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ABSTRACT

We propose a generic framework to calibrate accuracy and confidence (score) of
a prediction through stochastic inferences in deep neural networks. We first ana-
lyze relation between variation of multiple model parameters for a single exam-
ple inference and variance of the corresponding prediction scores by Bayesian
modeling of stochastic regularization. Our empirical observation shows that ac-
curacy and score of a prediction is highly correlated with variance of multiple
stochastic inferences given by stochastic depth or dropout. Motivated by these
facts, we design a novel variance-weighted confidence-integrated loss function
that is composed of the standard cross-entropy loss and KL-divergence from uni-
form distribution, where the two terms are balanced based on variance of stochas-
tic prediction scores. The proposed algorithm presents outstanding confidence
calibration performance and improved classification accuracy with two popular
stochastic regularization techniques—stochastic depth and dropout—in multiple
models and datasets; it alleviates overconfidence issue in deep neural networks
significantly by training the networks to achieve prediction accuracy proportional
to confidence of the prediction. To show generality of our approach, we also dis-
cuss how to interpret existing uncertainty estimation techniques in a principled
way within our framework.

1 INTRODUCTION

Deep neural networks have achieved remarkable performance in various tasks, but have critical
limitations in reliability of their predictions. One example is that inference results are often overly
confident even for unseen or tricky examples; the maximum scores of individual predictions are
very high even for out-of-distribution examples and consequently distort interpretation about the
predictions. Since many practical applications including autonomous driving, medical diagnosis,
and machine inspection require accurate uncertainty estimation as well as high prediction accuracy
for each inference, such an overconfidence issue makes deep neural networks inappropriate to be
deployed for real-world problems in spite of their impressive accuracy.

Regularization is a common technique in training deep neural networks to avoid overfitting prob-
lems and improve generalization accuracy Srivastava et al. (2014); Huang et al. (2016); Ioffe &
Szegedy (2015). However, their objectives are not directly related to generating score distributions
aligned with uncertainty of individual predictions. In other words, existing deep neural networks are
inherently poor at calibrating prediction accuracy and confidence.

Our goal is to learn deep neural networks that are able to estimate accuracy and uncertainty of each
prediction at the same time. Hence, we propose a generic framework to calibrate prediction score
(confidence) with accuracy in deep neural networks. Our algorithm starts with an observation that
variance of prediction scores measured from multiple stochastic inferences is highly correlated with
accuracy and confidence of the prediction based on the average score, where we employ stochastic
regularization techniques such as stochastic depth or dropout to obtain multiple stochastic inference
results. We also interpret stochastic regularization as a Bayesian model, which shows relation be-
tween stochastic modeling and stochastic inferences of deep neural networks. By exploiting these
properties, we design a loss function to enable deep neural network to predict confidence-calibrated
scores based only on a single prediction, without stochastic inferences. Our contribution is summa-
rized below:
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• We provide a generic framework to estimate uncertainty of a prediction based on stochas-
tic inferences in deep neural networks, which is motivated by empirical observation and
theoretical analysis.

• We design a variance-weighted confidence-integrated loss function in a principled way
without hyper-parameters, which enables deep neural networks to produce confidence-
calibrated predictions even without stochastic inferences.

• The proposed framework presents outstanding performance to reduce overconfidence issue
and estimate accurate uncertainty in various architectures and datasets.

The rest of the paper is organized as follows. We first discuss prior research related to our algorithm,
and describe theoretical background for Bayesian interpretation of our approach in Section 2 and 3,
respectively. Section 4 presents our confidence calibration algorithm through stochastic inferences,
and Section 5 illustrates experimental results.

2 RELATED WORK

Uncertainty estimation is a critical problem in deep neural networks and receives growing attention
from machine learning community. Bayesian approach is a common tool to provide a mathematical
framework for uncertainty estimation in deep neural networks. However, exact Bayesian inference
is not tractable in deep neural networks due to its high computational cost, and various approximate
inference techniques—MCMC Neal (1996), Laplace approximation MacKay (1992) and variational
inference Barber & Bishop (1998); Graves (2011); Hoffman et al. (2013)–have been proposed. Re-
cently, Bayesian interpretation of multiplicative noise is employed to estimate uncertainty in deep
neural networks Gal & Ghahramani (2016); McClure & Kriegeskorte (2016). There are several
approaches outside Bayesian modeling, which include post-processing Niculescu-Mizil & Caruana
(2005); Platt (2000); Zadrozny & Elkan (2001); Guo et al. (2017) and deep ensembles Lakshmi-
narayanan et al. (2017). All the post-processing methods require a hold-out validation set to adjust
prediction scores after training, and the ensemble-based technique employs multiple models to esti-
mate uncertainty.

Stochastic regularization is a common technique to improve generalization performance by injecting
random noise to deep neural networks. The most notable method is Srivastava et al. (2014), which
randomly drops their hidden units by multiplying Bernoulli random noise. There exist several vari-
ants, for example, dropping weights Wan et al. (2013) or skipping layers Huang et al. (2016). Most
stochastic regularization methods exploit stochastic inferences during training, but perform deter-
ministic inferences using the whole network during testing. On the contrary, we also use stochastic
inferences to obtain diverse and reliable outputs during testing.

Although the following works do not address uncertainty estimation, their main idea is relevant to
our objective. Label smoothing Szegedy et al. (2016) encourages models to be less confident, by
preventing a network from assigning the full probability to a single class. The same loss function
is discussed to train confidence-calibrated classifiers in Lee et al. (2018), but it focuses on how
to discriminate in-distribution and out-of-distribution examples, rather than estimating uncertainty
or alleviating miscalibration of in-distribution examples. On the other hand, Pereyra et al. (2017)
claims that blind label smoothing and penalizing entropy enhances accuracy by integrating loss
functions with the same concept with Szegedy et al. (2016); Lee et al. (2018), but improvement is
marginal in practice.

3 BAYESIAN INTERPRETATION OF STOCHASTIC REGULARIZATION

This section describes Bayesian interpretation of stochastic regularization in deep neural networks,
and discusses relation between stochastic regularization and uncertainty modeling.

3.1 STOCHASTIC METHODS FOR REGULARIZATIONS

Deep neural networks are prone to overfit due to their large number of parameters, and various
regularization techniques including weight decay, dropout Srivastava et al. (2014), and batch nor-
malization Ioffe & Szegedy (2015) have been employed to alleviate the issue. One popular class
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of regularization techniques is stochastic regularization, which introduces random noise to a net-
work for perturbing its inputs or weights. We focus on the multiplicative binary noise injection,
where random binary noise is applied to the inputs or weights by elementwise multiplication since
such stochastic regularization techniques are widely used Srivastava et al. (2014); Wan et al. (2013);
Huang et al. (2016). Note that input perturbation can be reformulated as weight perturbation. For
example, dropout—binary noise injection to activations—is intertpretable as weight perturbation
that masks out all the weights associated with the dropped inputs. Therefore, if a classification
network modeling p(y|x, θ) with parameters θ is trained with stochastic regularization methods by
minimizing the cross entropy loss, its objective can be defined by

LSR(θ) = − 1

N

N∑
i=1

log p (yi|xi, ω̂i) (1)

where ω̂i = θ� εi is a set of perturbed parameters by elementwise multiplication with random noise
sample εi ∼ p(ε), and (xi, yi) ∈ D is a pair of input and output in training dataset D. Note that ω̂i
is a random sample from p(ω) given by the product of the deterministic parameter θ and a random
noise εi.

At inference time, the network is parameterized by the expectation of the perturbed parameters,
Θ = E[ω] = θ � E[ε], to predict an output ŷ, i.e.,

ŷ = arg max
y

p (y|x,Θ) . (2)

3.2 BAYESIAN MODELING

Given the dataset D with N examples, Bayesian objective is to estimate the posterior distribution of
the model parameter, denoted by p(ω|D), to predict a label y for an input x, which is given by

p(y|x,D) =

∫
ω

p(y|x, ω)p(ω|D)dω. (3)

A common technique for the posterior estimation is variational approximation, which introduces
an approximate distribution qθ(ω) and minimizes Kullback-Leibler (KL) divergence with the true
posterior DKL(qθ(ω)||p(ω|D)) as follows:

LVA(θ) = −
N∑
i=1

∫
ω

qθ(ω) log p(yi|xi, ω)dω +DKL(qθ(ω)||p(ω)). (4)

The intractable integral and summation over the entire dataset in Equation 4 is approximated by
Monte Carlo method and mini-batch optimization resulting in

L̂VA(θ) = − N

MS

M∑
i=1

S∑
j=1

log p (yi|xi, ω̂i,j) +DKL (qθ(ω)||p(ω)) , (5)

where ω̂i,j ∼ qθ(ω) is a sample from the approximate distribution, S is the number of samples,
and M is the size of a mini-batch. Note that the first term is data likelihood and the second term is
divergence of the approximate distribution with respect to the prior distribution.

3.3 INTERPRETING STOCHASTIC REGULARIZATIONS AS BAYESIAN MODEL

Suppose that we train a classifier with `2 regularization by a stochastic gradient descent method.
Then, the loss function in Equation 1 is rewritten as

L̂SR(θ) = − 1

M

M∑
i=1

log p (yi|xi, ω̂i) + λ||θ||22, (6)

where `2 regularization is applied to the deterministic parameters θ with weight λ. Optimizing this
loss function is equivalent to optimizing Equation 5 if there exists a proper prior p(ω) and qθ(ω)
is approximated as a Gaussian mixture distribution Gal & Ghahramani (2016). Note that Gal &
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(a) Prediction uncertainty characteristics with stochastic depth in ResNet-34
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(b) Prediction uncertainty characteristics with dropout in VGGNet with 16 layers

Figure 1: Uncertainty observed from multiple stochastic inferences with two stochastic regulariza-
tion methods, (a) stochastic depth and (b) dropout. We present (left, middle) tendency of accuracy
and score of the average prediction with respect to normalized variance of stochastic inferences and
(right) relation between score and accuracy. In regularization methods, average accuracy and score
drop gradually as normalized variance increases. The red lines indicate coverage (cumulative ratio)
of examples. We present results from CIFAR-100.

Ghahramani (2016) casts dropout training as an approximate Bayesian inference. Thus, we can
interpret training with stochastic depth Huang et al. (2016) within the same framework by simple
modification. (See our supplementary document for detail.) Then, the predictive distribution of a
model trained with stochastic regularization is approximately given by

p̂(y|x,D) =

∫
ω

p(y|x, ω)qθ(ω)dω. (7)

Following Gal & Ghahramani (2016) and Teye et al. (2018), we estimate the predictive mean and
uncertainty by Monte Carlo approximation by drawing binary noise samples {ω̂i}Ti=1 as

Ep̂[y = c] ≈ 1

T

T∑
i=1

p̂(y = c|x, ω̂i) and Covp̂[y] ≈ Ep̂[yᵀy]− Ep̂[y]ᵀEp̂[y], (8)

where y = (y1, . . . , yC)ᵀ denotes a vector of C class labels. Note that the binary noise samples
realize stochastic inferences such as stochastic depth and dropout by elementwise multiplication
with model parameter θ. Equation 8 means that the average prediction and its variance can be
computed directly from multiple stochastic inferences.

4 CONFIDENCE CALIBRATION THROUGH STOCHASTIC INFERENCE

We present a novel confidence calibration technique for prediction in deep neural networks, which
is given by a variance-weighted confidence-integrated loss function. We present our observation
that variance of multiple stochastic inferences is closely related to accuracy and confidence of pre-
dictions, and provide an end-to-end training framework for confidence self-calibration. Then, pre-
diction accuracy and uncertainty are directly accessible from the predicted scores obtained from a
single forward pass. This section presents our observation from stochastic inferences and technical
details about our confidence calibration technique.

4



Under review as a conference paper at ICLR 2019

4.1 EMPIRICAL OBSERVATIONS

Equation 8 suggests that variation of models1 is correlated to variance of multiple stochastic predic-
tions for a single example. In other words, by observing variation of multiple stochastic inferences,
we can estimate accuracy and uncertainty of the prediction given by average of the stochastic infer-
ences corresponding to an example.

Figure 1 presents how variance of multiple stochastic inferences given by stochastic depth or dropout
is related to accuracy and confidence of the corresponding average prediction, where the confidence
is measured by the maximum score of the average prediction. In the figure, accuracy and score
of each bin are computed with the examples belonging to the corresponding bin of the normalized
variance. We present results from CIFAR-100 with ResNet-34 and VGGNet with 16 layers. The his-
tograms illustrate the strong correlation between the predicted variance and the reliability—accuracy
and confidence—of a prediction, and between accuracy and prediction. These results suggest that
one can disregard examples based on their prediction variances. Note that variance computation
with more stochastic inferences provides more reliable estimation of accuracy and confidence.

4.2 CONFIDENCE-INTEGRATED LOSS

We first design a simple loss function for accuracy-score calibration by augmenting a confidence-
integrated loss LU to the standard cross-entropy loss term, which is given by

L1(θ) = LGT(θ) + βLU(θ)

=

N∑
i=1

H(pGT(yi|xi), p(y|xi, θ)) + βH(U(y), p(y|xi, θ))

=

N∑
i=1

− log p(yi|xi, θ) + βDKL(U(y)||p(y|xi, θ)) + ξ. (9)

where H is the cross entropy loss function, pGT is the ground-truth distribution, p(y|xi, θ) is the
predicted distribution with model parameter θ, U(y) is the uniform distribution, and ξ is a constant.
The loss denoted by L1(·) is determined based on cross-entropy with the ground-truths and KL-
divergence from the uniform distribution. The main idea of this loss function is to regularize with
the uniform distribution by expecting the score distributions of uncertain examples to be flattened
first while the distributions of confident ones remain intact, where the impact of the confidence-
integrated loss term is controlled by a global hyper-parameter β.

The proposed loss function is also employed in Pereyra et al. (2017) to regularize deep neural net-
works and improve classification accuracy. However, Pereyra et al. (2017) does not discuss confi-
dence calibration issues. On the other hand, Lee et al. (2018) discusses the same loss function but
focuses on differentiating between in-distribution and out-of-distribution examples by measuring
loss of each example based only on one of the two loss terms depending on its origin.

Contrary to these approaches, we employ the loss function in Equation 9 for estimating prediction
confidence in deep neural networks. Although the proposed loss makes sense intuitively, blind
selection of a constant β limits its generality. Hence, we propose a more sophisticated confidence
loss term by leveraging variance of multiple stochastic inferences.

4.3 VARIANCE-WEIGHTED CONFIDENCE-INTEGRATED LOSS

The strong correlation of accuracy and confidence with predicted variance observed in Figure 1
shows great potential to make confidence-calibrated prediction by stochastic inferences. However,
variance computation involves multiple stochastic inferences by executing multiple forward passes.
Note that this property incurs additional computational cost and may produce inconsistent results.

To overcome these limitations, we propose a generic framework for training accuracy-score calibra-
tion networks whose prediction score from a single forward pass directly provides confidence of the
prediction. In this framework, we combine two complementary loss terms as in Equation 9, but they

1Deep neural networks with model variations can be realized by applying stochastic depth or dropout.
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are balanced by the variance measured by multiple stochastic inferences. Our variance-weighted
confidence-integrated loss L(·) for the whole training data (xi, yi) ∈ D is defined by a linear inter-
polation of the standard cross-entropy loss with ground-truth LGT(·) and the cross-entropy with the
uniform distribution LU(·), which is formally given by

L(θ) =

N∑
i=1

(1− αi)L(i)
GT(θ) + αiL(i)

U (θ)

=
1

T

N∑
i=1

T∑
j=1

−(1− αi) log p(yi|xi, ω̂i,j) + αiDKL(U(y)||p(y|xi, ω̂i,j)) + ξi (10)

where αi ∈ [0, 1] is a normalized variance, ω̂i,j(= θ � εi,j) is a sampled model parameter with
binary noise for stochastic prediction, T is the number of stochastic inferences, and ξi is a constant.

The two terms in our variance-weighted confidence-integrated loss pushes the network toward op-
posite directions; the first term encourages the network to produce a high score for the ground truth
label while the second term forces the network to predict the uniform distribution. These terms are
linearly interpolated by a balancing coefficient αi, which is the normalized variance of individual
example obtained by multiple stochastic inferences. Note that the normalized variance αi is unique
for each training example and is used to measure model uncertainty. Therefore, optimizing our loss
function produces gradient signals, forcing the prediction toward the uniform distribution for the
examples with high uncertainty derived by high variance while intensifying prediction confidence
of the examples with low variance.

After training models in our framework, prediction of each testing example is made by a single for-
ward pass. Unlike the ordinary models, however, a prediction score of our model is well-calibrated
and represents confidence of the prediction, which means that we can rely more on the predictions
with high scores.

4.4 RELATION TO OTHER CALIBRATION APPROACHES

There are several score calibration techniques Guo et al. (2017); Zadrozny & Elkan (2002); Naeini
et al. (2015); Niculescu-Mizil & Caruana (2005) by adjusting confidence scores through post-
processing, among which Guo et al. (2017) proposes a method to calibrate confidence of predictions
by scaling logits of a network using a global temperature τ . The scaling is performed before apply-
ing the softmax function, and τ is trained with validation dataset. As discussed in Guo et al. (2017),
this simple technique is equivalent to maximize entropy of the output distribution p(yi|xi). It is also
identical to minimize KL-divergence DKL(p(yi|xi)||U(y)) because

DKL(p(yi|xi)||U(y)) =
∑
c∈C

p(yci |xi) log p(yci |xi)− p(yci |xi) logU(yc) = −H(p(yi|xi)) + ξc (11)

where ξc is a constant. We can formulate another confidence-integrated loss with the entropy as

L2(θ) =

N∑
i=1

− log p(yi|xi, θ)− γH(p(yi|xi, θ)), (12)

where γ is a constant. Equation 12 suggests that temperature scaling in Guo et al. (2017) is closely
related to our framework.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

We choose two most widely adapted deep neural network architectures: ResNet and VGGNet. VGG
architecture follows Simonyan & Zisserman (2015), where we employ dropout Srivastava et al.
(2014) before every fc layer except for the classification layer. In ResNet, instead of stacking
conv layers directly, outputs of residual blocks are added to the input feature representation by
residual connections as proposed in He et al. (2016). Stochastic depth Huang et al. (2016) is used
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Table 1: Classification accuracy and expected calibration error (ECE) of two models with Tiny
ImageNet and CIFAR-100 datasets. We present results from baseline algorithm, CI and VWCI
(ours) to understand their characteristics.

ResNet-34 VGG-16
Tiny ImageNet CIFAR-100 Tiny ImageNet CIFAR-100

Acc. [%] ECE Acc. [%] ECE Acc. [%] ECE Acc. [%] ECE
Baseline[det] 50.82 0.067 77.19 0.109 46.58 0.346 73.78 0.187
CI[β = 0.01] 49.16 0.119 77.53 0.074 47.11 0.259 73.78 0.163
CI[β = 0.1] 51.45 0.035 77.23 0.085 46.94 0.122 73.68 0.083
CI[β = 1.0] 50.77 0.255 77.48 0.295 45.40 0.130 73.62 0.291

VWCI 52.80 0.027 77.74 0.038 48.03 0.053 73.87 0.098

for stochastic regularization in ResNet. Note that, as discussed in Section 3.3, both dropout and
stochastic depth inject multiplicative binary noise to within-layer activations or residual blocks, they
are equivalent to noise injection into network weights. Hence, training with `2 regularization term
enables us to interpret stochastic depth and dropout by Bayesian models.

We evaluate the proposed framework on two benchmarks, Tiny ImageNet and CIFAR-100. Tiny
ImageNet contains 64× 64 images with 200 object labels whereas CIFAR-100 has 32× 32 images
of 100 objects. There are 500 training images per class in both datasets. For testing, we use the
validation set of Tiny ImageNet and the test set of CIFAR-100, which contain 50 and 100 images
per class, respectively. To use the same network for two benchmarks, we resize images in Tiny
ImageNet into 32× 32.

All networks are trained with stochastic gradient decent with the momentum of 0.9 for 300 epochs.
We set the initial learning rate to 0.1 and exponentially decay it with factor of 0.2 at epoch 60, 120,
160, 200 and 250. Each batch consists of 64 and 256 training examples for ResNet and VGG archi-
tectures, respectively. To train networks with the proposed variance-weighted confidence-integrated
loss, we draw T samples for each input image by default, and compute the normalized variance α
by running T forward passes. The number of samples T is set to 5. The normalized variance is es-
timated based on the variance of Bhattacharyya coefficients between individual predictions and the
average prediction. The trained models with the variance-weighted confidence-integrated (VWCI)
loss are compared to the models with confidence-integrated (CI) losses for several different constant
β’s.

5.2 EVALUATION METRIC

We measure classification accuracy and expected calibration error (ECE) of the trained models.
While classification accuracy shows regularization effect of the confidence-integrated loss term,
ECE summarizes miscalibration of a model by measuring discrepancy between confidence and ac-
curacy. Specifically, let Bm be a set of indices of test examples whose scores for the ground-truth
labels fall into the score interval (m−1M , mM ], where M is the number of bins. Then, ECE is formally
defined by

ECE =

M∑
m=1

|Bm|
N ′
|acc(Bm)− conf(Bm)| (13)

where N ′ is the number of the test samples. Also, accuracy and confidence of each bin are given by

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) and conf(Bm) =
1

|Bm|
∑
i∈Bm

pi (14)

where ŷi and yi are predicted and true label of the i-th example and pi is its predicted confidence.

5.3 RESULTS

Table 1 presents results of ResNet-34 and VGG-16 on both datasets. We observe that baseline meth-
ods with stochastic inferences reduce calibration error and the reduction becomes more significant
in proportion to number of inferences. These results imply benefit of stochastic inference for confi-
dence calibration, and reflect performance of methods by multiplicative noise in Gal & Ghahramani
(2016); McClure & Kriegeskorte (2016).
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Figure 2: Coverage of ResNet-34 models with confidence interval on Tiny ImageNet (left) and
CIFAR-100 (right). Coverage is computed by the portion of examples with higher accuracy and
confidence than threshold, which is shown in x-axis.

The models trained with VWCI loss consistently outperform baselines and is competitive to models
with CI loss on both classification accuracy and confidence calibration. Stochastic inference and
variance-driven weight allow us to measure uncertainty for each instance, and enable two opposi-
tional terms to be well balanced by the measured uncertainty. The confidence loss term regularizes
the network by forcing predictions to uniform distribution, and the proper estimation of its coeffi-
cient leads to accuracy gain and confidence calibration. Note that, by assigning a low coefficient to
the loss term for a confident example, the network allows the example to remain confident whereas
a high weight for an uncertain example reduces confidence of the prediction.

The CI loss has a confidence loss term with fixed coefficient β. The networks trained with proper
β show impressive improvement on both criteria, but their performance is sensitive to choice of
β as this strategy ignores predictive uncertainty for confidence loss; an inappropriate choice of β
even worsens accuracy and calibration error, e.g., ResNet-34 trained with CI[β = 0.01] on Tiny
ImageNet. Also, there seems to be no single β that is globally optimal across architectures and
benchmark datasets. For instance, training the network with CI[β = 0.01] on Tiny ImageNet gives
the worst accuracy with ResNet-34 and the best accuracy with VGG-16. In the experiments, the CI
loss often works well on CIFAR-100 due to high accuracy. The majority of examples are classi-
fied correctly and the overconfident property of deep neural networks do little harm for confidence
calibration. Specifically, CI loss sometimes achieves slightly better performance than VWCI with a
certain fixed coefficient β because the measured normalized variance by stochastic inferences and its
range are small. On the other hand, in Tiny ImageNet dataset, performance of VMCI is consistently
better than CI because Tiny ImageNet is substantially more challenging than CIFAR-100.

A critical benefit of our variance-driven weight in the VWCI loss is the capability to maintain exam-
ples with high accuracy and high confidence. This is an important property for building real-world
decision making systems with confidence interval, where the decisions should be both highly accu-
rate and confident. Figure 2 illustrates coverage of test examples varying the confidence threshold,
and VWCI shows better coverage than CI because CI pushes all instances to uniform with the same
strength β regardless of their uncertainty unlike VWCI. It is also notable that β for the best coverage
is different from that for the best accuracy and ECE whereas VWCI balances these based on the
predictive uncertainty. These results suggest that using the predictive uncertainty for balancing the
terms is preferable over setting a constant coefficient in our loss function. More experimental results
are presented in the supplementary document.

6 CONCLUSION

We presented a generic framework for uncertainty estimation of a prediction in deep neural networks
by calibrating accuracy and score based on stochastic inferences. Based on Bayesian interpretation
of stochastic regularization and our empirical observation results, we claim that variation of multiple
stochastic inferences for a single example is a crucial factor to estimate uncertainty of the average
prediction. Motivated by this fact, we design the variance-weighted confidence-integrated loss to
learn confidence-calibrated networks and enable uncertainty to be estimated by a single prediction.
The proposed algorithm is also useful to understand existing confidence calibration methods in a
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unified way, and we compared our algorithm with other variations within our framework to analyze
their characteristics.
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