To the best of
our knowledge, we are the first in Machine
Translation, to apply the phonetic algorithms
Soundex, NYSIIS, and MetaPhone to foreign
word/character sequences. We also apply an-
other linguistic representation, the logogram
inference, Wubi, for Chinese. To explain why
phonetic encodings improve NMT, we intro-
duce, quantify, and empirically verify our hy-
pothesis: “one phonetic representation usually
corresponds to words that are semantically di-
verse.” Driven by our hypothesis, we simulate
this “natural” phonetic device and introduce an
artificial method called random clustering. We
achieved significant and consistent improve-
ments overall language pairs and datasets we
experimented with: French-English, German-
English, and Chinese-English in IWSLT’17,
with up to nearly 2 BLEU points over the state-
of-the-art. Moreover, our approaches are more
robust than baselines when evaluated on un-
known noisy or out-of-domain test sets, with
up to about 5 BLEU point increase.

1 Introduction

Machine translation (MT) has achieved remarkable
success with milestone contributions including, but
not limited to, (Koehn et al., 2007; Sutskever et al.,
2014; Bahdanau et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017). State-of-the-art MT systems

are trained with massive human labeled samples
and have achieved high accuracy in evaluations
(Bojar et al., 2018). However, in real life, an out-
of-domain test set can easily make MT fail. More-
over, noisy sets due to string distortions like ty-
pos, slang, dialect, idiolect and informal use of lan-
guages such as acronym, abbreviation, and emoji
can have adverse effects on MT and lower transla-
tion quality (Belinkov and Bisk, 2018; Khayrallah
and Koehn, 2018; Wang et al., 2018).

Important past works have branched in two
main directions: domain adaptation (Jiang, 2008;
Carpuat et al., 2013; Freitag and Al-Onaizan, 2016;
Wang et al., 2017; van der Wees et al., 2017; Zhang
et al., 2019) and noisy data augmentation (Liu et al.,
2018; Karpukhin et al., 2019; Vaibhav et al., 2019).
Both leverage the datasets between training and
testing but one with aspects of the domain and the
other with text expression, respectively. Though
experiments have demonstrated that these methods
are effective, they can be inefficient for NMT train-
ing due to a large number of string perturbations
and possible domains. Importantly, they cannot be
generalized to an arbitrary distorted test set if we
know nothing about its distribution in advance.

We aim to improve MT robustness and accuracy
in general. We introduce a novel framework for
NMT using phonetic information “computed” by
the human interaction throughout the evolution of
spoken language. We view social interaction as a
computational device that generates pre-computed
knowledge. Phonology has been shown to preserve
semantic meanings (Tyler et al., 1996; Beaver et al.,
2007), which coincides with neurological discov-
eries about the correlation between phonology and
semantics in the human brain (Wang et al., 2016;
Amenta et al., 2017; Paz-Alonso et al., 2018). Ta-
ble 1 shows examples of Pinyin and Soundex. We
view these encodings as many-to-one functions,
where multiple words are mapped to one.
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Figure 1: Workflow: all these bring NO new informa-
tion (nothing new than the input we already have): BPE
and embedding are in the empty box

function input output
Pinyin xiao4 笑(smile),校(school),孝(filial),效(imitate)

shi4 氏(surname),事(matter),市(city),视(vision)
Soundex B300 body,but,bad

S120 speak,space,suppose,speech
C600 car,care,chair,cherry,choir,cry,crow,core

Table 1: phonetics is a many-to-one function

Thus, we decided to give, by using phonetic
algorithms, this new form of phonetic sentence
representation together with its written form as an
input when training and decoding the neural net-
works. It is a challenging task to purely rely on
neural networks to extract all hidden features in
NMT. Therefore, adding auxiliary information will
potentially allow a simpler network structure. As
shown in Figure 1, we first apply phonetic encod-
ing, logogram, or random clustering to the foreign
input-sentences, then use Byte-Pair-Encoding to
learn a word embedding (marked as empty boxes)
on each individual coding representation. Finally,
we concatenate them with the embedded original
text to feed into the NMT model.

We achieved significant and consistent improve-
ments over the state-of-the-art on all language pairs
that we experimented with. Our approaches robus-
tify the baseline NMT. In particular, they lead to a
higher accuracy even on an arbitrary test set whose
distribution is oblivious at training time. This is a
general approach that is applicable to any language
that can be compiled with phonetics, and it generi-
cally benefits any NMT system, which it treats as a
black-box.

Importantly, we performed a systematic empiri-
cal analysis to explain why phonetic encoding helps
in NMT. Our hypothesis of semantic diversity by
phonetics is stated as

“One phonetic representation usually corre-
sponds to characters/words that are semantically
diverse.”

We performed three quantitative analyses to ver-
ify this hypothesis. Then, driven by our hypothesis,
we introduced a new random clustering algorithm
that casts words or characters into classes, which
also improved translation accuracy and robustness.

This work contains two areas of study: phonetic
encoding and random clustering, where the former
inspires the latter in accordance with our stated
hypothesis. Our contributions mainly include the
hypothesis of semantic diversity by phonetics and
below models:

1. Phonetic and logogram encodings We con-
vert the source input text using various algo-
rithms such as Soundex, NYSIIS, and Meta-
Phone for western languages: English, French,
and German. For Chinese, we apply a Lo-
gogram encoding, Wubi. Both phonetic and
logogram encodings as auxiliary inputs signif-
icantly improve translation results.

2. Random clustering Word/character clustering
significantly improves NMT. This empirical
finding aligns with the empirical justification
of why phonetic encoding improves transla-
tion accuracy.

We conducted extensive experiments and
achieved up to nearly 2 BLEU points on IWSLT’17
tasks over the state-of-the-art in translation di-
rections of English-German, German-English,
English-French, French-English, and Chinese-
English. We verified that our approaches are more
robust on French-English experiments with about
5 BLEU point improvement on a foreign test set
whose distribution is oblivious during training.

Below, we will first introduce the phonetic and
logogram encodings. Then, we will study why us-
ing these as auxiliary inputs improves NMT and
propose our hypothesis. Consequently, we will in-
troduce one artificial method, random clustering,
as a generalization to text encoding. Finally, we
will demonstrate that all of these approaches signif-
icantly boost our NMT accuracy and robustness.

2 Background

NMT is an approach to MT using neural net-
works, which takes as an input a source sen-
tence (x1, .., xt, .., xI) and generates its translation
(y1, .., yt′ , .., yI′), where xt and yt′ are source and
target words respectively (Bahdanau et al., 2015;
Sutskever et al., 2014; Cho et al., 2014). NMT mod-
els with attention have three components, namely,
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an encoder, a decoder, and an attention mecha-
nism. The encoder summarizes the meaning of
the input sequence by encoding it with a bidirec-
tional recurrent neural network (RNN). We apply
the sequence-to-sequence learning architecture by
Gehring et al. (2017), where the intermediate en-
coder and decoder states are calculated using con-
volutional neural networks (CNNs).

3 Phonetic Encodings

A phonetic algorithm is used to index words by
their pronunciation. Taking as the input a sequence
of words, we apply the phonetic algorithm to each
word and output a sequence of encodings.

3.1 Soundex

Soundex is the most widely known phonetic algo-
rithm for indexing names by sound, as pronounced
in English, and avoids misspelling and alternative
spelling problems. It maps homophones to the
same representation so that they can be matched
despite minor differences in spelling (Russel, 1918).
It clusters the letter with exceptions. For example,
the Soundex key letter codes ‘b, f, p, v’ to ‘1’, and
‘c, g, j, k, q, s, x, z’ to ‘2’, and ‘d, t’ to ‘3’.

3.2 NYSIIS

The New York State Identification and Intelli-
gence System Phonetic Code, commonly known as
NYSIIS, is a phonetic algorithm devised in 1970
as part of the New York State Identification and
Intelligence System (Rajkovic and Jankovic, 2007).
It produces better results than Soundex because it
takes special care to handle phonemes that occur in
European and Hispanic surnames.

3.3 MetaPhone

Metaphone (Philips, 1990) is another algorithm
that improves on earlier systems such as Soundex
and NYSIIS. The Metaphone algorithm is signifi-
cantly more complicated than the others because
it includes special rules for handling spelling in-
consistencies and for looking at combinations of
consonants in addition to some vowels.

3.4 Hanyu Pinyin

We also studied Hanyu Pinyin (Pinyin), the official
romanization system for Standard Chinese in main-
land China. Pinyin means ‘spelled sound’ and is
usually used for the purpose of teaching Mandarin.

Algorithm 1 Random Clustering
Input: translation units
Parameter: baseline encoding
Output: mapping of units to clusters

1: perform a phonetic or logogram encoding as baseline
2: for each unique code in the baseline encoding vocabulary do
3: Z = “how many units are mapped”
4: uniformly random sample Z units to form a new cluster
5: end for
6: return

One Pinyin corresponds to multiple Chinese char-
acters. One Chinese word is usually composed of
one, two, or three Chinese characters.

3.5 Logogram Encoding: Chinese Wubi

The Wubizingxing (Wubi or Wubi Xing) is a Chi-
nese character input method primarily for effi-
ciently inputting Chinese text with a keyboard. The
Wubi method is based on the structure, namely the
decomposition of characters rather than their pro-
nunciation. Every character can be written with at
most 4 keystrokes including -, |,丿, hook, and丶.

4 Random Clustering

Driven by our hypothesis, which will be elabo-
rated in Section 5, we further introduce an artificial
way to encode the text in order to simulate “nat-
ural” encoding, i.e. phonetics and logogram. We
call this random clustering as described in Algo-
rithm 1. We cluster words (or characters) uniformly
at random. The cluster size follows the distribution
of how many words/characters are associated with
each phonetic, here MetaPhone. For example, in
Chinese, each Pinyin is a cluster, and, the number
of clusters equals the number of unique Pinyins.
Furthermore, each cluster’s size is the same as the
number of characters mapped to each Pinyin.

5 Hypothesis

Hypothesis: One phonetic representation (for ex-
ample, Pinyin in Chinese) usually corresponds to
characters/words that are semantically diverse.

At first, this hypothesis may seem counter-
intuitive. However, it is made because, otherwise,
humans would not be able to communicate effec-
tively due to confusion. For example, red (Pinyin:
‘hong’) and green (Pinyin: ‘lv’) in Chinese appear
in similar contexts. To reduce ambiguity in oral
communication, it seems plausible to think that part
of the development of phonetics is that one re-uses
the same sound when context can be used to distin-
guish among multiple interpretations. For example,
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Algorithm 2 c: Smoothed Convex Hull of Points
Input: points (embeddedR2 vectors) in a cluster
Parameters: β: threshold; r: radius
Output: The convex hull’s vertices

1: for for each point do
2: draw a circle with r
3: if the total number of points in the circle is less than β then
4: remove this point
5: end if
6: end for
7: return the convex hull

“fair” (county fair) versus “fair” (equitable).
How do we set up experiments to verify this?
We test our hypothesis using geometric inter-

pretations of semantics, precisely, word embed-
dings (Bengio and Heigold, 2014). Intuitively,
an embedding (Mikolov et al., 2013; Arora et al.,
2016) preserves pairwise semantic distances, where
two words/characters are close if they are semanti-
cally similar and far away otherwise. For instance,
see the work of Zouzias (2010); Molitor (2017)
about volume preserving embeddings, which for-
malizes the concept of this term. That is, if we
have a set of words, for example, and all the words
correspond to a Pinyin, then the points themselves
may mean nothing, but the distances among the
points are our focus. Typically in geometry, three
points in space are sufficient to quantify a volume.
We embed each word or characters from Chinese-
English translation data (in Section 6) into 100
dimensions and then project this embedding into
two dimensions using PCA. Algorithm 2 describes
how we compute a smooth convex hull of points.
The convex hull of a Pinyin is the convex hull of
the embedding of all words or characters that are
pronounced with this Pinyin.

Observations. Figure 2 shows all embedded Chi-
nese characters in red dots, and black dots are the
Chinese character(s) of one random Pinyin in each
plot. We can see that characters with the same pro-
nunciation tend to have distributed meaning - that
is, well-distributed over the Euclidean plane.

In Figure 3, we measure the convex hull (the
smallest convex set that contains all points - imple-
mented in Matlab) of all characters. We exclude
the outliers (blue dots) by removing all points that
are encircled along with less than β other points
in a ball of the radius of r. The first plot shows
the hull enclosing characters of one random group
(either cluster or Pinyin). The second plot shows
adding characters of a second random group to
the first group, and so on. The convex hull vol-

ume (here, 2D volume) increases as more groups
are added. We can see that Soundex, Pinyin, and
random grouping covers the space faster than the
K-Means clustering when increasing the number of
groups, namely the convex hull volume is greater
for one or two clusters or Pinyins.

Quantitative verifications. These are carried
out with three experiments. First, Figure 4 shows
the empirical CDF of the convex hull volume of
characters of each Pinyin, random clustering, and
K-Means clustering, where the x-axes indicate the
volume, and y-axes indicate the frequency. Ran-
dom clustering and Pinyin grouping have a larger
volume than K-Means, respectively. This means
that for each group, Pinyin is slightly better dis-
tributed (more widespread) than uniformly random
clustering, and both of these are better distributed
than K-Means. This is quite interesting and is prob-
ably due to the isoperimetry of the uniform random
sampling for these data points.

Second, we define the concentration factor as

Γ(pK
1

Ik
1 ) =

∑K
k=1‖Ck −

∑K
k=1 Ck

K ‖2∑K
k=1

∑Ik
i=1‖pki −Ck‖2

,

where Ck =
∑Ik

i=1 pki

Ik
. pki is the i−th point in

group k (either cluster or Pinyin). The smaller the
value, the better distributed the points located in
each cluster are over the whole space. The con-
centration factor Γ is 9350 for K-Means, 3.783
for Pinyin, 1.476 for the random clustering in Chi-
nese; 3543K for K-Means, 0.3674 for Soundex,
and 0.0191 for random clustering.

Finally, we define the density measure as in Al-
gorithm 3, which intuitively seems to be a more
robust test. For each point x in the smoothed con-
vex hull of all words/characters, let Di(x) be the
distance between x and the i-th nearest neighbor of
x in the space X . We then look at either the maxi-
mum of Di(x) over all x, or the average. Choosing
a larger i captures the “density” of the point-set
at larger scales, which is a parameter that can be
tuned to be more robust against noise. We numeri-
cally integrate the convex hull surface by randomly
sampling the points, which are a linear combina-
tion of the convex hull corner weighted uniformly
at random. The density result is shown in Table 2.
This is consistent with the CDF in Figure 4. The
Pinyin is most well-distributed, then the random
clustering, after that the K-Means.
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(a) Plot 1-4: words (black dots) of Soundex ‘B631’, ‘E455’,
‘V536’, ‘O550’respectively.

(b) Plot 1-4: all Chinese characters (black dots) of Pinyin
‘gen4’, ‘si4’, ‘guo2’, ‘ju4’respectively.

Figure 2: Same pronounced words/Chinese characters have distributed meaning in semantic space (red dots).

(a) K-Means, Soundex, and random clustering coverage
speed by adding words (black dots) of group: The convex
hull volume (black lines) of Soundex and random clustering
cover the space (red dots) faster than K-Means by increasing
the number of groups .

(b) K-Means, Pinyin, and random clustering coverage speed
by adding characters (black dots) of each cluster or Pinyin:
The convex hull volume (black lines) of Pinyin and random
clustering cover the space (red dots) faster than K-Means by
increasing the number of groups.

Figure 3: Coverage speed when adding groups one by one

Figure 4: CDF of the convex hull volume of characters
in each group (cluster or Pinyin) using three methods.
K-Means has a very small convex hull volume in each
group. The volume of Pinyin, and random clustering
are close, but Pinyin is even larger.

6 Experiments

Adding auxiliary information: First, we con-
vert all the words or characters in the source sen-
tences (in the training, development, and test set)
into phonetic or other encodings. Then, those se-
quences of encodings are segmented with the Byte
Pair Encoding compression algorithm (Sennrich
et al., 2016b; Gage, 1994) (BPE). We learn a new

Max Sum
Method 1 2 3 1 2 3

K-Means 0.26 0.29 0.35 19.3 26.2 31.6
Random 0.18 0.21 0.22 15.5 19.3 21.2
Pinyin 0.08 0.21 0.22 7.19 19.4 20.9

Table 2: Density result (Converge threshold: 0.001; 1,
2, 3 nearest neighbour). The less the value, the more
well-distributed in the entire space.

embedding on this encoded training data only, for
example, MetaPhone encodings. Afterward, the
embedded vectors are either concatenated with the
original sentences’ embedding (after BPE) or used
alone to be fed into the encoder of the CNN neural
translator. This decomposition results in a signifi-
cant improvement over the baseline.

6.1 Datasets and Vocabularies

We carried out experiments for five translation di-
rections from the IWSLT 2017 bilingual tasks: Chi-
nese to English (ZH-EN), English to French (EN-
FR), French to English (FR-EN), English to Ger-
man (EN-DE), and German to English (DE-EN).
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Algorithm 3 Density Measure
Input: Set of points P , clustersQ, nearest neighbor i
Output: Density density
chosen = {}
for i = 1 to 5 do

cluster = get random cluster(Q)
for word in cluster do

chosen = chosen∪wordvector(word)
end for

end for
Remove outliers from P using β = 0.3 & r = 10
X = convex hull(P )
C = corner points(X)
for i = 1 tom− 1 do

for i = 1 to |C| do
qi = random number between 0 & 1

end for
for i = 1 to |C| do

pi = qi∑|C|
k=1

qk

C′
i = Ci ∗ pi

end for
hullpt = sum(C′)
density = 0
repeat

dist = KNN(hullpt, chosen, i)
density+ = dist

until noChange is true
end for

Source EN EN FR DE
Target FR DE EN EN

Source(Words) 54k 51k 73k 119k
Target 73k 119k 54k 51k

Soundex 10k 10k - 16k
NYSIIS 38k 36k 43k 99k

MetaPhone 36k 34k 37k 94k
W+Soundex 58k 55k - 124k
W+NYSIIS 84k 80k 108k 206k

W+MetaPhone 83k 79k 104k 203k

Table 3: Vocabulary sizes before/after encodings.

ZH(W)/EN Pinyin Wubi W+Pinyin W+Wubi
94k/54k 1k 4k 95k 97k

Table 4: Vocabulary sizes in Chinese to English system.

We used the IWSLT 2017 training data (IWSLT,
2017), the development data combines test sets in
2013, 2014, and 2015, and the evaluation data is
the 2017 test set.

Figure 3 and Figure 4 show vocabulary statis-
tics on source/target tokenized text (Cettolo, 2015)
before and after applying encodings (Turk and
Stephens, 2010). We apply a BPE with 89K and
16K (Denkowski and Neubig, 2017) operations
for FR and 89K for DE, and 18K operations for
ZH, then we train an individual embedding on
source/target jointly for each encoding.

6.2 Translation Results

For each encoding scheme, we carried out two ex-
periments, one with only the encoded sentences
and another one with the source sentence con-
catenated with the encoded sentence. For exam-
ple, W+Soundex means the source sentence in

words concatenated with all words converted into
Soundex as the input to the Neural Networks. As
the Soundex algorithm does not support French
text, we do not have results for Soundex and
W+Soundex for EN-FR. The translation results are
evaluated with Bojar (2006).

Table 5 shows that encoding as an auxiliary
input (concatenated with the original sentence)
significantly improves the translation quality in
all language directions. W+MetaPhone indicates
adding MetaPhone to the word-based NMT base-
line, which gives the best results for EN-FR and
DE-EN, with an improvement of 1.71 and 1.2 in
BLEU points, respectively. In our experiments,
random clustering consistently improves over base-
lines on all languages. The non-uniform random
clustering method in algorithm 1 achieves a higher
BLEU score of 37.95% than a uniform random clus-
tering after tuning on the cluster size. For EN-FR
(16k BPE operations) data in Table 5, we uniform
randomly sample words for each cluster. We get
the BLEU score of 37.74%, 37.77%, 37.38%, and
37.63% when setting the number of clusters to be
20%, 40%, 60%, and 80% of the vocabulary size
(63615 words), i.e. the average cluster size to be 5,
2.5, 1.6, 1.25, respectively.

However, for most languages, the best codings
are phonetic ones. Phonetic linguistic knowledge
is helpful in MT, and we explained the underlying
reason with our hypothesis of semantic diversity
by phonetics. Linguistic information is typically
language dependent, thus different phonetic algo-
rithms serve better for certain languages. NYSIIS
handles phonemes that occur in European and His-
panic surnames. Thus, it performs best in French.
MetaPhone is a more advanced algorithm with
spelling variations and inconsistencies, hence, it
works best for English and German (both Germanic
languages).

Table 7 shows the results of the ZH-EN trans-
lation system (BPE 18k operations). We apply
Pinyin (Yu, 2016a), Pinyin segmented into letters,
and Wubi encoding (Yu, 2016b). We achieve signif-
icant improvement over the baseline by adding aux-
iliary information: 0.87 BLEU points with Pinyin,
1.68 BLEU points with Pinyin in letters, and 1.11
BLEU points with Wubi, respectively. The ran-
domly clustering on Chinese characters and on
words both improve the baseline with 1.49 and
1.47 BLEU points, respectively. This is a larger
improvement than that of the K-Means clustering.
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Coding FR-EN(89k) FR-EN(16k) EN-FR(89k) EN-FR(16k) DE-EN(89k) EN-DE(89k)

Baseline: Words 35.01 36.21 34.37 36.78 27.79 25.12
Soundex - - 27.44 27.41 20.89 21.19
NYSIIS 30.87 31.22 31.36 31.06 25.76 18.90

MetaPhone 29.83 30.43 31.10 30.77 23.61 21.92
W+Soundex - - 35.88 36.80 27.54 24.97
W+NYSIIS 35.44 37.33 35.10 37.23 28.40 25.37

W+MetaPhone 35.09 37.04 36.08 37.95 28.99 25.00
W+random clustering 35.02 36.84 35.47 37.07 28.21 25.58

Table 5: Translation results in BLEU[%] using various codings. Training IWSLT 2017 data, development data is
combined test 2013, 2014, and 2015 data and evaluated on test 2017 data. BPE operations: 89k, 16k.

Figure 5: Tuning for dropout. The x axis indicate the
drop out paramter value.

6.3 Model Complexity

We tune the drop out parameter for three experi-
ments: Words, W+Pinyin, and W+Pinyin letters on
ZH-EN. The drop out is set by default to 0.2, and
the beam-size to 12. Figure 5 shows how transla-
tion accuracy changes. Our approach consistently
performs better than the baseline systems. The
peak BLEU score is achieved at drop out 0.05 for
the baseline, but between 0.2 and 0.3 for our ap-
proach. This implies that adding auxiliary inputs
will reduce the model complexity, indicated by a
higher drop out parameter value opt for the best
translation performance.

6.4 Training Speed

Table 6 shows the system training time (with BPE
89k operations and for ZH-EN 18k). The total time
(in thousands of seconds) is in the first column, and
the time per epoch is in the second. Given the aux-
iliary information reduces the model complexity as
in Section 6.3, the training becomes more efficient
and needs a smaller number of epochs to converge.
In most systems, the total training time with the
auxiliary information is comparable to those with-
out it, sometimes even less.

6.5 Robustness

To test the system robustness, we evaluated English-
French systems (89k) in Table 5 that are trained on
IWSLT’17. The tests are the out-of-domain and
informal language data, the WMT’15 (Ondřej Bo-
jar and Turchi, 2015) News and MTNT test sets.
MTNT’18 is a dataset in the informal domain, re-
cently released by Michel and Neubig (2018) for
the robustness task in WMT’19 (WMT, 2019),
which includes MTNT’18 test data and MTNT’19
test data. Note that unlike the robustness task itself,
we did not use MTNT training data when building
systems. We aim to verify how the system would
behave in a new domain that was entirely unknown
during the system building process - aligning with
a real-life scenario. As in Table 8, all of our ap-
proaches achieved higher accuracy, showing more
robustness in this experiment. +MetaPhone out-
performs all other encoding methods for all the
three out-of-domain test sets and improves over the
baseline by up to 1 BLEU points.

Table 5 also has results for system trained on the
MTNT’18 data and tested on both MTNT’18 and
MTNT’19 test sets as well as the out-of-domain
WMT’15 test data. +MetaPhone outperforms all
other systems and improves over the baseline by
about 5 BLEU points.

7 Related Work

Phonological rules or constraints have been pre-
viously applied to tasks such as word segmenta-
tion (Hayes, 1996; Johnson et al., 2015). Phonetics
involves gradient and variable phenomena, whereas
phonology is characteristically categorial and far
less variable. Instead of optimizing towards phono-
logical constraints, we directly learn from phonetic
data and discover hidden phonetic features to opti-
mize NMT performance.



8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Confidential Review Copy. DO NOT DISTRIBUTE.

Coding FR-EN EN-FR DE-EN EN-DE
Words (W) 2.92/112 2.84/123 2.57/88.6 2.91/112
Soundex - 3.99/133 2.27/83.9 3.02/121
NYSIIS 2.02/101 3.25/125 2.22/79.4 3.11/111

Metaphone 2.72/109 2.95/123 1.75/83.2 3.09/115
W+Soundex - 3.25/155 2.00/111 3.66/141
W+NYSIIS 1.48/148 3.12/149 2.07/94.3 3.27/131

W+Metaphone 1.12/140 3.92/151 1.98/98.8 3.29/132

Coding ZH-EN
Words (W) 1.82/79.0

Pinyin 2.74/85.8
Wubi 2.60/81.2

W+Pinyin 2.95/114
W+Wubi 3.06/110

Table 6: Training time for each system. It shows total time [K]/ average epoch time in seconds.

Coding ZH-EN
Words 17.00
Wubi 14.43
Pinyin 15.57

Pinyin in letters 12.51
W+Wubi 18.11
W+Pinyin 17.87

W+Pinyin in letters 18.68
K-Means characters 14.57

random clustering words 17.35
random clustering characters 15.84

W+K-Means words 17.86
W+random clustering words 18.47

W+random clustering characters 18.49

Table 7: Translation results in BLEU[%] for ZH-EN.

Training Data Coding MTNT’18 MTNT’19 WMT’15

IWSLT’17

Words (W) 13.94 10.59 12.05
W+Soundex 13.46 10.53 12.35

W+Metaphone 14.44 11.60 12.65
W+NYSIIS 13.81 11.21 12.14

MTNT’18

Words (W) 10.36 7.10 8.64
W+Soundex 10.40 11.59 12.73

W+Metaphone 10.58 10.67 13.39
W+NYSIIS 10.98 12.65 14.53

Table 8: Robustness results in BLEU[%]: test on
MTNT, WMT; train on IWSLT for EN-FR.

Discriminatively learning phonetic features has
demonstrated success in various Language technol-
ogy applications. Huang et al. (2004) used phonetic
information to improve the named entity recogni-
tion task. Bengio and Heigold (2014); Zhu et al.
(2018) integrate speech information into word em-
bedding and subword unit models, respectively.
Du and Way (2017) converted Chinese characters
to subword units using Pinyin to alleviate the un-
known words. Our work aims to improve NMT
overall rather than to only translate unknown Chi-
nese words. We are the first to introduce sev-
eral phonetic algorithms: Soundex, NYSIIS, Meta-
Phone; and Logogram, Wubi to improve NMT. We

also develop new algorithms driven by an empiri-
cally verified observation, which works for all lan-
guages in any NMT framework.

Leading research has investigated auxiliary infor-
mation to NLP tasks, such as polysemous word em-
bedding structures by Arora et al. (2016), factored
models by Garcı́a-Martı́nez et al. (2016); Sennrich
and Haddow (2016), as well as compiling various
features as in Kobus et al. (2017) and Sennrich et al.
(2016a). In this paper, we focus on the introduction
of phonetic encoding and random clustering and
demonstrate that our approaches are effective even
when applied in a simple way (namely, concatena-
tion without the help of a factor model). Treating
NMT as a black-box can be beneficial when experi-
menting with different NMT models such as CNN,
seq2seq, and attention-based one.

Closely related, but independent to this work,
is the approach of word segmentation or character
based NMT (Chung et al., 2016), which focuses on
the decomposition of the translation unit. Smaller
text granularity helps in unseen word forms and
tokenization challenges (Ling et al., 2015), while
more extended translation units reduce model com-
plexity and input lengths (Lee et al., 2017). Finding
the optimal granularity when feeding information
to an NMT is undoubtedly impressive, but stratify-
ing the translation unit does not necessarily only
take place at the next level (in the form of character
or word sequences). We take a different angle and
view MT input as an information source encoded
in various forms. We study the source sentence
representations other than text such as phonetic
encodings, which works surprisingly well when
combined with word segmentation methods.

8 Conclusions

We introduce phonetic and logogram encodings to
convert foreign text into phonetic and logogram
forms. We deploy them into NMT systems and
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significantly improve NMT translation quality and
robustness. When analyzing this improvement, we
introduce and verify our hypothesis of semantic
diversity by phonetics. Driven by this hypothesis,
we further introduce the random clustering which
also enhance the NMT accuracy and robustness.
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