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ABSTRACT

In this paper we establish rigorous benchmarks for image classifier robustness.
Our first benchmark, IMAGENET-C, standardizes and expands the corruption
robustness topic, while showing which classifiers are preferable in safety-critical
applications. Then we propose a new dataset called IMAGENET-P which enables
researchers to benchmark a classifier’s robustness to common perturbations. Unlike
recent robustness research, this benchmark evaluates performance on common
corruptions and perturbations not worst-case adversarial perturbations. We find
that there are negligible changes in relative corruption robustness from AlexNet
classifiers to ResNet classifiers. Afterward we discover ways to enhance corruption
and perturbation robustness. We even find that a bypassed adversarial defense
provides substantial common perturbation robustness. Together our benchmarks
may aid future work toward networks that robustly generalize.

1 INTRODUCTION

The human vision system is robust in ways that existing computer vision systems are not (Recht
et al., 2018; Azulay & Weiss, 2018). Unlike current deep learning classifiers (Krizhevsky et al., 2012;
He et al., 2015; Xie et al., 2016), the human vision system is not fooled by small changes in query
images. Humans are also not confused by many forms of corruption such as snow, blur, pixelation,
and novel combinations of these. Humans can even deal with abstract changes in structure and style.
Achieving these kinds of robustness is an important goal for computer vision and machine learning. It
is also essential for creating deep learning systems that can be deployed in safety-critical applications.

Most work on robustness in deep learning methods for vision has focused on the important challenges
of robustness to adversarial examples (Szegedy et al., 2014; Carlini & Wagner, 2017; 2016), unknown
unknowns (Hendrycks et al., 2019; Hendrycks & Gimpel, 2017b; Liu et al., 2018), and model or
data poisoning (Steinhardt et al., 2017; Hendrycks et al., 2018). In contrast, we develop and validate
datasets for two other forms of robustness. Specifically, we introduce the IMAGETNET-C dataset for
input corruption robustness and the IMAGENET-P dataset for input perturbation robustness.

To create IMAGENET-C, we introduce a set of 75 common visual corruptions and apply them to the
ImageNet object recognition challenge (Deng et al., 2009). We hope that this will serve as a general
dataset for benchmarking robustness to image corruptions and prevent methodological problems such
as moving goal posts and result cherry picking. We evaluate the performance of current deep learning
systems and show that there is wide room for improvement on IMAGENET-C. We also introduce a
total of three methods and architectures that improve corruption robustness without losing accuracy.

To create IMAGENET-P, we introduce a set of perturbed or subtly differing ImageNet images. Using
metrics we propose, we measure the stability of the network’s predictions on these perturbed images.
Although these perturbations are not chosen by an adversary, currently existing networks exhibit
surprising instability on common perturbations. Then we then demonstrate that approaches which
enhance corruption robustness can also improve perturbation robustness. For example, some recent
architectures can greatly improve both types of robustness. More, we show that the Adversarial
Logit Pairing `∞ adversarial example defense can yield substantial robustness gains on diverse and
common perturbations. By defining and benchmarking perturbation and corruption robustness, we
facilitate research that can be overcome by future networks which do not rely on spurious correlations
or cues inessential to the object’s class.
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2 RELATED WORK

Adversarial Examples. An adversarial image is a clean image perturbed by a small distortion
carefully crafted to confuse a classifier. These deceptive distortions can occasionally fool black-box
classifiers (Kurakin et al., 2017). Algorithms have been developed that search for the smallest
additive distortions in RGB space that are sufficient to confuse a classifier (Carlini et al., 2017). Thus
adversarial distortions serve as type of worst-case analysis for network robustness. Its popularity
has often led “adversarial robustness” to become interchangeable with “robustness” in the literature
(Bastani et al., 2016; Rauber et al., 2017). In the literature, new defenses (Lu et al., 2017; Papernot
et al., 2017; Metzen et al., 2017; Hendrycks & Gimpel, 2017a) often quickly succumb to new
attacks (Evtimov et al., 2017; Carlini & Wagner, 2017; 2016), with some exceptions for perturbations
on small images (Schott et al., 2018; Madry et al., 2018). For some simple datasets, the existence
of any classification error ensures the existence of adversarial perturbations of size O(d−1/2), d the
input dimensionality (Gilmer et al., 2018b). For some simple models, adversarial robustness requires
an increase in the training set size that is polynomial in d (Schmidt et al., 2018). Gilmer et al. (2018a)
suggest modifying the problem of adversarial robustness itself for increased real-world applicability.

Robustness in Speech. Speech recognition research emphasizes robustness to common corruptions
rather than worst-case, adversarial corruptions (Li et al., 2014; Mitra et al., 2017). Common acoustic
corruptions (e.g., street noise, background chatter, wind) receive greater focus than adversarial audio,
because common corruptions are ever-present and unsolved. There are several popular datasets
containing noisy test audio (Hirsch & Pearce, 2000; Hirsch, 2007). Robustness in noisy environments
requires robust architectures, and some research finds convolutional networks more robust than fully
connected networks (Abdel-Hamid et al., 2013). Additional robustness has been achieved through
pre-processing techniques such as standardizing the statistics of the input (Liu et al., 1993; Torre
et al., 2005; Harvilla & Stern, 2012; Kim & Stern, 2016).

ConvNet Fragility Studies. Several studies demonstrate the fragility of convolutional networks
on simple corruptions. For example, Hosseini et al. (2017) apply impulse noise to break Google’s
Cloud Vision API. Using Gaussian noise and blur, Dodge & Karam (2017b) demonstrate the superior
robustness of human vision to convolutional networks, even after networks are fine-tuned on Gaussian
noise or blur. Geirhos et al. (2017) compare networks to humans on noisy and elastically deformed
images. They find that fine-tuning on specific corruptions does not generalize and that classification
error patterns underlying network and human predictions are not similar. Temel et al. (2017; 2018);
Temel & AlRegib (2018) propose different corrupted datasets for object and traffic sign recognition.

Robustness Enhancements. In an effort to reduce classifier fragility, Vasiljevic et al. (2016) fine-
tune on blurred images. They find it is not enough to fine-tune on one type of blur to generalize to
other blurs. Furthermore, fine-tuning on several blurs can marginally decrease performance. Zheng
et al. (2016) also find that fine-tuning on noisy images can cause underfitting, so they encourage the
noisy image softmax distribution to match the clean image softmax. Dodge & Karam (2017a) address
underfitting via a mixture of corruption-specific experts assuming corruptions are known beforehand.

3 CORRUPTIONS, PERTURBATIONS, AND ADVERSARIAL PERTURBATIONS

We now define corruption and perturbation robustness and distinguish them from adversarial
perturbation robustness. To begin, we consider a classifier f : X → Y trained on samples from
distribution D, a set of corruption functions C, and a set of perturbation functions E . We let
PC(c),PE(ε) approximate the real-world frequency of these corruptions and perturbations. Most
classifiers are judged by their accuracy on test queries drawn from D, i.e., P(x,y)∼D(f(x) = y).
Yet in a vast range of cases the classifier is tasked with classifying low-quality or corrupted
inputs. In view of this, we suggest also computing the classifier’s corruption robustness
Ec∼C [P(x,y)∼D(f(c(x) = y))]. This contrasts with a popular notion of adversarial robustness,
often formulated min‖δ‖p<b P(x,y)∼D(f(x+ δ) = y), b a small budget. Thus, corruption robustness
measures the classifier’s average-case performance on corruptions C, while adversarial robustness
measures the worst-case performance on small, additive, classifier-tailored perturbations.

Average-case performance on small, general, classifier-agnostic perturbations motivates us to define
perturbation robustness, namely Eε∼E [P(x,y)∼D(f(ε(x)) = f(x))]. Consequently, in measuring
perturbation robustness, we track the classifier’s prediction stability, reliability, or consistency in the
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Figure 1: Our IMAGENET-C dataset consists of 15 types of algorithmically generated corruptions
from noise, blur, weather, and digital categories. Each type of corruption has five levels of severity,
resulting in 75 distinct corruptions. See different severity levels in Appendix B.

face of minor input changes. Now in order to approximate C, E and these robustness measures, we
designed a set of corruptions and perturbations which are frequently encountered in natural images.
We will refer to these as “common” corruptions and perturbations. These common corruptions and
perturbations are available in the form of IMAGENET-C and IMAGENET-P.

4 THE IMAGENET-C AND IMAGENET-P ROBUSTNESS BENCHMARKS

4.1 THE DATA OF IMAGENET-C AND IMAGENET-P

IMAGENET-C Design. The IMAGENET-C benchmark consists of 15 diverse corruption types
applied to validation images of ImageNet. The corruptions are drawn from four main categories—
noise, blur, weather, and digital—as shown in Figure 1. Research that improves performance on this
benchmark should indicate general robustness gains, as the corruptions are diverse and numerous.
Each corruption type has five levels of severity since corruptions can manifest themselves at varying
intensities. Appendix A gives an example of the five different severity levels for impulse noise.
Real-world corruptions also have variation even at a fixed intensity. To simulate these, we introduce
variation for each corruption when possible. For example, each fog cloud is unique to each image.
These algorithmically generated corruptions are applied to the ImageNet (Deng et al., 2009) validation
images to produce our corruption robustness dataset IMAGENET-C. The dataset can be downloaded
or re-created by visiting https://github.com/hendrycks/robustness. IMAGENET-C
images are saved as lightly compressed JPEGs; this implies an image corrupted by Gaussian noise is
also slightly corrupted by JPEG compression. Our benchmark tests networks with IMAGENET-C
images, but networks should not be trained on these images. Networks should be trained on datasets
such as ImageNet and not be trained on IMAGENET-C corruptions. To enable further experimentation,
we designed an extra corruption type for each corruption category (Appendix B), and we provide
CIFAR-10-C, TINY IMAGENET-C, IMAGENET 64× 64-C, and Inception-sized editions. Overall,
the IMAGENET-C dataset consists of 75 corruptions, all applied to ImageNet validation images for
testing a pre-existing network.
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Common Corruptions. The first corruption type is Gaussian noise. This corruption can appear
in low-lighting conditions. Shot noise, also called Poisson noise, is electronic noise caused by the
discrete nature of light itself. Impulse noise is a color analogue of salt-and-pepper noise and can be
caused by bit errors. Defocus blur occurs when an image is out of focus. Frosted Glass Blur appears
with “frosted glass” windows or panels. Motion blur appears when a camera is moving quickly. Zoom
blur occurs when a camera moves toward an object rapidly. Snow is a visually obstructive form of
precipitation. Frost forms when lenses or windows are coated with ice crystals. Fog shrouds objects
and is rendered with the diamond-square algorithm. Brightness varies with daylight intensity. Contrast
can be high or low depending on lighting conditions and the photographed object’s color. Elastic
transformations stretch or contract small image regions. Pixelation occurs when upsampling a low-
resolution image. JPEG is a lossy image compression format which introduces compression artifacts.
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Figure 2: Example frames from the
beginning (T = 0) to end (T = 30)
of some Tilt and Brightness pertur-
bation sequences.

IMAGENET-P Design. The second benchmark that we
propose tests the classifier’s perturbation robustness. Models
lacking in perturbation robustness produce erratic predictions
which undermines user trust. When perturbations have a high
propensity to change the model’s response, then perturbations
could also misdirect or destabilize iterative image optimization
procedures appearing in style transfer (Gatys et al., 2016), deci-
sion explanations (Fong & Vedaldi, 2017), feature visualization
(Olah et al., 2017), and so on. Like IMAGENET-C, IMAGENET-
P consists of noise, blur, weather, and digital distortions. Also
as before, the dataset has validation perturbations; has difficulty
levels; has CIFAR-10, Tiny ImageNet, ImageNet 64 × 64,
standard, and Inception-sized editions; and has been designed
for benchmarking not training networks. IMAGENET-P
departs from IMAGENET-C by having perturbation sequences
generated from each ImageNet validation image; examples are
in Figure 2. Each sequence contains more than 30 frames, so
we counteract an increase in dataset size and evaluation time
by using only 10 common perturbations.

Common Perturbations. Appearing more subtly than
the corruption from IMAGENET-C, the Gaussian noise
perturbation sequence begins with the clean ImageNet image.
The following frames in the sequence consist in the same
image but with minute Gaussian noise perturbations applied.
This sequence design is similar for the shot noise perturbation
sequence. However the remaining perturbation sequences have
temporality, so that each frame of the sequence is a perturbation
of the previous frame. Since each perturbation is small, repeated application of a perturbation does
not bring the image far out-of-distribution. For example, an IMAGENET-P translation perturbation
sequence shows a clean ImageNet image sliding from right to left one pixel at a time; with each
perturbation of the pixel locations, the resulting frame is still of high quality. The perturbation
sequences with temporality are created with motion blur, zoom blur, snow, brightness, translate,
rotate, tilt (viewpoint variation through minor 3D rotations), and scale perturbations.

4.2 IMAGENET-C AND IMAGENET-P METRICS AND SETUP

IMAGENET-C Metrics. Common corruptions such as Gaussian noise can be benign or destructive
depending on their severity. In order to comprehensively evaluate a classifier’s robustness to a given
type of corruption, we score the classifier’s performance across five corruption severity levels and
aggregate these scores. The first evaluation step is to take a trained classifier f, which has not been
trained on IMAGENET-C, and compute the clean dataset top-1 error rate. Denote this error rate
Efclean. The second step is to test the classifier on each corruption type c at each level of severity s
(1 ≤ s ≤ 5). This top-1 error is written Efs,c. Before we aggregate the classifier’s performance across
severities and corruption types, we will make error rates more comparable since different corruptions
pose different levels of difficulty. For example, fog corruptions often obscure an object’s class more
than brightness corruptions. We adjust for the varying difficulties by dividing by AlexNet’s errors,
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but any baseline will do (even a baseline with 100% error rates, corresponding to an average of CEs).
This standardized aggregate performance measure is the Corruption Error, computed with the formula

CEfc =

( 5∑
s=1

Efs,c

)/( 5∑
s=1

EAlexNet
s,c

)
.

Now we can summarize model corruption robustness by averaging the 15 Corruption Error values
CEfGaussian Noise,CEfShot Noise, . . . ,CEfJPEG. This results in the mean CE or mCE for short.

We now introduce a more nuanced corruption robustness measure. Consider a classifier that withstands
most corruptions, so that the gap between the mCE and the clean data error is minuscule. Contrast
this with a classifier with a low clean error rate which has its error rate spike in the presence of
corruptions; this corresponds to a large gap between the mCE and clean data error. It is possible that
the former classifier has a larger mCE than the latter, despite the former degrading more gracefully in
the presence of corruptions. The amount that the classifier declines on corrupted inputs is given by
the formula Relative CEfc =

(∑5
s=1E

f
s,c − E

f
clean

)/(∑5
s=1E

AlexNet
s,c − EAlexNet

clean

)
. Averaging these

15 Relative Corruption Errors results in the Relative mCE. This measures the relative robustness or
the performance degradation when encountering corruptions.

IMAGENET-P Metrics. A straightforward approach to estimate Eε∼E [P(x,y)∼D(f(ε(x)) 6= f(x))]
falls into place when using IMAGENET-P perturbation sequences. Let us denote m perturbation
sequences with S =

{(
x
(i)
1 , x

(i)
2 , . . . , x

(i)
n

)}m
i=1

where each sequence is made with perturbation p.
The “Flip Probability” of network f : X → {1, 2, . . . , 1000} on perturbation sequences S is

FPfp =
1

m(n− 1)

m∑
i=1

n∑
j=2

1
(
f
(
x
(i)
j

)
6= f

(
x
(i)
j−1
))

= Px∼S(f(xj) 6= f(xj−1)).

For noise perturbation sequences, which are not temporally related, x(i)1 is clean and x
(i)
j

(j > 1) are perturbed images of x(i)1 . We can recast the FP formula for noise sequences as
FPfp = 1

m(n−1)
∑m
i=1

∑n
j=2 1

(
f
(
x
(i)
j

)
6= f

(
x
(i)
1

))
= Px∼S(f(xj) 6= f(x1) | j > 1). As was

done with the Corruption Error formula, we now standardize the Flip Probability by the sequence’s
difficulty for increased commensurability. We have, then, the “Flip Rate” FRfp = FPfp/FPAlexNet

p .
Averaging the Flip Rate across all perturbations yields the mean Flip Rate or mFR. We do not define
a “relative mFR” since we did not find any natural formulation, nor do we directly use predicted
class probabilities due to differences in model calibration (Guo et al., 2017).

When the top-5 predictions are relevant, perturbations should not cause the list of top-5 predictions
to shuffle chaotically, nor should classes sporadically vanish from the list. We penalize top-5
inconsistency of this kind with a different measure. Let the ranked predictions of network f on
x be the permutation τ(x) ∈ S1000. Concretely, if “Toucan” has the label 97 in the output space
and “Pelican” has the label 145, and if f on x predicts “Toucan” and “Pelican” to be the most and
second-most likely classes, respectively, then τ(x)(97) = 1 and τ(x)(144) = 2. These permutations
contain the top-5 predictions, so we use permutations to compare top-5 lists. To do this, we define

d(τ(x), τ(x′)) =

5∑
i=1

max{i,σ(i)}∑
j=min{i,σ(i)}+1

1(1 ≤ j − 1 ≤ 5)

where σ = (τ(x))−1τ(x′). If the top-5 predictions represented within τ(x) and τ(x′) are identical,
then d(τ(x), τ(x′)) = 0. More examples of d on several permutations are in Appendix C. Comparing
the top-5 predictions across entire perturbation sequences results in the unstandardized Top-5
Distance uT5Dfp = 1

m(n−1)
∑m
i=1

∑n
j=2 d(τ(xj), τ(xj−1)) = Px∼S(d(τ(xj), τ(xj−1)). For noise

perturbation sequences, we have uT5Dfp = Ex∼S [d(τ(xj), τ(x1)) | j > 1]. Once the uT5D is
standardized, we have the Top-5 Distance T5Dfp = uT5Dfp/uT5DAlexNet

p . The T5Ds averaged
together correspond to the mean Top-5 Distance or mT5D.

Preserving Metric Validity. The goal of IMAGENET-C and IMAGENET-P is to evaluate the ro-
bustness of machine learning algorithms on novel corruptions and perturbations. Humans are able to
generalize to novel corruptions quite well; for example, they can easily deal with new Instagram filters.
Likewise for perturbations; humans relaxing in front of an undulating ocean do not give turbulent ac-
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Figure 3: Robustness (mCE) and Relative mCE
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Noise Blur Weather Digital
Network Error mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
AlexNet 43.5 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SqueezeNet 41.8 104.4 107 106 105 100 103 101 100 101 103 97 97 98 106 109 134
VGG-11 31.0 93.5 97 97 100 92 99 93 91 92 91 84 75 86 97 107 100
VGG-19 27.6 88.9 89 91 95 89 98 90 90 89 86 75 68 80 97 102 94
VGG-19+BN 25.8 81.6 82 83 88 82 94 84 86 80 78 69 61 74 94 85 83
ResNet-18 30.2 84.7 87 88 91 84 91 87 89 86 84 78 69 78 90 80 85
ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
Table 1: Clean Error, mCE, and Corruption Error values of different corruptions and architectures
on IMAGENET-C. The mCE value is the mean Corruption Error of the corruptions in Noise, Blur,
Weather, and Digital columns. Models are trained only on clean ImageNet images.

counts of the scenery before them. Hence, we propose the following protocol. The image recognition
network should be trained on the ImageNet training set and on whatever other training sets the investi-
gator wishes to include. Researchers should clearly state whether they trained on these corruptions or
perturbations; however, this training strategy is discouraged (see Section 2). We allow training with
other distortions (e.g., uniform noise) and standard data augmentation (i.e., cropping, mirroring), even
though cropping overlaps with translations. Then the resulting trained model should be evaluated on
IMAGENET-C or IMAGENET-P using the above metrics. Optionally, researchers can test with the sep-
arate set of validation corruptions and perturbations we provide for IMAGENET-C and IMAGENET-P.

5 EXPERIMENTS

5.1 ARCHITECTURE ROBUSTNESS

How robust are current methods, and has progress in computer vision been achieved at the expense of
robustness? As seen in Figure 3, as architectures improve, so too does the mean Corruption Error
(mCE). By this measure, architectures have become progressively more successful at generalizing to
corrupted distributions. Note that models with similar clean error rates have fairly similar CEs, and in
Table 1 there are no large shifts in a corruption type’s CE. Consequently, it would seem that architec-
tures have slowly and consistently improved their representations over time. However, it appears that
corruption robustness improvements are mostly explained by accuracy improvements. Recall that the
Relative mCE tracks a classifier’s accuracy decline in the presence of corruptions. Figure 3 shows
that the Relative mCEs of many subsequent models are worse than that of AlexNet (Krizhevsky
et al., 2012). Full results are in Appendix D. In consequence, from AlexNet to ResNet, corruption
robustness in itself has barely changed. Thus our “superhuman” classifiers are decidedly subhuman.

On perturbed inputs, current classifiers are unexpectedly bad. For example, a ResNet-18 on Scale
perturbation sequences have a 15.6% probability of flipping its top-1 prediction between adjacent
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frames (i.e., FPResNet-18
Scale = 15.6%); the uT5DResNet-18

Scale is 3.6. More results are in Appendix E. Clearly
perturbations need not be adversarial to fool current classifiers. What is also surprising is that while
VGGNets are worse than ResNets at generalizing to corrupted examples, on perturbed examples they
can be just as robust or even more robust. Likewise, Batch Normalization made VGG-19 less robust
to perturbations but more robust to corruptions. Yet this is not to suggest that there is a fundamental
trade-off between corruption and perturbation robustness. In fact, both corruption and perturbation
robustness can improve together, as we shall see later.

5.2 ROBUSTNESS ENHANCEMENTS

Be aware that Appendix F contains many informative failures in robustness enhancement. Those
experiments underscore the necessity in testing on a a diverse test set, the difficulty in cleansing
corruptions from image, and the futility in expecting robustness gains from some “simpler” models.

Histogram Equalization. Histogram equalization successfully standardizes speech data for robust
speech recognition (Torre et al., 2005; Harvilla & Stern, 2012). For images, we find that preprocessing
with Contrast Limited Adaptive Histogram Equalization (Pizer et al., 1987) is quite effective. Unlike
our image denoising attempt (Appendix F), CLAHE reduces the effect of some corruptions while not
worsening performance on most others, thereby improving the mCE. We demonstrate CLAHE’s net
improvement by taking a pre-trained ResNet-50 and fine-tuning the whole model for five epochs on
images processed with CLAHE. The ResNet-50 has a 23.87% error rate, but ResNet-50 with CLAHE
has an error rate of 23.55%. On nearly all corruptions, CLAHE slightly decreases the Corruption
Error. The ResNet-50 without CLAHE preprocessing has an mCE of 76.7%, while with CLAHE the
ResNet-50’s mCE decreases to 74.5%.

Multiscale Networks. Multiscale architectures achieve greater corruption robustness by propa-
gating features across scales at each layer rather than slowly gaining a global representation of
the input as in typical convolutional neural networks. Some multiscale architectures are called
Multigrid Networks (Ke et al., 2017). Multigrid networks each have a pyramid of grids in each layer
which enables the subsequent layer to operate across scales. Along similar lines, Multi-Scale Dense
Networks (MSDNets) (Huang et al., 2018) use information across scales. MSDNets bind network
layers with DenseNet-like (Huang et al., 2017b) skip connections. These two different multiscale
networks both enhance corruption robustness, but they do not provide any noticeable benefit in
perturbation robustness. Now before comparing mCE values, we first note the Multigrid network
has a 24.6% top-1 error rate, as does the MSDNet, while the ResNet-50 has a 23.9% top-1 error
rate. On noisy inputs, Multigrid networks noticeably surpass ResNets and MSDNets, as shown in
Figure 5. Since multiscale architectures have high-level representations processed in tandem with
fine details, the architectures appear better equipped to suppress otherwise distracting pixel noise.
When all corruptions are evaluated, ResNet-50 has an mCE of 76.7%, the MSDNet has an mCE of
73.6%, and the Multigrid network has an mCE of 73.3%.

Feature Aggregating and Larger Networks. Some recent models enhance the ResNet architec-
ture by increasing what is called feature aggregation. Of these, DenseNets and ResNeXts (Xie et al.,
2016) are most prominent. Each purports to have stronger representations than ResNets, and the
evidence is largely a hard-won ImageNet error-rate downtick. Interestingly, the IMAGENET-C mCE
clearly indicates that DenseNets and ResNeXts have superior representations. Accordingly, a switch
from a ResNet-50 (23.9% top-1 error) to a DenseNet-121 (25.6% error) decreases the mCE from
76.7% to 73.4% (and the relative mCE from 105.0% to 92.8%). More starkly, switching from a
ResNet-50 to a ResNeXt-50 (22.9% top-1) drops the mCE from 76.7% to 68.2% (relative mCE
decreases from 105.0% to 88.6%). Corruption robustness results are summarized in Figure 5. This
shows that corruption robustness may be a better way to measure future progress in representation
learning than the clean dataset top-1 error rate.

Some of the greatest and simplest robustness gains sometimes emerge from making recent models
more monolithic. Apparently more representations, more redundancy, and more capacity allow these
massive models to operate more stably on corrupted inputs. We saw earlier that making models smaller
does the opposite. Swapping a DenseNet-121 (25.6% top-1) with the larger DenseNet-161 (22.9% top-
1) decreases the mCE from 73.4% to 66.4% (and the relative mCE from 92.8% to 84.6%). In a similar
fashion, a ResNeXt-50 (22.9% top-1) is less robust than the a giant ResNeXt-101 (21.0% top-1). The
mCEs are 68.2% and 62.2% respectively (and the relative mCEs are 88.6% and 80.1% respectively).
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Both model size and feature aggregation results are summarized in Figure 6. Consequently, future
models with even more depth, width, and feature aggregation may attain further corruption robustness.

Feature aggregation and their larger counterparts similarly improve perturbation robustness. While a
ResNet-50 has a 58.0% mFR and a 78.3% mT5D, a DenseNet-121 obtains a 56.4% mFR and 76.8%
mT5D, and a ResNeXt-50 does even better with a 52.4% mFR and a 74.2% mT5D. Reflecting the
corruption robustness findings further, the larger DenseNet-161 has a 46.9% mFR and 69.5% mT5D,
while the ResNeXt-101 has a 43.2% mFR and 65.9% mT5D. Thus in two senses feature aggregating
networks and their larger versions markedly enhance robustness.

Stylized ImageNet. Geirhos et al. (2019) propose a novel data augmentation scheme where Ima-
geNet images are stylized with style transfer. The intent is that classifiers trained on stylized images
will rely less on textural cues for classification. When a ResNet-50 is trained on typical ImageNet
images and stylized ImageNet images, the resulting model has an mCE of 69.3%, down from 76.7%.

Adversarial Logit Pairing. ALP is an adversarial example defense for large-scale image classifiers
(Kannan et al., 2018). Like nearly all other adversarial defenses, ALP was bypassed and has unclear
value as an adversarial defense going forward (Engstrom et al., 2018), yet this is not a decisive reason
dismiss it. ALP provides significant perturbation robustness even though it does not provide much
adversarial perturbation robustness against all adversaries. Although ALP was designed to increase
robustness to small gradient perturbations, it markedly improves robustness to all sorts of noise, blur,
weather, and digital IMAGENET-P perturbations—methods generalizing this well is a rarity. In point
of fact, a publicly available Tiny ImageNet ResNet-50 model fine-tuned with ALP has a 41% and
40% relative decrease in the mFP and mT5D on TINY IMAGENET-P, respectively. ALP’s success
in enhancing common perturbation robustness and its modest utility for adversarial perturbation
robustness highlights that the interplay between these problems should be better understood.

6 CONCLUSION

In this paper, we introduced what are to our knowledge the first comprehensive benchmarks for
corruption and perturbation robustness. This was made possible by introducing two new datasets,
IMAGENET-C and IMAGENET-P. The first of which showed that many years of architectural advance-
ments corresponded to minuscule changes in relative corruption robustness. Therefore benchmarking
and improving robustness deserves attention, especially as top-1 clean ImageNet accuracy nears its
ceiling. We also saw that classifiers exhibit unexpected instability on simple perturbations. Thereafter
we found that methods such as histogram equalization, multiscale architectures, and larger feature-
aggregating models improve corruption robustness. These larger models also improve perturbation
robustness. However, we found that even greater perturbation robustness can come from an adversarial
defense designed for adversarial `∞ perturbations, indicating a surprising interaction between ad-
versarial and common perturbation robustness. In this work, we found several methods to increase ro-
bustness, introduced novel experiments and metrics, and created new datasets for the rigorous study of
model robustness, a pressing necessity as models are unleashed into safety-critical real-world settings.
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A EXAMPLE OF IMAGENET-C SEVERITIES

Clean Severity = 1 Severity = 2 Severity = 3 Severity = 4 Severity = 5

Figure 7: Impulse noise modestly to markedly corrupts a frog, showing our benchmark’s varying
severities.

In Figure 7, we show the Impulse noise corruption type in five different severities. Clearly, IMAGENET-
C corruptions can range from negligible to pulverizing. Because of this range, the benchmark
comprehensively assesses each corruption type.

B EXTRA IMAGENET-C CORRUPTIONS

Speckle Noise Gaussian Blur Spatter Saturate

Figure 8: Extra IMAGENET-C corruption examples are available for model validation and sounder
experimentation.

Directly fitting the types of IMAGENET-C corruptions should be avoided, as it would cause researchers
to overestimate a model’s robustness. Therefore, it is incumbent on us to simplify model validation.
This is why we provide an additional form of corruption for each of the four general types. These
are available for download at https://github.com/hendrycks/robustness. There is
one corruption type for each noise, blur, weather, and digital category in the validation set. The first
corruption type is speckle noise, an additive noise where the noise added to a pixel tends to be larger
if the original pixel intensity is larger. Gaussian blur is a low-pass filter where a blurred pixel is a
result of a weighted average of its neighbors, and farther pixels have decreasing weight in this average.
Spatter can occlude a lens in the form of rain or mud. Finally, saturate is common in edited images
where images are made more or less colorful. See Figure 8 for instances of each corruption type.

C MORE ON THE IMAGENET-P METRICS AND SETUP

For some readers, the following function may be opaque,

d(τ(x), τ(x′)) =

5∑
i=1

max{i,σ(i)}∑
j=min{i,σ(i)}+1

1(1 ≤ j − 1 ≤ 5)

where σ = (τ(x))−1τ(x′) and the empty sum is understood to be zero. A high-level view of d is
that it computes the deviation between the top-5 predictions of two prediction lists. For simplicity
we find the deviation between the identity and σ rather than τ(x) and τ(x′). In consequence we
can consider d′(σ) := d(1, σ) where 1 the identity permutation. To give some intuition, we provide
concrete examples of d′ on permutations.
If σ is the identity, then d′(σ) = 0.
If σ = (1, 2, 3, 4, 6, 5, 7, 8, . . .), d′(σ) = 1.
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If σ = (1, 2, 3, 4, 6, 7, 5, 8, . . .), d′(σ) = 1. Once 5 fell out of the top-5, its displacement did not
accumulate any further; this may happen when only the top-5 predictions are shown to the user.
If σ = (2, 1, 3, 4, 5, 6, . . .), d′(σ) = 2.
If σ = (3, 1, 2, 4, 5, 6, . . .), d′(σ) = 4.
Also, d′((2, 3, 4, 5, 6, . . . , 1)) = 5.
Distinctly, d′((1, 2, 3, 5, 6, 4, 7, 8, . . .)) = 2.
As a final example, d′((5, 4, 3, 2, 1, 6, 7, 8, 9, . . .)) = 12.

It may be that we want perturbation robustness for all predictions, including classes with lesser
relevance. In such cases, it is still common that the displacement of the top prediction matters more
than the displacement of, say, the 500th ranked class. For this there are many possibilities, such as the
measure d′(σ) =

∑1000
i=1 wi|wi−wσ(i)| such that wi = 1/i. This uses a Zipfian assumption about the

rankings of the classes: the first class is n times as relevant as the nth class. Other possibilities involve
using logarithms rather than hyperbolic functions as in the discounted cumulative gain (Kumar &
Vassilvitskii, 2010). One could also use the class probabilities provided by the model (should they
exist). However such a measure could make it difficult to compare models since some models tend to
be more uncalibrated than others (Guo et al., 2017).

As progress is made on this task, researchers may be interested in perturbations which are more
likely to cause unstable predictions. To accomplish that, researchers can simply compare a frame
with the frame two frames ahead rather than just one frame ahead. We provide concrete code of
this slight change in the metric at https://github.com/hendrycks/robustness. For
nontemporal perturbation sequences, i.e., noise sequences, we provide sequences where the noise
perturbation is larger.

D FULL CORRUPTION ROBUSTNESS RESULTS

IMAGENET-C corruption relative robustness results are in Table 2. Since we use AlexNet errors to
normalize Corruption Error values, we now specify the value 1

5

∑5
s=1E

AlexNet
s,Corruption for each corruption

type. Gaussian Noise: 88.6%, Shot Noise: 89.4%, Impulse Noise: 92.3%, Defocus Blur:
82.0%, Glass Blur: 82.6%, Motion Blur: 78.6%, Zoom Blur: 79.8%, Snow: 86.7%, Frost:
82.7%, Fog: 81.9%, Brightness: 56.5%, Contrast: 85.3%, Elastic Transformation: 64.6%,
Pixelate: 71.8%, JPEG: 60.7%, Speckle Noise: 84.5%, Gaussian Blur: 78.7%, Spatter: 71.8%,
Saturate: 65.8%.

Noise Blur Weather Digital
Network Error Rel. mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
AlexNet 43.5 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SqueezeNet 41.8 117.9 118 116 114 104 110 106 105 106 110 98 101 100 126 129 229
VGG-11 31.0 123.3 122 121 125 116 129 121 115 114 113 99 86 102 151 161 174
VGG-19 27.6 122.9 114 117 122 118 136 123 122 114 111 88 82 98 165 161 172
VGG-19+BN 25.8 111.1 104 105 114 108 132 114 119 102 100 79 68 89 165 125 144
ResNet-18 30.2 103.9 104 106 111 100 116 108 112 103 101 89 67 87 133 97 126
ResNet-50 23.9 105.0 104 107 107 97 126 107 110 101 97 79 62 89 146 111 132

Table 2: Clean Error, Relative mCE, and Relative Corruption Errors values of different corruptions and
architectures on IMAGENET-C. All models are trained on clean ImageNet images, not IMAGENET-C
images. Here “BN” abbreviates Batch Normalization (Ioffe & Szegedy, 2015).

E FULL PERTURBATION ROBUSTNESS RESULTS

IMAGENET-P mFR values are in Table 3, and mT5D values are in Table 4. Since we use AlexNet
errors to normalize our measures, we now specify the value FPAlexNet

Perturbation for each corruption type.
Gaussian Noise: 23.65%, Shot Noise: 30.06%, Motion Blur: 9.30%, Zoom Blur: 5.94%,
Snow: 11.93%, Brightness: 4.89%, Translate: 11.01%, Rotate: 13.10%, Tilt: 7.05%, Scale:
23.53%, Speckle Noise: 18.65%, Gaussian Blur: 2.78%, Spatter: 5.05%, Shear: 10.66%.

Also, the uT5DAlexNet
Perturbation values are as follows. Gaussian Noise: 4.77, Shot Noise: 5.76, Motion

Blur: 1.93, Zoom Blur: 1.34, Snow: 2.42, Brightness: 1.19, Translate: 2.63, Rotate: 2.95,
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Tilt: 1.75, Scale: 4.48, Speckle Noise: 3.89, Gaussian Blur: 0.70, Spatter: 1.26, Shear:
2.48.

Noise Blur Weather Digital
Network Error mFR Gaussian Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale

AlexNet 43.5 100.0 100 100 100 100 100 100 100 100 100 100
SqueezeNet 41.8 112.6 147 140 109 109 105 110 101 103 109 93
VGG-11 31.0 74.9 89 90 85 84 80 76 52 64 69 59
VGG-19 27.6 66.9 75 76 82 84 73 74 41 54 60 49
VGG-19+BN 25.8 65.1 67 66 75 86 70 72 45 56 56 51
ResNet-18 30.2 72.8 74 73 75 85 75 78 63 66 73 66
ResNet-50 23.9 58.0 59 58 64 72 63 62 44 52 57 48

Table 3: Flip Rates and the mFR values of different perturbations and architectures on IMAGENET-P.
All models are trained on clean ImageNet images, not IMAGENET-P images. Here “BN” abbreviates
Batch Normalization.

Noise Blur Weather Digital
Network Error mT5D Gaussian Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale

AlexNet 43.5 100.0 100 100 100 100 100 100 100 100 100 100
SqueezeNet 41.8 112.9 139 133 109 111 107 112 104 106 111 98
VGG-11 31.0 83.9 98 97 93 90 87 85 63 75 79 71
VGG-19 27.6 78.6 89 88 92 93 82 86 53 67 74 62
VGG-19+BN 25.8 80.5 85 82 90 97 84 88 61 72 80 66
ResNet-18 30.2 87.0 89 87 89 95 88 92 78 82 89 80
ResNet-50 23.9 78.3 82 79 84 89 80 84 64 73 80 67

Table 4: Top-5 Distances and the mT5D values of different perturbations and architectures on
IMAGENET-P.

F INFORMATIVE ROBUSTNESS ENHANCEMENT ATTEMPTS

Stability Training. Stability training is a technique to improve the robustness of deep net-
works (Zheng et al., 2016). The method’s creators found that training on images corrupted with
noise can lead to underfitting, so they instead propose minimizing the cross-entropy from the noisy
image’s softmax distribution to the softmax of the clean image. The authors evaluated performance
on images with subtle differences and suggested that the method provides additional robustness to
JPEG corruptions. We fine-tune a ResNet-50 with stability training for five epochs. For training
with noisy images, we corrupt images with uniform noise, where the maximum and minimum of the
uniform noise is tuned over {0.01, 0.05, 0.1}, and the stability weight is tuned over {0.01, 0.05, 0.1}.
Across all noise strengths and stability weight combinations, the models with stability training tested
on IMAGENET-C have a larger mCEs than the baseline ResNet-50’s mCE. Even on unseen noise
corruptions, stability training does not increase robustness. However, the perturbation robustness
slightly improves. The best model according to the IMAGENET-P validation set has an mFR of
57%, while the original ResNet’s mFR is 58%. An upshot of this failure is that benchmarking
robustness-enhancing techniques requires a diverse test set.

Image Denoising. An approach orthogonal to modifying model representations is to improve the
inputs using image restoration techniques. Although general image restoration techniques are not
yet mature, denoising restoration techniques are not. We thus attempt restore an image with the
denoising technique called non-local means (Buades & Coll, 2005). The amount of denoising applied
is determined by the noise estimation technique of Donoho & Johnstone (1993). Therefore clean
images receive should nearly no modifications from the restoration method, while noisy images
should undergo considerable restoration. We found that denoising increased the mCE from 76.7% to
82.1%. A plausible account is that the non-local means algorithm striped the images of their subtle
details even when images lacked noise, despite having the non-local means algorithm governed by
the noise estimate. Therefore, the gains in noise robustness were wiped away by subtle blurs to
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images with other types of corruptions, showing that targeted image restoration can prove harmful
for robustness.

10-Crop Classification. Viewing an object at several different locations may give way to a more
stable prediction. Having this intuition in mind, we perform 10-crop classification. 10-crop classifica-
tion is executed by cropping all four corners and cropping the center of an image. These crops and
their horizontal mirrors are processed through a network to produce 10 predicted class probability
distributions. We average these distributions to compute the final prediction. Of course, a prediction
informed by 10-crops rather than a single central crop is more accurate. Ideally, this revised prediction
should be more robust too. However, the gains in mCE do not outpace the gains in accuracy on a
ResNet-50. In all, 10-crop classification is a computationally expensive option which contributes to
classification accuracy but not noticeably to robustness.

Smaller Models. All else equal, “simpler” models often generalize better, and “simplicity” fre-
quently translates to model size. Accordingly, smaller models may be more robust. We test this
hypothesis with CondenseNets (Huang et al., 2017a). A CondenseNet attains its small size via sparse
convolutions and pruned filter weights. An off-the-shelf CondenseNet (C = G = 4) obtains a 26.3%
error rate and a 80.8% mCE. On the whole, this CondenseNet is slightly less robust than larger models
of similar accuracy. Even more pruning and sparsification yields a CondenseNet (C = G = 8) with
both deteriorated performance (28.9% error rate) and robustness (84.6% mCE). Here again robustness
is worse than larger model robustness. Though models fashioned for mobile devices are smaller and
in some sense simpler, this does not improve robustness.

G A SEPARATE TYPE OF ROBUSTNESS

Another goal for machine learning is to learn the fundamental structure of categories. Broad categories,
such as “bird,” have many subtypes, such as “cardinal” or “bluejay.” Humans can observe previously
unseen bird species yet still know that they are birds. A test of learned fundamental structure
beyond superficial features is subtype robustness. In subtype robustness we test generalization to
unseen subtypes which share share essential characteristics of a broader type. We repurpose the
ImageNet-22K dataset for a closer investigation into subtype robustness.
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Figure 9: ImageNet classifiers and their robustness
to unseen subtypes. Unseen subtypes of known
broad types are noticeably harder for classifiers.

Subtype Robustness. A natural image dataset
with a hierarchical taxonomy and numer-
ous types and subtypes is ImageNet-22K, an
ImageNet-1K superset. In this subtype robust-
ness experiment, we manually select 25 broad
types from ImageNet-22K, listed in the next
paragraph. Each broad type has many subtypes.
We call a subtype “seen” if and only if it is in
ImageNet-1K and a subtype of one of the 25
broad types. The subtype is “unseen” if and
only if it is a subtype of the 25 broad types and
is from ImageNet-22K but not ImageNet-1K.
In this experiment, the correct classification de-
cision for an image of a subtype is the broad
type label. We take pre-trained ImageNet-1K
classifiers which have not trained on unseen sub-
types. Next we fine-tune the last layer of these
pre-trained ImageNet-1K classifiers on seen sub-
types so that they predict one of 25 broad types.
Then, we test the accuracy on images of seen
subtypes and on images of unseen subtypes. Accuracy on unseen subtypes is our measure of subtype
robustness. Seen and unseen accuracies are shown in Figure 9, while the ImageNet-1K classification
accuracy before fine-tuning is on the horizontal axis. Despite only having 25 classes and having
trained on millions of images, these classifiers demonstrate a subtype robustness performance gap
that should be far less pronounced. We also observe that the architectures proposed so far hardly
deviate from the trendline.
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The 25 broad types which we selected from ImageNet are as follows. Amphibian (n01627424),
Appliance (n02729837), Aquatic Mammal (n02062017), Bird (n01503061), Bear (n02131653),
Beverage (n07881800), Big cat (n02127808), Building (n02913152), Cat (n02121620), Clothing
(n03051540), Dog (n02084071), Electronic Equipment (n03278248), Fish (n02512053), Footwear
(n03380867), Fruit (n13134947), Fungus (n12992868), Geological Formation (n09287968),
Hoofed Animal (n02370806), Insect (n02159955), Musical Instrument (n03800933), Primate
(n02469914), Reptile (n01661091), Utensil (n04516672), Vegetable (n07707451), Vehicle
(n04576211).
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