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Abstract

Computational modeling of human multimodal language is an emerging research
application of spatiotemporal modeling spanning the language, visual and acoustic
modalities. Comprehending multimodal language requires modeling not only the
spatial interactions within each modality (intra-modal interactions) but more impor-
tantly the interactions between modalities (cross-modal interactions) from complex
temporal data. We propose the Recurrent Multistage Fusion Network (RMFN)
which decomposes the spatiotemporal fusion problem into multiple stages, each of
them focused on a subset of multimodal signals for specialized, effective fusion.
Spatial cross-modal interactions are modeled using this multistage fusion approach
which builds upon intermediate representations of previous stages. Temporal and
intra-modal interactions are modeled by integrating our proposed fusion approach
with a system of recurrent neural networks. The RMFN displays state-of-the-
art performance in modeling multimodal language across three tasks relating to
multimodal sentiment analysis, emotion recognition, and speaker traits recogni-
tion. Experiments show that each stage of fusion focuses on a different subset of
multimodal signals and learns increasingly discriminative representations.

1 Introduction
Computational modeling of human multimodal language is an emerging research application of
spatiotemporal modeling. This area focuses on modeling tasks such as multimodal sentiment
analysis [41], emotion recognition [9], and personality traits recognition [46]. The multimodal
temporal signals include the language (spoken words), visual (facial expressions, gestures), and
acoustic modalities (prosody, vocal expressions). At its core, these signals are highly structured with
two prime forms of spatial interactions: intra-modal and cross-modal interactions [52]. Intra-modal
interactions refer to information within a specific modality. For example, the arrangement of words
in a sentence [15] or the sequence of facial muscle activations for a frown. Cross-modal interactions
refer to interactions between modalities. For example, the simultaneous co-occurrence of a smile with
a positive sentence or the delayed occurrence of a laughter after the end of a sentence. Modeling these
spatiotemporal interactions lies at the heart of multimodal language analysis and has recently become
a centric research direction in multimodal machine learning [38, 48, 11, 59, 23, 25, 31, 62, 58, 43].

Recent advances in cognitive neuroscience have demonstrated the existence of multistage aggregation
across human cortical networks and functions [61], particularly during the integration of multisensory
spatiotemporal information [45]. At later stages of cognitive processing, higher level semantic
meaning is extracted from phrases, facial expressions, and tone of voice, eventually leading to
the formation of higher level cross-modal concepts [45, 61]. Inspired by these discoveries, we
hypothesize that the computational modeling of cross-modal interactions also requires a multistage
fusion process. In this process, cross-modal representations can build upon the representations learned
during earlier stages. This decreases the burden on each stage of spatiotemporal fusion and allows
each stage of fusion to be performed in a more specialized and effective manner.

Workshop on Modeling and Decision-Making in the Spatiotemporal Domain, 32nd Conference on Neural
Information Processing Systems (NIPS 2018), Montréal, Canada.
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Figure 1: An illustrative example for Recurrent Multi-
stage Fusion. At each stage, a subset of multimodal sig-
nals is highlighted and then fused with previous fusion
representations. The first fusion stage selects the neutral
word and frowning behaviors which create an interme-
diate representation reflecting negative emotion when
fused together. The second stage selects the loud voice
behavior which is locally interpreted as emphasis before
being fused with previous stages into a strongly nega-
tive representation. The third stage selects the shrugging
and speech elongation behaviors that reflect ambivalence
and when fused with previous stages is interpreted as a
representation for the disappointed emotion.

In this paper, we propose the Recurrent Multi-
stage Fusion Network (RMFN) which decom-
poses the spatiotemporal fusion problem into
multiple stages. At each stage, a subset of mul-
timodal signals is highlighted and fused with
previous fusion representations (Figure 1). This
divide-and-conquer approach decreases the bur-
den on each fusion stage, allowing each stage to
be performed in a more specialized and effective
way. In contrast, conventional fusion approaches
model interactions over multimodal signals in
one step [6]. Temporal and intra-modal interac-
tions are modeled by integrating our new multi-
stage fusion process with a system of recurrent
neural networks. Overall, RMFN jointly mod-
els intra-modal and cross-modal interactions for
spatiotemporal fusion. RMFN achieves state-
of-the-art performance on three tasks related to
multimodal language: sentiment analysis, emo-
tion recognition, and speaker traits recognition.
Through a comprehensive set of ablation exper-
iments and visualizations, we demonstrate the
advantages of defining multiple stages for spa-
tiotemporal fusion.

2 Related Work
Previous approaches in spatiotemporal modeling
for multimodal language can be categorized as:

Non-temporal Models simplify the problem by
averaging temporal information through time
and using supervised learning methods [29, 12, 1, 44, 69, 41]. These approaches have trouble
modeling long sequences since the average statistics do not accurately reflect temporal dynamics [64].

Temporal Graphical Models such as Hidden Markov Models [7], Conditional Random Fields
(CRFs) [34], and Hidden Conditional Random Fields (HCRFs) [51] were shown to work well on
modeling spatiotemporal data [40, 39, 27, 65]. Multimodal extensions have been proposed including
multi-view HCRFs [56], multi-layered CRFs [56], and multi-view hierarchical models [57].

Temporal Neural Networks, such as Recurrent Neural Networks [20, 30] and Long-short Term
Memory (LSTM) networks [26] have been used for spatiotemporal modeling [71, 55, 54, 21, 10,
24, 35, 52, 11]. Recently, more advanced models were proposed that use Bayesian ranking algo-
rithms [37], external memory mechanisms [67], or low-rank tensors [38] for spatiotemporal fusion.
These methods assume that fusion should be performed all at once rather than across multiple stages.
Our empirical evaluations show the advantages of our spatiotemporal fusion approach.

3 Recurrent Multistage Fusion Network
In this section we describe the Recurrent Multistage Fusion Network (RMFN) for spatiotemporal
fusion (Figure 2). Given a set of modalities {l(anguage), v(isual), a(coustic)}, each modality
m ∈ {l, v, a} is represented as a temporal sequence Xm = {xm

1 ,xm
2 ,xm

3 ,⋯,xmT }, where xmt is the
input at time t. Each sequence Xm is modeled with an intra-modal recurrent neural network. At time
t, each recurrent network will output a unimodal representation hm

t . The Multistage Fusion Process
uses a multistage approach to fuse all unimodal representations hm

t into a cross-modal representation
zt which is then fed back into each intra-modal recurrent network.

Multistage Fusion Process (MFP) is a modular neural approach that performs multistage fusion to
model cross-modal interactions. MFP has three modules: HIGHLIGHT, FUSE and SUMMARIZE.
At each stage, HIGHLIGHT identifies a subset of multimodal signals from [hl

t,h
v
t ,h

a
t ] that will be

used for that stage of fusion. FUSE then performs two subtasks simultaneously: a local fusion of the
highlighted features and integration with representations from previous stages. Both HIGHLIGHT
and FUSE are realized using memory-based networks which enable coherence between stages and
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storage of previously modeled representations. After all stages, SUMMARIZE takes the representation
of the final stage and translates it into a cross-modal representation zt.
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Figure 2: The Recurrent Multistage Fusion Network for spatiotem-
poral fusion. Multistage fusion begins with the concatenated intra-
modal network outputs hl

t,h
v
t ,h

a
t . At each stage, the HIGHLIGHT

module identifies a subset of multimodal signals and the FUSEmod-
ule performs local fusion before integration with previous fusion
representations. The SUMMARIZE module translates the represen-
tation at the final stage into a cross-modal representation zt to be
fed into the intra-modal recurrent networks for temporal modeling.

We now present the details of the
three modules: HIGHLIGHT, FUSE
and SUMMARIZE. Multistage fusion
begins with the concatenation of
intra-modal network outputs ht =
⊕m∈M hm

t . We use superscript [k]

to denote the indices of each stage
k = 1,⋯,K during K total stages of
multistage fusion. Θ denotes the net-
work parameters across all modules.

HIGHLIGHT: At each stage k, a sub-
set of the multimodal signals ht will
be highlighted for fusion. This mod-
ule is defined by the process func-
tion fH : a[k]

t = fH(ht ; a
[1∶k−1]
t ,Θ)

where at stage k, a[k]
t is a set of atten-

tion weights which are inferred based
on the previously assigned attention weights a[1∶k−1]

t . As a result, the highlights at a specific stage k
will be dependent on previous highlights. To fully encapsulate these dependencies, the attention as-
signment process is performed in a recurrent manner using a LSTM which we call the HIGHLIGHT
LSTM. The initial HIGHLIGHT LSTM memory at stage 0, cHIGHLIGHT[0]t , is initialized using a
network M that maps ht into LSTM memory space c

HIGHLIGHT[0]
t = M(ht ; Θ). This allows

the memory of the HIGHLIGHT LSTM to dynamically adjust to the intra-modal representations
ht. The output of the HIGHLIGHT LSTM h

HIGHLIGHT[k]
t is softmax activated to produce atten-

tion weights a[k]
t at every stage k of the multistage fusion process: a[k]

t j = exp (hHIGHLIGHT[k]t j)/Z,

Z = ∑∣h
HIGHLIGHT[k]
t ∣

d=1 exp (hHIGHLIGHT[k]t d) and a
[k]
t is fed as input into the HIGHLIGHT LSTM at stage

k + 1. Therefore, the HIGHLIGHT LSTM functions as a decoder LSTM [60, 14] in order to capture
the dependencies on previous attention assignments. Highlighting is performed by h̃

[k]
t = ht ⊙ a

[k]
t ,

where ⊙ denotes the Hadamard product and h̃
[k]
t are the attended multimodal signals that will be

used for the fusion at stage k.

FUSE: The highlighted multimodal signals are simultaneously fused in a local fusion and then
integrated with fusion representations from previous stages. This module is defined by the process
function fF : s[k]t = fF (h̃[k]

t ; s
[1∶k−1]
t ,Θ) where s[k]t denotes the integrated fusion representations at

stage k. We employ a FUSE LSTM to simultaneously perform the local fusion and the integration
with previous fusion representations. The FUSE LSTM input gate enables a local fusion while the
FUSE LSTM forget and output gates enable integration with previous fusion results. The initial
FUSE LSTM memory at stage 0, cFUSE[0]t , is initialized using random orthogonal matrices [5, 36].

SUMMARIZE: After completing K stages, SUMMARIZE generates a cross-modal representation
using all fusion representations s[1∶K]

t . This operation is defined as: zt = S(s[1∶K]

t ; Θ) where zt is
the final output of the multistage fusion process and represents all cross-modal interactions discovered
at time t. The summarized representation is fed into the intra-modal recurrent networks.

Intra-model Recurrent Networks: To integrate zt with the temporal intra-modal representations,
we employ a system of Long Short-term Hybrid Memories (LSTHMs) [68]. The LSTHM extends
the LSTM formulation to include zt in a hybrid memory component. The hybrid memory contains
both intra-modal interactions from individual modalities xm

t as well as the cross-modal interactions
captured in zt. Multimodal prediction is performed using a representation E which integrates (1)
the last outputs from the LSTHMs and (2) the last cross-modal representation zT . E is defined as
E = (⊕m∈M hm

T )⊕zT where⊕ denotes vector concatenation. E summarizes all intra-modal and
cross-modal representations from multimodal spatiotemporal data. RMFN is differentiable end-to-end
which allows network parameters Θ to be learned using gradient descent approaches.
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Dataset CMU-MOSI IEMOCAP Emotions
Task Sentiment Happy Sad Angry Neutral
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑ A2 ↑ F1 ↑ A2 ↑ F1 ↑ A2 ↑ F1 ↑ A2 ↑ F1 ↑
SOTA3 76.5◇ 74.5† 33.2# 0.968§ 0.622♭ 86.1× 83.6§ 83.2● 81.7● 85.0⋆ 84.2§ 68.2♭ 66.7#

SOTA2 77.1§ 77.0§ 34.1⋆ 0.965⋆ 0.625§ 86.5⋆ 84.0⋆ 83.4† 82.1⋆ 85.1# 84.3# 68.8♭ 68.5♭

SOTA1 77.4⋆ 77.3⋆ 34.7§ 0.955◇ 0.632⋆ 86.7§ 84.2♭ 83.5⋆ 82.8† 85.2♭ 84.5♭ 69.6⋆ 69.2⋆

RMFN 78.4 78.0 38.3 0.922 0.681 87.5 85.8 83.8 82.9 85.1 84.6 69.5 69.1

Table 1: Results on CMU-MOSI and IEMOCAP. Best results in bold. Symbols denote baseline model which
achieves the reported performance: MFN: ⋆, MARN: §, GME-LSTM(A): ◇, BC-LSTM: ●, TFN: †, MV-LSTM:
#, EF-LSTM: ♭, SVM: ×. RMFN achieves state-of-the-art or competitive performance for all metrics.

4 Results and Discussion
Experimental Setup: To evaluate the performance of RMFN, three domains of multimodal language
were selected: multimodal sentiment analysis on CMU-MOSI [69], emotion recognition on IEMO-
CAP [9], and speaker traits recognition on POM [46]. All datasets consist of monologue videos.
GloVe word embeddings [47], Facet [28] and COVAREP [17] are extracted for the language, visual
and acoustic modalities respectively1. For classification, we report accuracy Ac across c classes and
F1 score. For regression, we report Mean Absolute Error (MAE) and Pearson’s correlation (Corr).

Performance: Table 1 shows results on CMU-MOSI and IEMOCAP2. We achieve state-of-the-art or
competitive results for all metrics, highlighting RMFN’s capability in spatiotemporal fusion.

Dataset CMU-MOSI Sentiment
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑

RMFN-R1 75.5 75.5 35.1 0.997 0.653
RMFN-R2 76.4 76.4 34.5 0.967 0.642
RMFN-R3 78.4 78.0 38.3 0.922 0.681
RMFN-R4 76.0 76.0 36.0 0.999 0.640

Dataset CMU-MOSI Sentiment
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑

MARN 77.1 77.0 34.7 0.968 0.625
RMFN (no MFP) 76.5 76.5 30.8 0.998 0.582
RMFN (no HIGHLIGHT) 77.9 77.9 35.9 0.952 0.666

RMFN 78.4 78.0 38.3 0.922 0.681

Table 2: Left: Effect of varying the number of stages on CMU-MOSI performance. Multistage fusion improves
performance as compared to single stage fusion. Right: Comparison studies of RMFN on CMU-MOSI. Modeling
cross-modal interactions using multistage fusion and attention weights are crucial for spatiotemporal fusion.
Analysis: To achieve a deeper understanding of the multistage fusion process, we study four research
questions. (Q1): the effect of the number of stages K during multistage fusion on performance. (Q2):
the comparison between multistage and independent modeling of cross-modal interactions. (Q3):
whether modeling cross-modal interactions are helpful. (Q4): whether attention weights from the
HIGHLIGHT module are required for modeling cross-modal interactions.

Q1: We test the baseline RMFN-RK which performs fusion K stages of fusion. From Table 2, we
observe that RMFN-R1 (single fusion stage) underperforms as compared to RMFN which performs
multistage fusion, and increasing the number of stages K increases the model’s capability to model
cross-modal interactions up to a certain point (K = 3) in our experiments. Further increases led to
decreases in performance and we hypothesize this is due to overfitting on the dataset.
Q2: We pay close attention to the performance comparison with respect to MARN which models
multiple cross-modal interactions all at once (see Table 2). RMFN shows improved performance,
indicating that multistage fusion is both effective and efficient for spatiotemporal modeling.
Q3: RMFN (no MFP) represents a system of LSTHMs without the integration of zt from the MFP
to model cross-modal interactions. From Table 2, RMFN (no MFP) is outperformed by RMFN,
confirming that modeling cross-modal interactions is crucial for spatiotemporal fusion.
Q4: RMFN (no HIGHLIGHT) removes the HIGHLIGHTmodule from MFP during multistage fusion.
From Table 2, RMFN (no HIGHLIGHT) underperforms, indicating that highlighting multimodal
representations using attention weights are important for modeling cross-modal interactions.

5 Conclusion
In conclusion, this paper proposed the Recurrent Multistage Fusion Network (RMFN) which decom-
poses the spatiotemporal fusion problem into multiple stages, each focused on a subset of multimodal
signals. Extensive experiments across three spatiotemporal datasets reveal that RMFN is highly
effective in modeling multimodal language. Our visualizations also reveal that the stages coordinate
to capture both synchronous and asynchronous spatiotemporal interactions.

1Details on datasets, feature extraction and baseline models are in supplementary.
2State-of-the-art (SOTA)1/2/3 represent the three best performing baseline models on each dataset. Results

for POM, individual baseline models, and visualizations of the trained model are in supplementary.
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A Experiment Details

A .1 Multimodal Tasks and Datasets

Multimodal Sentiment Analysis involves analyzing speaker sentiment based on video content. Mul-
timodal sentiment analysis extends conventional language-based sentiment analysis to a multimodal
setup where both verbal and non-verbal signals contribute to the expression of sentiment. We use
CMU-MOSI [69] which consists of 2199 opinion segments from online videos each annotated with
sentiment in the range [-3,3].

Multimodal Emotion Recognition involves identifying speaker emotions based on both verbal and
nonverbal behaviors. We perform experiments on the IEMOCAP dataset [9] which consists of 7318
segments of recorded dyadic dialogues annotated for the presence of human emotions happiness,
sadness, anger and neutral.

Multimodal Speaker Traits Recognition involves recognizing speaker traits based on multimodal
communicative behaviors. POM [46] contains 903 movie review videos each annotated for 12
speaker traits: confident (con), passionate (pas), voice pleasant (voi), credible (cre), vivid (viv),
expertise (exp), reserved (res), trusting (tru), relaxed (rel), thorough (tho), nervous (ner), persuasive
(per) and humorous (hum).

A .2 Multimodal Features

Here we present extra details on feature extraction for the language, visual and acoustic modalities.

Language: We used 300 dimensional Glove word embeddings trained on 840 billion tokens from the
common crawl dataset [47]. These word embeddings were used to embed a sequence of individual
words from video segment transcripts into a sequence of word vectors that represent spoken text.

Visual: The library Facet [28] is used to extract a set of visual features including facial action units,
facial landmarks, head pose, gaze tracking and HOG features [70]. These visual features are extracted
from the full video segment at 30Hz to form a sequence of facial gesture measures throughout time.

Acoustic: The software COVAREP [17] is used to extract acoustic features including 12 Mel-
frequency cepstral coefficients, pitch tracking and voiced/unvoiced segmenting features [18], glottal
source parameters [13, 19, 2, 4, 3], peak slope parameters and maxima dispersion quotients [32].
These visual features are extracted from the full audio clip of each segment at 100Hz to form a
sequence that represent variations in tone of voice over an audio segment.

A .3 Multimodal Alignment

We perform forced alignment using P2FA [65] to obtain the exact utterance time-stamp of each word.
This allows us to align the three modalities together. Since words are considered the basic units of
language we use the interval duration of each word utterance as one time-step. We acquire the aligned
video and audio features by computing the expectation of their modality feature values over the word
utterance time interval [67].
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A .4 Baseline Models

We compare to the following models for multimodal machine learning: MFN [67] synchronizes
multimodal sequences using a multi-view gated memory. It is the current state of the art on CMU-
MOSI and POM. MARN [68] models intra-modal and cross-modal interactions using multiple
attention coefficients and hybrid LSTM memory components. GME-LSTM(A) [11] learns binary
gating mechanisms to remove noisy modalities that are contradictory or redundant for prediction.
TFN [66] models unimodal, bimodal and trimodal interactions using tensor products. BC-LSTM
[50] performs context-dependent sentiment analysis and emotion recognition, currently state of the
art on IEMOCAP. EF-LSTM concatenates the multimodal inputs and uses that as input to a single
LSTM [26]. We also implement the Stacked, (EF-SLSTM) [22] Bidirectional (EF-BLSTM) [53]
and Stacked Bidirectional (EF-SBLSTM) LSTMs. The best model is reported as EF-(⋆)LSTM. EF-
HCRF: (Hidden Conditional Random Field) [51] uses a HCRF to learn latent variables conditioned
on the concatenated input. We also implement the following variations: EF-LDHCRF: (Latent
Discriminative HCRFs) [42], MV-HCRF (Multi-view HCRF) [56], MV-LDHCRF, EF-HSSHCRF
(Hierarchical Sequence Summarization HCRF) [57] and MV-HSSHCRF. The best performing
early fusion model is reported as EF-(⋆)HCRF while the best multi-view model is reported as
MV-(⋆)HCRF. For descriptions of the remaining baselines, we refer the reader to EF-HCRF [51],
EF/MV-LDHCRF [42], MV-HCRF [56], EF/MV-HSSHCRF [57], MV-LSTM [52], DF [44],
SAL-CNN [63], C-MKL [49], THMM [41], SVM [16, 46] and RF [8].

B Additional Results
Here we record the complete set of results for all the baseline models across all the datasets, tasks
and metrics. Table 1 summarizes the complete results for sentiment analysis on the CMU-MOSI
dataset. Table 2 presents the complete results for emotion recognition on the IEMOCAP dataset
and Table 3 presents the complete results for personality traits prediction on the POM dataset. For
experiments on the POM dataset we report additional results on MAE and correlation metrics for
personality traits regression. We achieve significant improvement over state-of-the-art multi-view and
dataset specific approaches across all these datasets, highlighting the RMFN’s capability in analyzing
sentiment, emotions and speaker traits from human multimodal language.

C Visualizations
Using an attention assignment mechanism during the HIGHLIGHT process gives interpretability to
the model since it allows us to visualize the attended multimodal signals at each stage and time step
(see Figure 3). Using RMFN trained on the CMU-MOSI dataset, we plot the attention weights across
the multistage fusion process for three videos in CMU-MOSI. Based on these visualizations we first
draw the following general observations on spatiotemporal fusion:

Across stages (Spatio): Attention weights change their behaviors across the multiple stages of fusion.
Some features are highlighted by earlier stages while other features are used in later stages. This
supports our hypothesis that RMFN learns to specialize in different stages of the spatiotemporal
fusion process.

Across time (Temporal): Attention weights vary over time and adapt to the multimodal inputs. We
observe that the attention weights are similar if the input contains no new information. As soon as
new multimodal information comes in, the highlighting mechanism in RMFN adapts to these new
inputs.

Priors: Based on the distribution of attention weights, we observe that the language and acoustic
modalities seem the most commonly highlighted. This represents a prior over the expression of
sentiment in human multimodal language and is closely related to the strong connections between
language and speech in human communication [33].

Inactivity: Some attention coefficients are not active (always orange) throughout time. We hypothe-
size that these corresponding dimensions carry only intra-modal dynamics and are not involved in the
formation of cross-modal interactions.

C .1 Qualitative Analysis

In addition to the general observations above, Figure 3 shows three examples where multistage fusion
learns cross-modal representations across three different scenarios.
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Figure 3: Visualization of learned attention weights across stages 1,2 and 3 of the multistage fusion process
and across time of the multimodal sequence. We observe that the attention weights are diverse and evolve
across stages and time. In these three examples, the red boxes emphasize specific moments of interest. (a)
Synchronized interactions: the positive word “fun” and the acoustic behaviors of emphasis and elongation
(t = 5) are synchronized in both attention weights for language and acoustic features. (b) Asynchronous trimodal
interactions: the asynchronous presence of a smile (t = 2 ∶ 5) and emphasis (t = 3) help to disambiguate the
language modality. (c) Bimodal interactions: the interactions between the language and acoustic modalities are
highlighted by alternating stages of fusion (t = 4 ∶ 7).

Synchronized Interactions: In Figure 3(a), the language features are highlighted corresponding to
the utterance of the word “fun” that is highly indicative of sentiment (t = 5). This sudden change is
also accompanied by a synchronized highlighting of the acoustic features. We also notice that the
highlighting of the acoustic features lasts longer across the 3 stages since it may take multiple stages
to interpret all the new acoustic behaviors (elongated tone of voice and phonological emphasis).

Asynchronous Trimodal Interactions: In Figure 3(b), the language modality displays ambiguous
sentiment: “delivers a lot of intensity” can be inferred as both positive or negative. We observe that
the circled attention units in the visual and acoustic features correspond to the asynchronous presence
of a smile (t = 2 ∶ 5) and phonological emphasis (t = 3) respectively. These nonverbal behaviors
resolve ambiguity in language and result in an overall display of positive sentiment. We further note
the coupling of attention weights that highlight the language, visual and acoustic features across
stages (t = 3 ∶ 5), further emphasizing the coordination of all three modalities during multistage
fusion despite their asynchronous occurrences.

Bimodal Interactions: In Figure 3(c), the language modality is better interpreted in the context of
acoustic behaviors. The disappointed tone and soft voice provide the nonverbal information useful
for sentiment inference. This example highlights the bimodal interactions (t = 4 ∶ 7) in alternating
stages: the acoustic features are highlighted more in earlier stages while the language features are
highlighted increasingly in later stages.
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Dataset CMU-MOSI
Task Sentiment
Metric A2 F1 A7 MAE Corr
Majority 50.2 50.1 17.5 1.864 0.057
RF 56.4 56.3 21.3 - -
SVM-MD 71.6 72.3 26.5 1.100 0.559
THMM 50.7 45.4 17.8 - -
SAL-CNN 73.0 - - - -
C-MKL 72.3 72.0 30.2 - -
EF-HCRF 65.3 65.4 24.6 - -
EF-LDHCRF 64.0 64.0 24.6 - -
MV-HCRF 44.8 27.7 22.6 - -
MV-LDHCRF 64.0 64.0 24.6 - -
CMV-HCRF 44.8 27.7 22.3 - -
CMV-LDHCRF 63.6 63.6 24.6 - -
EF-HSSHCRF 63.3 63.4 24.6 - -
MV-HSSHCRF 65.6 65.7 24.6 - -
DF 72.3 72.1 26.8 1.143 0.518
EF-LSTM 74.3 74.3 32.4 1.023 0.622
EF-SLSTM 72.7 72.8 29.3 1.081 0.600
EF-BLSTM 72.0 72.0 28.9 1.080 0.577
EF-SBLSTM 73.3 73.2 26.8 1.037 0.619
MV-LSTM 73.9 74.0 33.2 1.019 0.601
BC-LSTM 73.9 73.9 28.7 1.079 0.581
TFN 74.6 74.5 28.7 1.040 0.587
GME-LSTM(A) 76.5 73.4 - 0.955 -
MARN 77.1 77.0 34.7 0.968 0.625
MFN 77.4 77.3 34.1 0.965 0.632
RMFN 78.4 78.0 38.3 0.922 0.681
Human 85.7 87.5 53.9 0.710 0.820

Table 3: Sentiment prediction results on CMU-MOSI test set. The best results are highlighted in bold.
RMFN outperforms the current state-of-the-art across all evaluation metrics.
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Dataset IEMOCAP Emotions
Task Happy Sad Angry Neutral
Metric A2 F1 A2 F1 A2 F1 A2 F1
Majority 85.6 79.0 79.4 70.3 75.8 65.4 59.1 44.0
SVM 86.1 81.5 81.1 78.8 82.5 82.4 65.2 64.9
RF 85.5 80.7 80.1 76.5 81.9 82.0 63.2 57.3
THMM 85.6 79.2 79.5 79.8 79.3 73.0 58.6 46.4
EF-HCRF 85.7 79.2 79.4 70.3 75.8 65.4 59.1 44.0
EF-LDHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
MV-HCRF 15.0 4.9 79.4 70.3 24.2 9.4 59.1 44.0
MV-LDHCRF 85.7 79.2 79.4 70.3 75.8 65.4 59.1 44.0
CMV-HCRF 14.4 3.6 79.4 70.3 24.2 9.4 59.1 44.0
CMV-LDHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
EF-HSSHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
MV-HSSHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
DF 86.0 81.0 81.8 81.2 75.8 65.4 59.1 44.0
EF-LSTM 85.2 83.3 82.1 81.1 84.5 84.3 68.2 67.1
EF-SLSTM 85.6 79.0 80.7 80.2 82.8 82.2 68.8 68.5
EF-BLSTM 85.0 83.7 81.8 81.6 84.2 83.3 67.1 66.6
EF-SBLSTM 86.0 84.2 80.2 80.5 85.2 84.5 67.8 67.1
MV-LSTM 85.9 81.3 80.4 74.0 85.1 84.3 67.0 66.7
BC-LSTM 84.9 81.7 83.2 81.7 83.5 84.2 67.5 64.1
TFN 84.8 83.6 83.4 82.8 83.4 84.2 67.5 65.4
MARN 86.7 83.6 82.0 81.2 84.6 84.2 66.8 65.9
MFN 86.5 84.0 83.5 82.1 85.0 83.7 69.6 69.2
RMFN 87.5 85.8 83.8 82.9 85.1 84.6 69.5 69.1

Table 4: Emotion recognition results on IEMOCAP test set. The best results are highlighted in bold.
RMFN achieves state-of-the-art or competitive performance across all evaluation metrics.

Dataset POM Speaker Personality Traits
Task Con Pas Voi Dom Cre Viv Exp Ent Res Tru Rel Out Tho Ner Per Hum
Metric A7 A7 A7 A7 A7 A7 A7 A7 A5 A5 A5 A5 A5 A5 A7 A5

Majority 19.2 20.2 30.5 18.2 21.7 25.6 26.1 19.7 29.6 44.3 39.4 36.0 31.0 24.1 20.7 6.9
SVM 20.6 20.7 32.0 35.0 25.1 29.1 26.6 31.5 34.0 50.2 49.8 42.9 39.9 41.4 28.1 36.0
RF 26.6 27.1 29.6 26.1 23.2 23.6 26.6 26.1 34.0 53.2 40.9 32.5 37.4 36.0 25.6 40.4
THMM 24.1 15.3 19.2 29.1 27.6 26.1 18.7 12.3 22.7 31.0 31.5 30.0 30.0 27.1 17.2 24.6
DF 25.6 24.1 33.0 34.0 26.1 32.0 26.6 29.6 30.0 53.7 50.2 39.4 37.9 42.4 26.6 34.5
EF-LSTM 20.7 27.6 31.5 35.0 25.1 31.0 25.1 29.1 30.0 48.3 48.3 38.4 42.4 40.4 25.6 36.0
EF-SLSTM 22.2 28.6 30.5 36.9 27.1 32.0 27.6 27.6 32.5 49.3 46.8 40.4 39.9 41.9 22.7 35.0
EF-BLSTM 25.1 26.1 34.0 32.0 29.6 31.0 25.6 33.5 30.0 52.2 46.3 34.0 41.9 42.9 25.6 39.4
EF-SBLSTM 23.2 30.5 29.1 31.0 27.6 32.5 31.0 25.1 33.5 52.7 47.8 38.4 39.4 44.8 25.6 38.9
MV-LSTM 25.6 28.6 28.1 34.5 25.6 32.5 29.6 29.1 33.0 52.2 50.7 38.4 37.9 42.4 26.1 38.9
BC-LSTM 26.6 26.6 31.0 33.0 27.6 36.5 30.5 29.6 33.0 52.2 47.3 37.9 45.8 36.0 27.1 36.5
TFN 24.1 31.0 31.5 34.5 24.6 25.6 27.6 29.1 30.5 38.9 35.5 37.4 33.0 42.4 27.6 33.0
MARN 29.1 33.0 - 38.4 31.5 - - 33.5 36.9 55.7 52.2 - - 47.3 31.0 44.8
MFN 34.5 35.5 37.4 41.9 34.5 36.9 36.0 37.9 38.4 57.1 53.2 46.8 47.3 47.8 34.0 47.3
RMFN 37.4 38.4 37.4 39.4 37.4 38.9 38.9 36.9 39.4 56.7 53.7 46.3 48.3 48.3 35.0 46.8

Table 5: Results for personality trait recognition on the POM dataset. The best results are highlighted
in bold. The MFP outperforms the current state of the art across most evaluation metrics.
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