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ABSTRACT

The ability to perform pixel-wise semantic segmentation in real-time is of
paramount importance in practical mobile applications. Recent deep neural net-
works aimed at this task have the disadvantage of requiring a large number of
floating point operations and have long run-times that hinder their usability. In this
paper, we propose a novel deep neural network architecture named ENet (efficient
neural network), created specifically for tasks requiring low latency operation.
ENet is up to 18x faster, requires 75x less FLOPs, has 79x less parameters,
and provides similar or better accuracy to existing models. We have tested it on
CamVid, Cityscapes and SUN datasets and report on comparisons with existing
state-of-the-art methods, and the trade-offs between accuracy and processing time
of a network. We present performance measurements of the proposed architecture
on embedded systems and suggest possible software improvements that could make
ENet even faster.

1 INTRODUCTION

Recent interest in augmented reality wearables, home-automation devices, and self-driving vehicles
has created a strong need for semantic-segmentation (or visual scene-understanding) algorithms that
can operate in real-time on low-power mobile devices. These algorithms label each and every pixel
in the image with one of the object classes. In recent years, the availability of larger datasets and
computationally-powerful machines have helped deep convolutional neural networks (CNNs) (LeCun
& Bengio| (1998)); Krizhevsky et al.|(2012); |Simonyan & Zisserman| (2014a); Szegedy et al.| (2015a)))
surpass the performance of many conventional computer vision algorithms (Shotton et al.| (2009);
Perronnin et al.|(2010); ivan de Sande et al.|(2011)). Even though CNNs are increasingly successful at
classification and categorization tasks, they provide coarse spatial results when applied to pixel-wise
labeling of large images. Therefore, they are often cascaded with other algorithms to refine the results,
such as color based segmentation (Farabet et al.[|(2013)) or conditional random fields (Chen et al.
(2014)), to name a few.

In order to both spatially classify and finely segment images, several neural network architectures have
been proposed, such as SegNet (Badrinarayanan et al.|(2015aZb))) or fully convolutional networks
(Long et al| (2015)). All these works are based on a VGG16 (Simonyan & Zisserman| (2014b))
architecture, which is a very large model designed for multi-class classification. These references use
models with a large number of parameters, and slow inference time. In these conditions, they become
unusable for many mobile or battery-powered applications, which require processing images at rates
higher than 10 fps.

In this paper, we propose a new neural network architecture optimized for high-accuracy and also
fast inference. In our work, beside neural network processing, we chose not to use any other
post-processing steps, in order to focus on the intrinsic performance of an end-to-end CNN approach.
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In Section 3] we propose a fast and compact encoder-decoder architecture named ENet. It has been
designed according to rules and ideas that have appeared in the literature recently, all of which we
discuss in Section[d] Performance of the proposed network has been tested on Cityscapes (Cordts
et al.|(2016)) and CamVid (Brostow et al.|(2008))) for driving scenario, whereas SUN dataset (Song
et al.| (2015))) has been used for testing our network in an indoor situation. We benchmark it on
NVIDIA Jetson TX1 Embedded Systems Module as well as on an NVIDIA Titan X GPU. The results
can be found in Section

2 RELATED WORK

Semantic segmentation is important in fully understanding the content of images, find target objects
and segment them. This technique is of utmost importance in applications such as driving and
augmented reality. Moreover, real-time operation is a must for these applications, and therefore,
designing CNNs carefully is vital. Contemporary computer vision applications extensively use deep
neural networks, now one of the most widely used techniques for many different tasks, including
semantic segmentation. This work presents a fully trainable neural network architecture, and therefore
we aim to compare to other literature that performs the large majority of inference in the same way.

State-of-the-art scen-parsing CNNs use two separate neural network architectures combined together:
an encoder and a decoder. Inspired by probabilistic auto-encoders (Ranzato et al.[(2007); Ngiam et al.
(2011))), encoder-decoder network architecture have been introduced in SegNet-basic (Badrinarayanan
et al.|(2015a))), and further improved in SegNet (Badrinarayanan et al.|(2015b)). The encoder is a
vanilla CNN (such as VGG16 from |Simonyan & Zisserman| (2014b))) which is trained to classify the
input, while the decoder is used to upsample the output of the encoder (Long et al.|(2015); Noh et al.
(2015)); |[Zheng et al.|(2015)); Eigen & Fergus| (2015); Hong et al.| (2015)). However, these networks
are slow during inference due to their large architectures and numerous parameters. Unlike in|Noh
et al.| (2015), fully connected layers of VGG16 were discarded in the latest incarnation of SegNet,
in order to reduce the number of operations and memory footprint, making it the smallest of these
networks. Still, none of them can operate in real-time.

Other existing architectures use simpler classifiers and then cascade it with Conditional Random
Field (CRF) as a post-processing step (Chen et al.| (2014); Sturgess et al.|(2009)). As explained in
Badrinarayanan et al.[(2015b), these techniques use onerous post-processing steps and often fail
to label the classes that occupy fewer number of pixels in a frame. CNNs can be combined with
recurrent neural networks (Zheng et al.|(2015)) for better performance, but suffers from further speed
degradation. Also, one has to keep in mind that RNN, used as a post-processing step, can be used in
conjunction with any other technique, including the one presented in this work.

3 NETWORK ARCHITECTURE

The architecture of our network is presented in Table[T] It is divided into several stages, as highlighted
by horizontal lines in the table and the first digit after each block name. Output sizes are reported for
an example input image resolution of 512 x 512. We adopt a view of ResNets (He et al.|(2015b))
that describes them as having a single main branch and extensions with convolutional filters that
separate from it, and then merge back with an element-wise addition, as shown in Figure[Tb] Just as
in the original paper, we refer to these as bottleneck modules. They consist of three convolutional
layers: a 1 x 1 projection that reduces the dimensionality, a main convolutional layer (conv in Figure
[ID), and a 1 x 1 expansion. If the bottleneck is downsampling, a max pooling layer is added to the
main branch. We zero pad the activations, to match the number of feature maps. Also, the first 1 x 1
projection is replaced with a 2 x 2 convolution with stride 2 in both dimensions. conv is either a
regular, dilated or full convolution (also known as deconvolution or fractionally strided convolution)
with 3 x 3 filters. Sometimes we replace it with asymmetric convolution i.e. a sequence of 5 x 1
and 1 x 5 convolutions. For the regularizer, we use Spatial Dropout (Tompson et al.[(2015)), with
p = 0.01 before bottleneck2.0, and p = 0.1 afterwards.

The initial stage contains a single block, that is presented in Figure Stage 1 consists of 5
bottleneck blocks, while stage 2 and 3 have the same structure, with the exception that stage 3 does
not downsample the input at the beginning (we omit the Oth bottleneck). These three first stages are
the encoder. Stage 4 and 5 belong to the decoder.
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Figure 1: (a) ENet initial block. MaxPooling is performed with non-overlapping 2 x 2 windows, and
the convolution has 13 filters, which sums up to 16 feature maps after concatenation. This is heavily
inspired by |Szegedy et al.| (2015b). (b) ENet bottleneck module. conv is either a regular, dilated, or
full convolution (also known as deconvolution) with 3 x 3 filters, or a 5 x 5 convolution decomposed
into two asymmetric ones.

We did not use bias terms in any of the projec-
tions, in order to reduce the number of kernel
calls and overall memory operations, as cuDNN
(Chetlur et al.|(2014)) uses separate kernels for

Table 1: ENet architecture. Output sizes are given
for an example input of 512 x 512.

convolutions and bias addition. This choice Name Type Output size
didn’t have any impact on the accuracy. Be- initial 16 x 256 x 256
tween each convolutional layer and following bottlencck 1.0 downsampling 64 x 128 x 128
non-linearity we use Batch Normalization (Ioffe] 4 i ioneck x 64 % 128 X 128
& Szegedy|(2015)). In the decoder max pooling -

is replaced with max unpooling, and padding is  bottleneck2.0 downsampling 128 x 64 x 64
replaced with spatial convolution without bias. Pottleneck2.1 , 128 x 64 x 64
We did not use unpooling information in the last Eo:ﬂenecgg dllate? 2 5 gg X gi X gi
upsampling module, because the initial block bgngzzkz' 1 as%?;;rtl:drz: 198 i 64 z 64
operated on the 3 channels of the input frame, /"0~ o' 198 % 64 x 64
while the final output has C' feature maps (the 100010 6 dilated 8 128 % 64 % 64
number of object classes). Also, for perfor- 1 ,ileneck2.7 asymmetric 5 128 x 64 x 64
mance reasons, we decided to place only a bare  pottleneck?.8 dilated 16 128 x 64 X 64

full convolution as last module of the network,

which alone takes up a sizeable portion of the Repeat section 2, without bottleneck2.0

decoder processing time. bottleneck4.0 upsampling 64 x 128 x 128
bottleneck4.1 64 x 128 x 128
bottleneck4.2 64 x 128 x 128
4 DESIGN CHOICES bottleneck5.0 upsampling 16 x 256 x 256

16 x 256 x 256
C x 512 x 512

bottleneck5.1

In this section we will discuss our most im-
portant experimental results and intuitions, that
have shaped the final architecture of ENet.

fullconv

Feature map resolution: Downsampling images during semantic segmentation has two main
drawbacks. Firstly, reducing feature map resolution implies loss of spatial information like exact
edge shape. Secondly, full pixel segmentation requires that the output has the same resolution as
the input. This implies that strong downsampling will require equally strong upsampling, which
increase model size and computational cost. The first issue has been addressed in|Long et al.|(2015)
by adding the feature maps produced by encoder, and in SegNet (Badrinarayanan et al.|(2015a))) by
saving the elements index from the corresponding encoder max-pooling module. We followed the
SegNet approach, because it allows to reduce memory requirements, but we found that using a strong
downsampling still reduces the final accuracy.
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However, downsampling has one big advantage. Filters operating on downsampled images have a
bigger receptive field, that allows them to gather more context. This is especially important when
trying to differentiate between classes occupying a small portion of the overall image, as, for example,
rider and pedestrian in a road scene. It is just not enough that the network learns how people look,
the context in which they appear is important as well. At the end, we have found that it is better to
use dilated convolutions for the purpose of extending context information (Yu & Koltun| (2015)).

Early downsampling: One crucial intuition to achieving good performance and real-time operation
is realizing that processing large input frames is very expensive. This might sound very obvious,
however many popular architectures (Hong et al.| (2015); Badrinarayanan et al.| (2015b))) do not pay
much attention towards optimization of early stages of network, which are often the most expensive.

ENet first two blocks heavily reduce the input size, and use only a small set of feature maps. The
idea behind it, is that visual information is highly redundant in space, and thus can be compressed
into a more efficient representation. Also, our intuition is that the initial network layers should not be
used specifilly only for classification. Instead, they should rather act as good feature extractors and
preprocess the input for later portions of the network. This insight worked well in our experiments.
Increasing the number of feature maps from 16 to 32 did not improve the accuracy on Cityscapes
dataset (Cordts et al.|(2016))).

Decoder size: In this work we would like to provide a different view on encoder-decoder architec-
tures than the one presented in|Badrinarayanan et al.| (2015b). SegNet is a very symmetric architecture,
as the encoder is an exact mirror of the encoder. Instead, our architecture consists of a large encoder,
and a small decoder. This is motivated by the idea that the encoder should be able to work in a similar
fashion to original classification architectures, i.e. to operate on smaller resolution data and provide
for information processing and filtering. Instead, the role of the the decoder, is only to upsample the
output of the encoder, fine-tuning the details.

Nonlinear operations: |He et al.|(2016)) report that it is beneficial to use ReLU and Batch Normal-
ization layers before convolutions. We tried applying these ideas to ENet, but this had a detrimental
effect on accuracy. Investigating its cause we replaced all ReLUs in the network with PReL.Us (He
et al.| (2015a)), which use an additional parameter per feature map, with the goal of learning the
negative slope of non-linearities. We expected that in layers where identity is a preferable transfer
function, PReLLU weights will have values around 1, and conversely, values around 0 if ReLU is
preferable. Results of this experiment can be seen in Figure 2]

The first layers weights exhibit a large variance and are slightly biased towards positive values, while
in the later portions of the encoder they settle to recurring pattern. All layers in the main branch
behave nearly exactly like regular ReL.Us, while the weights inside bottleneck modules are negative
i.e. the function inverts and scales down negative values. We hypothesize that identity did not work
out well in our architecture because of its limited depth. We hypothesize that the reason why such
lossy functions are learned is that He et al.| (2016) uses networks that are hundreds of layers deep,
while our network uses fewer layers, and it needs to quickly filter out information. It is notable that
the decoder weights become much more positive and learn functions closer to identity. This confirms
our intuitions that the decoder is used only to fine-tune the upsampled output.

Information-preserving dimensionality changes: As stated earlier, it is necessary to downsample
the input early, but aggressive dimensionality reduction can also hinder the information flow. A very
good approach to this problem has been presented in[Szegedy et al.|(2015b)). However, pooling after
a convolution, in case of increasing feature map depth, is computationally expensive. Therefore, we
prefer to perform pooling operation in parallel with convolution of stride 2, and concatenate resulting
feature maps. This technique allowed us to speed up inference time of the initial block 10 times.

Additionally, we have found one problem in the original ResNet architecture. When downsampling,
the first 1 x 1 projection of the convolutional branch is performed with a stride of 2 in both dimensions,
which effectively discards 75% of the input. Increasing the filter size to 2 x 2 allows to take the full
input into consideration, and thus improves the information flow and accuracy. Of course, it makes
these layers 4 x more computationally expensive, however there are so few of these in ENet, that the
overhead is not noticeable.
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Figure 2: PReLU weight distribution vs network depth. Blue line is the weights mean, while an area
between maximum and minimum weight is grayed out. Each vertical dotted line corresponds to a
PReLU in the main branch and marks the boundary between each of bottleneck blocks. The gray
vertical line at 67th module is placed at encoder-decoder border.

Factorizing filters: It has been shown that convolutional weights have a fair amount of redundancy,
and each n x n convolution can be decomposed into two smaller asymmetric convolutions: one with
an x 1 filter followed by a 1 x n filter (Jin et al.| (2014)); |Szegedy et al.| (2015b)). We have used
asymmetric convolutions with n = 5 in our network, so cost of these two operations is similar to a
single 3 x 3 convolution. This allowed to increase the variety of functions learned by each block and
increase the receptive field.

Sequence of operations used in the bottleneck module (projection, convolution, projection) can be
seen as decomposing one large convolutional layer into a series of smaller and simpler low-rank
approximation operations. Such factorization allows for large speedups and reduction in number of
parameters, making them less redundant (Jin et al.| (2014)).

Dilated convolutions: As argued above, it is very important for the network to have a wide receptive
field, so it can perform classification by taking a bigger portion of the image (context) into account.
We wanted to avoid overly downsampling the feature maps, and decided to use dilated convolutions
(Yu & Koltun/(2015)) to improve our model. We have used them inside several bottleneck modules,
in particular the ones that operate on the smallest resolutions. These gave a significant accuracy
boost, by raising IoU on Cityscapes by around 4 percentage points, with no additional cost. We
obtained the best accuracy when we interleaved them with other bottleneck modules (both regular
and asymmetric), instead of arranging them in sequence, as has been done in|Yu & Koltun| (2015).

Regularization: Most pixel-wise segmentation datasets are relatively small (on order of 10® im-
ages), so such expressive models as neural networks quickly begin to overfit them. In initial
experiments, we used L2 weight decay with little success. Then, inspired by [Huang et al.| (2016)), we
have tried stochastic depth, which increased accuracy. However it became apparent that dropping
branches (i.e. setting their output to 0) is in fact a special case of applying Spatial Dropout (Tompson
et al.[(2015))), where either all of the channels, or none of them are ignored, instead of selecting a
random subset. We placed Spatial Dropout at the end of convolutional branches, right before the
addition, and it turned out to work much better than stochastic depth.

5 RESULTS

We benchmarked the performance of ENet on three different datasets to demonstrate real-time and
accurate for practical applications. We tested on CamVid and Cityscapes datasets of road scenes, and
SUN RGB-D dataset of indoor scenes. We set SegNet (Badrinarayanan et al.|(2015b)) as a baseline
since it is one of the fastest segmentation model available, that also requires less memory to operate
than plain CNNs. All our models, training, testing and performance evaluation scripts were written
using the Torch7 machine-learning library. To compare results, we use class average accuracy and
intersection-over-union (IoU) metrics.
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5.1 PERFORMANCE ANALYSIS

We report results on inference speed on widely used NVIDIA Titan X GPU as well as on NVIDIA
TX1 embedded system module. ENet was designed to achieve more than 10 fps on the NVIDIA TX1
board with an input image size 640 x 360 (W,H), which is adequate for practical road scene parsing
applications. For inference we merge batch normalization and dropout layers into the convolutional
filters, to speed up all networks.

Table 2: Performance comparison. Image size is WxH

NVIDIA TX1 NVIDIA Titan X
Model 480%320 640%360 1280x720 640x360 1280x720  1920x 1080
ms  fps ms fps  ms  fps ms fps ms fps ms fps
SegNet 757 1.3 1251 038 - - 69 146 289 35 637 1.6
ENet 47 21.1 69 146 262 38 7 1354 21 468 46 216

Inference time: Table [2| compares inference time for a single input frame of varying resolution.
We also report the number of frames per second that can be processed. Dashes indicate that we
could not obtain a measurement, due to lack of memory. ENet is significantly faster than competing
architectures, providing high frame rates for real-time applications and allowing for practical use of
very deep neural network models with encoder-decoder architecture.

Table 3: Hardware requirements. FLOPs are estimated for an input of 3 x 640 x 360 (C,W,H).

GFLOPs Parameters Model size (fp16)

SegNet 286.03 29.46M 56.2 MB
ENet 3.83 0.37M 0.7 MB

Hardware requirements: Table[3|reports a comparison of number of operations and parameters
used by different models. ENet efficiency is evident in the much low number of operations per
frame and overall parameters. Please note that we report storage required to store the models in half
precision floating point format. ENet has so few parameters that it can be saved into a file of just
0.7MB, which makes it possible to fit the whole network in an extremely fast on-chip memory in
embedded processors. This alleviates the need for model compression (Han et al.|(2015)), making
it possible to use general purpose code for neural network computation. However, if one needs to
operate under incredibly strict memory constraints, these techniques can still be applied to ENet as
well.

Software limitations: One of the most important techniques that has allowed us to reach these
levels of performance is convolutional layer factorization. However, we have found one surprising
drawback. Although applying this method allowed us to greatly reduce the number of floating point
operations and parameters, it also increased the number of individual kernels calls, making each of
them smaller.

We have found that some of these operations become so cheap, that the cost of GPU kernel launch
starts to outweigh the cost of the actual computation. Also, because kernels do not have access to
values that have been kept in registers by previous ones, they have to load all data from global memory
at launch, and save it when their work is finished. This means that using a higher number of kernels,
increases the number of memory operations, because feature maps have to be constantly saved and
reloaded. This becomes especially apparent in case of non-linear operations. In ENet, PReLUs
consume more than a quarter of inference time. Since they are only simple point-wise operations and
very easy to parallelize, we hypothesize it is caused by the aforementioned data movement.

These are serious limitations, however they could be resolved by performing kernel fusion in existing
software i.e. create kernels that apply non-linearities to results of convolutions directly, or perform a
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number of smaller convolutions in one call. This improvement in GPU libraries, such as CuDNN,
could increase the speed and efficiency of our network even further.

5.2 BENCHMARKS

During training we have used the Adam optimization algorithm (Kingma & Ba|(2014)). It allowed
ENet to converge very quickly and on every dataset we haver used training took only 3-4 hours
on Titan X. Training of ENet was performed in two stages: first we train only the encoder to
categorize downsampled regions of the input image, then we appended the decoder and train the
network to perform upsampling and pixel-wise categorization in this work, a learning rate of 5e—4
and L2 weight decay of 2e—4, along with batch size of 10 consistently provided the best results
For categorization, we have used a custom class weighing scheme defined as w¢jass = m.
In contrast to the inverse class probability weighing, the weights are bounded as the probability
approaches 0. c is an additional hyper-parameter, which we set to 1.02 (i.e. we restrict the class
weights to be in the interval of [1, 50]).

Table 4: Cityscapes test set results

Model ClassIoU ClassiloU Category IoU Category iloU

SegNet 56.1 342 79.8 66.4
ENet 58.3 344 80.4 64.0

Cityscapes: This dataset consists of 5000 fine-annotated images, out of which 2975 are available
for training, 500 for validation, and the remaining 1525 have been selected as test set (Cordts et al.
(2016)). Cityscapes was the most important benchmark for us, because of its outstanding quality
and highly varying road scenarios, often featuring many pedestrians and cyclists. We trained on 19
classes that have been selected in the official evaluation scripts (Cordts et al.| (2016)). It makes use of
an additional metric called instance-level intersection over union metric (iloU), which is IoU weighed
by the average object size. As reported in Table 4] ENet outperforms SegNet in class IoU and iloU,
as well as in category IoU. ENet is currently the fastest model in the Cityscapes benchmark.

Table 5: Results on CamVid test set of (1) SegNet-Basic, (2) SegNet, and (3) ENet

) 2 e § [ :ﬁv 2 :°>D %
T 5 ¢ = 5 5 % Z g2 £ : 35 % 3
s = &£ # S g g & 5 & & z 3 %
m A wn 23] @) Q
1 750 84.6 912 827 369 933 550 475 448 741 160 629 n/a
2 88.8 873 924 821 205 972 571 493 275 844 307 65.2 55.6
3 747 778 951 824 51.0 951 672 517 354 86.7 34.1 68.3 51.3

CamVid: Another automotive dataset, on which we have tested ENet, was CamVid. It contains
367 training and 233 testing images (Brostow et al.| (2008))). There are eleven different classes such
as building, tree, sky, car, road, etc. while the twelfth class contains unlabeled data, which we ignore
while training. The original frame resolution for this dataset is 960720 (W,H) but we downsampled
the images to 480360 before training. In Table[5|we compare the performance of ENet with existing
state-of-the-art algorithms. ENet outperforms other models in six classes, which are difficult to learn
because they correspond to smaller objects.

Table 6: SUN RGB-D test set results

Model  Global avg. Class avg. Mean loU

SegNet 70.3 35.6 26.3
ENet 59.5 32.6 19.7
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SUN RGB-D: The SUN dataset consists of 5285 training images and 5050 testing images with
37 indoor object classes. We did not make any use of depth information in this work and trained
the network only on RGB data. In Table [6| we compare the performance of ENet with SegNet
(Badrinarayanan et al.| (2015b)), which is the only neural network model that reports accuracy on
this dataset. Our results, though inferior in global average accuracy and IoU, are comparable in class
average accuracy. Since global average accuracy and IoU are metrics that favor correct classification
of classes occupying large image patches, researchers generally emphasize the importance of other
metrics in case of semantic segmentation. One notable example is introduction of iloU metric
(2016)). Comparable result in class average accuracy indicates, that our network is capable of
differentiating smaller objects nearly as well as SegNet. Moreover, the difference in accuracy should
not overshadow the huge performance gap between these two networks. ENet can process the images
in real-time, and is nearly 20 x faster than SegNet on embedded platforms.

(a) Cityscapes (b) CamVid (¢) SUN RGB-D

Figure 3: ENet predictions on popular benchmarks (rows top to down represent input image, ground
truth, and ENet output respectively).

6 CONCLUSION

We have proposed a novel neural network architecture designed from the ground up specifically
for semantic segmentation. Our main aim is to make efficient use of scarce resources available on
embedded platforms, compared to fully fledged deep learning workstations. Our work provides large
gains in this task, while matching and at times exceeding existing baseline models, that have an
order of magnitude larger computational and memory requirements. The application of ENet on the
NVIDIA TX1 hardware exemplifies real-time portable embedded solutions.

Even though the main goal was to run the network on mobile devices, we have found that it is
also very efficient on high end GPUs like NVIDIA Titan X. This may prove useful in data-center
applications, where there is a need of processing large numbers of high resolution images. ENet
allows to perform large-scale computations in a much faster and more efficient manner, which might
lead to significant savings.
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