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Abstract

We propose a nonparametric spatio-temporal stochastic differential equation (SDE)
model that can learn the underlying dynamics of arbitrary continuous-time systems
without prior knowledge. We augment the input space of the drift function of
an SDE with a temporal component to account for spatio-temporal patterns. The
experiments demonstrate that the spatio-temporal model is better able to fit a real
world data set that has complex dynamics than the spatial model, and can also
reduce the forecasting error.

1 Introduction

Dynamical systems modeling is a cornerstone of experimental sciences. Modelers attempt to capture
the dynamical behavior of a stochastic system or a phenomenon in order to improve its understanding
and make predictions about its future state. Stochastic differential equations (SDEs) are an effective
formalism for modelling systems with underlying stochastic dynamics, with wide range of applica-
tions [5]. The key problem in SDEs is estimation of the underlying deterministic driving function,
and the stochastic diffusion component.

In this work, we are interested in a multivariate system governed by Markov process xt described by
an SDE

dxt = f(xt, t)dt+ σ(xt, t)dWt (1)

where xt ∈ RD is the state vector of a D-dimensional dynamical system at continuous time t ∈ R,
f(x, t) ∈ RD is a deterministic state evolution, σ(xt, t) ∈ R is a scalar magnitude of the stochastic
multivariate Wiener process Wt ∈ RD. The Wiener process has zero initial state W0 = 0, and the
independent increments Wt+s −Wt ∼ N (0, sI) follow a Gaussian with standard deviation

√
s. The

state solutions of SDE are given by the Itô integral [9]

xt = x0 +

∫ t

0

f(xτ , τ)dτ +

∫ t

0

σ(xτ , τ)dWτ , (2)

where we integrate the system state from an initial state x0 for time t forward, and where τ is an
auxiliary time variable. We assume the states are observed with additive noise y(t) = x(t) + εt with
εt ∼ N (0,Ω) and Ω = diag(ω2

1 , . . . , ω
2
D). With σ(xτ , τ) = 0, we obtain the ordinary differential

equation (ODE) solution.

There is a vast literature on inferring SDEs [5] where a parametric form for drift and diffusion
functions are assumed to be known, and the parameters of those functions are optimized. Such
methods cannot be readily applied to real world data sets, where the underlying dynamics are
unknown. To tackle such data sets, non-parametric drift and diffusion functions have been proposed
in several works [16, 3, 6, 13]. This work extends the method proposed in [16] to account for
spatio-temporal patterns.
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2 Nonparametric SDE Model

In this section, we review the sparse Gaussian process (GP) modeling of differential equations
described in [16]. The model introduces two GP priors over the vector valued drift f(x) : RD → RD
and scalar valued diffusion σ(x) : RD → R functions

f(x) ∼ GP(0,Kf (x,x
′)), σ(x) ∼ GP(0, kσ(x,x′)) (3)

Drift and diffusion functions have zero mean, the drift kernel Kf (x,x
′) ∈ RD×D is matrix valued,

and the diffusion kernel kσ(x,x′) ∈ R is univariate. Covariance matrices are defined using squared
exponential kernel function

k(x,x′) = σ2 exp

(
−1

2

D∑
d=1

(xd − x′d)2

`2d

)
(4)

where θf = {σf , `f1, . . . , `fD} and θσ = {σσ, `σ1, . . . , `σD} stand for the function-specific kernel
parameters. Following [16], the identity decomposable kernel Kf (x,x

′) = k(x,x′) · ID is used
for the matrix valued drift kernel [2], whereas kσ(x,x′) = k(x,x′). Given a set of states X =
(x1, . . . ,xN )T ∈ RN×D, the values of the drift function F = (f(x1), . . . , f(xN ))T ∈ RN×D and
the diffusion function σ = (σ(x1), . . . , σ(xN ))T ∈ RN follow normal prior distributions

p(F ) = N (vecF |0,Kf (X,X)), p(σ) = N (σ|0,Kσ(X,X)) (5)

where Kf (X,X) = (Kf (xi,xj))
N
i,j=1 ∈ RND×ND is a block matrix of matrix-valued kernels

Kf (xi,xj) and diffusion kernel is given by Kσ(X,X) = (kσ(xi,xj))
N
i,j=1 ∈ RN×N .

In standard GP regression, the posterior over the function values are obtained by conditioning the GP
prior on the data [11]. On the other hand, in differential equation models, the conditionals f(x)|Y
and σ(x)|Y are intractable due to the integral mapping between observed states and differentials.
To overcome this, two sets of inducing variables Uf = (uf1, . . . ,ufM )T ∈ RM×D and uσ =
(uσ1, . . . , uσM )T ∈ RM are introduced [10]. Uf and uσ contain the values of the drift and diffusion
functions at inducing locations Z = (z1, . . . , zM ), which live in the same space as the states X .
Finally, the drift and diffusion functions are interpolated from the locations and variables:

f(x) , Kf (x, Z)Kf (Z,Z)−1uf , σ(x) , Kσ(x, Z)Kσ(Z,Z)−1uσ (6)
where uf = vecUf .

The SDE model is determined via the inducing locations Z, the inducing values Uf and uσ, the
observation noise variance Ω, and the kernel parameters θf and θσ of the drift and diffusion kernels.
The model learns the underlying system to induce state distributions with high expected likelihood
p(yi|f , σ,Ω) = Ep(x|ti;f ,σ)[N (yi|x,Ω)], which is intractable. The posterior of the model combines
the likelihood p(yi|f , σ,Ω) and the independent priors p(Uf ) and p(uσ) using Bayes’ theorem as

p(Uf ,uσ|Y ) ∝ p(Uf ,uσ)p(Y |Uf ,uσ) = p(Uf )p(uσ)

N∏
i=1

Ep(x|ti;f ,σ)[N (yi|x,Ω)] (7)

≈ N (uf |0,Kf (Z,Z))N (uσ|0,Kσ(Z,Z))×
N∏
i=1

1

Ns

Ns∑
s=1

N (yi|x(s)
i ,Ω) (8)

where x(s) ∼ p(x0...t|Uf ,uσ, Z) denotes a path sample x
(s)
t that is drawn from the time dependent

state distribution p(x0...t|Uf ,uσ, Z) by sampling a Brownian motion path W (s)
t . The true expected

likelihood is approximated by unbiased Monte Carlo averaging. The likelihood estimate with Ns
samples turns out to be a kernel density estimator with Gaussian bases.

We draw the sample paths using Euler-Maruyama (EM) [9]:

x
(s)
i+1 = x

(s)
i + f(x

(s)
i )∆t+ σ(x

(s)
i )∆W

(s)
i , (9)

where we discretise time into NT subintervals t0, t1, . . . , tNT
of width ∆t = tNT

/NT , and sample
the Wiener coefficients as ∆W

(s)
i ∼ N (0,∆t · I) with standard deviation

√
∆t. We set x(s)

0 to the
initial observation and use (9) to compute state path x(s) ≡ (x

(s)
0 ,x

(s)
1 , . . . ,x

(s)
TN

). The number of
time steps NT > N is often higher than the number of observed timepoints to achieve sufficient path
resolution. Finally, the maximum a posteriori (MAP) estimate of the model parameters are found
using sensitivity equation based gradients (see [16] for details).
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Figure 1: Four different training fits attaining the highest posterior values. For visualization purposes,
only two input sequences are drawn with red and green dots. The solid lines in ODE models show the
inferred trajectories with two different initial values. In SDE models, solid lines are single random
state paths, and the colored regions contain 1000 state paths.

3 Spatio-Temporal SDE Model

So far, the formulation relies on SDE states x(t) and the inducing locations living in the same space,
RD, which remains valid as long as the input to the drift function is only the state. In order to
define drift functions explicitly parameterized by time, we augment the space to include a temporal
component, that is, f(x, t) : RD+ → RD where RD+ = (RD × R+). The GP prior over the drift
function then becomes

f(x, t) ∼ GP(0,Kf ((x, t), (x
′, t′))). (10)

The matrix valued kernel is again defined to be the identity decomposable kernelKf ((x, t), (x
′, t′)) =

k((x, t), (x′, t′)) · ID, where we redefine the kernel function of the drift as

k((x, t), (x′, t′)) = σ2 exp

(
−1

2

D∑
d=1

(xd − x′d)2

`2fd
− (t− t′)2

2`2t

)
. (11)

New kernel function turns out to be the product of squared exponential kernel functions over space
and time and requires one additional parameter `t modeling the smoothness in temporal domain.
In the limit `t → ∞, we recover the spatial model. Because the kernel function is defined in the
extended space, inducing locations Z must have an additional component: zi ∈ RD+. Time variant
diffusion functions can also be defined in a similar way, which we do not investigate in this work.

Spatio-temporal drift function boosts the model power and flexibility without any additional parameter
other than temporal lengthscale. In spatial systems, state trajectory follows the same dynamics (up to
random perturbations due to diffusion) when a particular state is visited at different points in time.
With the proposed spatio-temporal formulation, temporal proximity is also taken into account when
defining state dynamics, meaning that different representations can be learned over time.

The model is implemented in Tensorflow [1]. We find the MAP estimates of the inducing variables
Uf ,uσ and the noise variance Ω using the Adam [8] optimizer with learning rate 0.001 and staircase
(every 20th iteration) exponential decay with rate 0.99. Kernel parameters in complex GP models
are usually hard to optimize since they appear in the covariance matrix. In our case, the covariance
matrix itself is connected to the likelihood through an integral, further complicating the optimization.
Therefore, we perform a grid search to optimize lengthscales {`f1 . . . `fD, `t, `σ1 . . . `σD}, and set
the signal variance terms to one, σf = σg = 1. The inducing points are scattered around the data and
kept fixed during optimization.

4 Experiments

The experiments aim at demonstrating that the spatio-temporal model is better able to fit the data
than the spatial model, and also better at capturing the data generating dynamics. The experiments
are performed on a benchmark dataset of human motion capture data from the Carnegie Mellon
University motion capture (CMU mocap) database. We followed the data preprocessing technique in
[14], which results in 50-dimensional pose measurements from a person swinging a golf club where
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Figure 2: (a-b) Training log posteriors, (c-d) RMSEs computed after hyperparameter selection and
retraining. Numbers on the x-axis denote the number of inducing points.

each pose dimension records a measurement in different parts of the body during the action1. We
consider four input sequences, each having 350 data points to train the model. In order to tackle the
problem of dimensionality, we project the original dataset with PCA to a three dimensional latent
space where the system is specified, following [4] and [15].

We also investigated whether incorporating temporal information into the drift function enhances
non-parametric ordinary differential equation (ODE) model presented in [7], which is tested by
discarding the diffusion component from (1) and fitting the same input sequences. Overall four
models are examined, which we call in short sODE, stODE, sSDE and stSDE, lower case letters
representing if the system is spatial or spatio-temporal. Each model is optimized 750 times using
different lengthscales and inducing locations. In order to select the hyperparameters that prevent
overfitting, we compute the root mean square error (RMSE) between 3 holdout input sequences and
state paths (at observed time points) that are estimated using the EM integration from the measured
initial states. The models are then retrained using 4 training and 3 holdout sequences, and finally
RMSE between 3 test input sequences and the estimated state paths are reported.

Figure 1 visualizes fits for four models on the same training data. In both ODE and SDE settings, we
see that inferred spatio-temporal trajectories are closer to the data than the spatial counterparts. For
the same reason, stochastic state trajectory cloud needs to be more voluminous in sSDE to achieve a
greater posterior whereas stSDE can better fit individual trajectories. Also, the bottom left corners in
the figures show that temporal information helps capturing rapidly changing spatial fields.

Quantitative results are presented in Figure 2. Unsurprisingly, time-variant drift functions boost the
training performance with more than 10 inducing points, which is compatible with the plots in Figure
1. We also observe that increasing the number of inducing points yields better training posteriors in
SDE model. Figures 2c-d illustrate that time-variant drift function can also reduce prediction error, at
least for golf swing trajectories that span approximately the same part of the state space. We also see
that the error consistently decreases as the number of inducing points M is increased, and reaches the
minimum at M = 80.

5 Conclusion and Future Work

We propose an approach for learning non-parametric spatio-temporal drift and diffusion functions of
stochastic differential equation (SDE) systems such that the resulting simulated state distributions
match data. The experiment on a real world data set shows that our model can better fit complex
dynamics than the spatial counterpart. This increase in model capacity, however, results in larger
data set requirements and makes the model more vulnerable to overfitting, which could be better
accounted for using e.g. variational inference. An interesting future research direction is the study of
various vector field kernels, such as divergence-free, curl-free or spectral kernels [12]. The model
could be extended to have an observation model, e.g., GPLVM or deep neural network, rather than
PCA. Including inputs or controls to the system would allow precise modelling in interactive settings,
such as robotics.

1We use the files 64_01-64_04.amc for training, 64_05-64_07.amc for cross validation, and
64_08-64_10.amc for testing

4



Acknowledgments

The data used in this project was obtained from mocap.cs.cmu.edu. The database was created with
funding from NSF EIA-0196217. This work has been supported by the Academy of Finland grants
no. 260403, 299915, 275537, 311584.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] M. Alvarez, L. Rosasco, and N. Lawrence. Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 2012.

[3] P. Batz, A. Ruttor, and M. Opper. Approximate bayes learning of stochastic differential
equations. arXiv:1702.05390, 2017.

[4] Andreas Damianou, Michalis K Titsias, and Neil D Lawrence. Variational Gaussian process
dynamical systems. In Advances in Neural Information Processing Systems, pages 2510–2518,
2011.

[5] R. Friedrich, J. Peinkeb, M. Sahimic, and R. Tabar. Approaching complexity by stochastic
methods: From biological systems to turbulence. Phys. reports, 506:87–162, 2011.

[6] C. García, A. Otero, P. Felix, J. Presedo, and D. Marquez. Nonparametric estimation of stochas-
tic differential equations with sparse Gaussian processes. Physical Review E, 96(2):022104,
2017.

[7] Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models with Gaussian processes. In Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1959–1968. PMLR, 10–15 Jul 2018.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. Springer,
6th edition, 2014.

[10] J. Quiñonero-Candela and C.E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

[11] C.E. Rasmussen and K.I. Williams. Gaussian processes for machine learning. MIT Press, 2006.

[12] S. Remes, M. Heinonen, and S. Kaski. Non-stationary spectral kernels. NIPS, 2017.

[13] A. Ruttor, P. Batz, and M. Opper. Approximate Gaussian process inference for the drift function
in stochastic differential equations. In Advances in Neural Information Processing Systems,
pages 2040–2048, 2013.

[14] J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models for human motion.
IEEE Trans. on pattern analysis and machine intelligence, 30:283–298, 2008.

[15] Jack Wang, Aaron Hertzmann, and David M Blei. Gaussian process dynamical models. In
Advances in neural information processing systems, pages 1441–1448, 2006.

[16] Cagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerström, and Harri
Lähdesmäki. Learning stochastic differential equations with gaussian processes without gradient
matching. arXiv preprint arXiv:1807.05748, 2018.

5

mocap.cs.cmu.edu

	Introduction
	Nonparametric SDE Model
	Spatio-Temporal SDE Model
	Experiments
	Conclusion and Future Work

