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Abstract— Deep neural networks have been widely adopted
in many vision and robotics applications with visual inputs. It
is essential to verify its robustness against semantic transforma-
tion perturbations, such as brightness and contrast. However,
current certified training and robustness certification methods
face the challenge of over-parameterization, which hinders the
tightness and scalability due to the over-complicated neural
networks. To this end, we first analyze stability and variance
of layers and neurons against input perturbation, showing
that certifiable robustness can be indicated by a fundamental
Unbiased and Smooth Neuron metric (USN). Based on USN, we
introduce a novel neural network pruning method that removes
neurons with low USN and retains those with high USN, thereby
preserving model expressiveness without over-parameterization.
To further enhance this pruning process, we propose a new
Wasserstein distance loss to ensure that pruned neurons are
more concentrated across layers. We validate our approach
through extensive experiments on the challenging robust key-
point detection task, which involves realistic brightness and
contrast perturbations, demonstrating that our method achieves
superior robustness certification performance and efficiency
compared to baselines.

I. INTRODUCTION

Deep neural networks (DNNs) have emerged as fundamen-
tal components in numerous computer vision and robotics
applications, from image classification to pose estimation [7],
[17], [26]. In safety-critical scenarios such as autonomous
driving and human-robot interaction, these DNN-based sys-
tems must maintain reliable performance under various envi-
ronmental conditions, such as seasonal and daylight changes
[12], [13], image corruptions and degradations [15], [16],
and sensor placement and perturbations [9], [8]. However,
ensuring the robustness of DNNs against such semantic
perturbations remains a significant challenge, particularly
when formal guarantees are required [20], [11], [10].

Current approaches to neural network robustness have
primarily focused on adversarial training [21] and empirical
evaluation methods. While these techniques can improve
practical robustness, they fall short of providing the for-
mal verification guarantees essential for safety-critical ap-
plications. Certified robustness methods [4], [30] address
this limitation by providing mathematical guarantees on
model behavior within specified perturbation bounds. How-
ever, existing robust training and certification techniques
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Fig. 1: The overview of model training with the progressive
robust pruning pipeline.

face fundamental scalability challenges due to the over-
parameterization of modern deep networks, which leads
to loose bounds and computational intractability for larger
DNNs [18].

The core issue underlying these challenges is that current
robust training and certification methods treat all neurons
equally, without considering their individual contributions
to model robustness. Neurons that exhibit high variance
or instability under input perturbations contribute more to
the over-approximation errors that fail existing verification
algorithms [30], [29]. This observation suggests that strategic
removal of problematic neurons through structured pruning
could simultaneously improve both certification tightness and
computational efficiency.

Neural network pruning has been extensively studied
mainly for model compression and acceleration [6], [19], [3],
but naive structured pruning may remove important features
needed for model expressiveness and robust performance
[5]. Although some existing pruning methods demonstrate a
correlation with adversarial robustness [25], [14], [32], they
do not account for the impact on formal neural network
verification based on neuron statistics. The challenge lies
in theoretically identifying unstable neurons that are truly
detrimental to robustness certification while preserving the
model’s expressive capacity for the underlying task.

To this end, we propose a novel approach that inte-



grates robustness-aware pruning with formal certification
guarantees through the introduction of Unbiased and Smooth
Neuron (USN) metrics, which quantify the bias and variance
characteristics of individual neurons under semantic pertur-
bations. We highlight that the proposed USN metric is a gen-
eralized form of the signal-to-noise ratio metrics [29], which
additionally bridges the metrics with statistical principles
without normalization, focusing on complex semantic per-
turbation rather than simple ℓ∞-bounded perturbations [29].
This provides a principled criterion for identifying neurons
that contribute most to certification looseness. We develop a
progressive training and pruning pipeline that simultaneously
optimizes task performance and USN metrics, as shown
in Figure 1. Wasserstein distance regularization is further
adopted to encourage concentrated pruning patterns while
preserving essential representational capacity. As one of the
representative regression tasks, we evaluate the proposed
method on the challenging keypoint detection task under
image-based realistic semantic perturbations, demonstrating
that USN-guided pruning consistently outperforms both non-
pruned models and random pruning baselines across multiple
base architectures and perturbation magnitudes. The main
contributions of this work are as follows:

• We establish a theoretical connection between neuron-
level statistics and probabilistic robustness certification
bounds, providing the foundation for robustness-aware
pruning.

• We introduce the Unbiased and Smooth Neuron (USN)
metrics that quantify individual neuron contributions to
certification tightness under semantic perturbations.

• We propose a progressive training pipeline that in-
tegrates USN-guided pruning with Wasserstein dis-
tance regularization to achieve concentrated, structure-
preserving pruning patterns.

• We demonstrate superior certification performance on
keypoint detection tasks against brightness and contrast
perturbations, showing that the proposed pruning can
simultaneously improve robustness and computational
efficiency.

II. PROBLEM FORMULATION

In this section, we first formally formulate the key point
detection neural networks as feedforward layers and non-
linear ReLU activation layers. Then, we define the certifiable
robustness within the local semantic perturbation set.

A. Neural Networks with Neuron Characterization

Modern certifiable image-based deep neural network mod-
els are typically based on ResNet [7], [17], [26], [20],
including convolutional neural networks (CNNs) and linear
layers with nonlinear activation functions. Since convolution
can be seen as sparse matrix multiplication with shared
weights of convolutional kernels, the fundamental compo-
nents of these neural networks for regression tasks (e.g.
keypoint detection) are linear layers with nonlinear activation
functions, as defined below.

Definition 2.1 (Deep Neural Networks for Regression):
Let fL : Rd0 → RdL be an L-layer feedforward layers with
nonlinear activation layers defined as:

fL(x) = gL ◦ σL−1 ◦ gL−1 ◦ σL−2 ◦ · · · ◦ σ1 ◦ g1(x), (1)

where each linear layer gi : Rdi−1 → Rdi is given by
gi(zi−1) = W izi−1+bi with weight matrix W i ∈ Rdi×di−1

and bias vector bi ∈ Rdi , and activation layer is defined
as zi = σi(gi(zi−1)) with nonlinear activation function
σi : Rdi → Rdi , i = 1, 2, . . . , L and z0 = x.

Furthermore, we define the output of each neuron on
the layer before each activation layer as follows, as the
nonlinearity of the neural network in Equation (1) highly
depends on the output of pre-activation neurons.

Definition 2.2 (Pre-activation Neuron and Layer Output):
Denote the j-th neuron output after the linear layer f i as
f i
j(x) = wi

j · zi−1 + bij ∈ R, j = 0, 1, . . . , di − 1 where
wi

j is the j-th row of W i, zi−1 = σ(f i−1(x)) and the
layer output f i(x) is the aggregated vector of f i

j(x) as
f i(x) = [f i

0(x), f
i
1(x), . . . , f

i
di−1(x)]

T ∈ Rdi .

B. Semantic Perturbation and Certifiable Robustness
Based on the neural networks in Definition 2.1 with each

neuron output in Definition 2.2, we can define the certifiable
robustness against semantic perturbation. We first define the
semantic perturbation set as follows.

Definition 2.3 (Semantic Perturbation Set): Given an in-
put x0 = h(s0) ∈ Rd0 with a continuous semantic trans-
formation function h(·) : Rs → Rd0 , define the bounded
perturbation set as Bh

p (x0, ϵ) = {h(s) ∈ Rd0 : ∥s − s0∥p ≤
ϵ}, where the norm ∥ · ∥p is defined in semantic perturbation
space Rs with perturbation radius ϵ > 0.

Remark 2.1: Since we are dealing with keypoint detection
as a regression task using neural networks under semantic
perturbation on the input image, e.g., brightness and contrast,
the perturbation space Rs is usually the 1D real space s =
1, and the assumption holds that semantic transformation
function is continuous.

Based on the semantic perturbation over the input of the
neural network, we then define the robustness certification
problem as follows.

Definition 2.4 (Robustness Certification): Given the cer-
tification criteria with radius δ under ∥ · ∥q norm in the
output space RdL of neural networks fL in Definition 2.1,
the robustness certification problem is to verify whether
the following condition holds for semantic perturbation set
Bh

p (x0, ϵ) in Definition 2.3,

∀x ∈ Bh
p (x0, ϵ), ∥fL(x)− fL(x0)∥q ≤ δ. (2)

Remark 2.2: In the case of the keypoint detection task
with deep neural networks under semantic perturbation on
the input image, the original output is the heat map. However,
with the addition of an extra layer of differentiable spatial-
to-numerical transformation [22], the entire neural network
aligns well with Definition 2.1 for the keypoint regression
task. The certification criteria is defined as the maximal pixel
deviation of all keypoints away from those of fL(x0), i.e.,
δ in pixels under ℓ∞ norm for dL keypoints.



III. METHODOLOGY

Equipped with the definitions of neural networks and
pre-activation neuron outputs and the goal of robustness
certification under semantic perturbation, in this section, we
first analyze the mean and variance of neuron output distribu-
tion given the semantic perturbation. Then we introduce the
unbiased and smooth neuron metric as an empirical estimate
from Monte Carlo sampling of the semantic perturbation set,
based on which we introduce a neural network pruning train-
ing pipeline to gain more stable and low-variance neurons.
Furthermore, a regularization term is proposed based on the
Wasserstein distance for concentrated pruning.

A. Neuron Stability and Variance Analysis

Given input perturbation of neural networks, the robust-
ness certification in Definition 2.3 is determined by the
nonlinearity and Lipschitz continuity of neural networks [27],
[24], [29]. We present the following Lemma to quantify
the Lipschitz bound propagation from intermediate layers to
neural network output.

Lemma 3.1 (Layer-to-Output Lipschitz Bound): For
a neural network fL as defined in Definition 2.1 and
original input x0, the output deviation of perturbed input
x ∈ Bh

p (x0, ϵ) under norm ∥ · ∥q, q ≥ 2, can be bounded in
terms of any intermediate layer i = 1, . . . , L− 1 as,

∥fL(x)− fL(x0)∥q ≤ Ci∥f i(x)− f i(x0)∥2, (3)

where the constant Ci = ∥W i∥2
∏L

k=i+1 ∥W k∥2 ·Lσk−1 Lσk

and the ℓ2 Lipschitz constant of activation function σk.
Proof: By the induced norm of i-th layer weight W i

and Lipschitz constant of activation function σi, we have

∥fL(x)− fL(x0)∥q ≤ ∥fL(x)− fL(x0)∥2 (4)

≤∥WL∥2 · LσL−1 · ∥fL−1(x)− fL−1(x0)∥2 ≤ . . . (5)

≤

(
∥W i∥2

L∏
k=i+1

∥W k∥2Lσk−1

)
∥f i(x)− f i(x0)∥2. (6)

Therefore, the bound holds for any layer i, i ≤ L− 1.
Lemma 3.1 bridges the certification goal of Equation (2)
with layer-wise deviation given input perturbation, which are
highly related to the stability and variance of the intermediate
pre-activation neuron outputs in Definition 2.2. Unlike [29],
we investigate the stability of neurons based on the statistical
distribution of neuron outputs at each layer from semantic
perturbation sampling.

Definition 3.1 (Neuron Output Distribution): Given input
sample x0 ∼ p(x0), suppose the perturbed input p(x |
x0) is uniformly sampled from Bh

p (x0, ϵ), i.e., x | x0 ∼
U(Bh

p (x0, ϵ)), the j-th pre-activation neuron output on layer i
f i
j(x) has the mean of Ex∼p(x|x0)f

i
j(x) and variance of

Varx∼p(x|x0)f
i
j(x).

Based on the neuron output distribution under perturbation
sampling, we have the following Theorem showing how the
mean and variance of the neuron output distribution affect
the robustness certification goal in Equation (2).

Theorem 3.1 (Probabilistic Robustness Certification):
For any sample x0 ∼ p(x0) and the uniformly perturbed
sample x | x0 ∼ U(Bh

p (x0, ϵ)), the robustness certification
goal ∥fL(x) − fL(x0)∥q ≤ δ in Equation (2) holds with
confidence of 1 − α if the following inequalities hold for
each neuron j = 1, 2, . . . , di on layer i = 1, 2, . . . , L− 1∣∣Ex∼p(x|x0)f

i
j(x)− f i

j(x0)
∣∣ ≤ δ

2Ci

√
di
, (7)

Varx∼p(x|x0)f
i
j(x) ≤

αδ2

4C2
i d

2
i (L− i)

, (8)

where Ci is Lipschitz bound from Lemma 3.1.
Proof: For the random variable of neuron output f i

j(x)
from Definition 3.1, first apply Chebyshev’s inequality and
variance bound in Equation (8) as follows,

P (|f i
j(x)− Ef i

j(x)| ≥
δ

2Ci

√
di
) ≤

Varf i
j(x)

( δ
2Ci

√
di
)2
≤ α

di(L− i)
.

Therefore, with a probability of at least 1− α
di(L−i) , |f i

j(x)−
Ex∼p(x|x0)f

i
j(x)| ≤ δ

2Ci

√
di

holds. Then by triangle inequal-
ity and the bias bound in Equation (7), we have the following
hold with probability of at least 1− α

di(L−i) ,

|f i
j(x)− f i

j(x0)| ≤ |f i
j(x)− Ex∼p(x|x0)f

i
j(x)|

+ |Ex∼p(x|x0)f
i
j(x)− f i

j(x0)| ≤
δ

Ci

√
di
. (9)

By union bound of Equation (9) along each neuron j along
layer i, the ℓ2 norm of layer deviation f i(x)−f i(x0) can be
upper bounded below with probability of at least 1− α

(L−i) ,

∥f i(x)− f i(x0)∥2 =

√√√√ di∑
j=1

|f i
j(x)− f i

j(x0)|2 ≤
δ

Ci
. (10)

Again, based on Lemma 3.1, by union bound of Equa-
tion (10) along layers from i to L − 1, we have ∥fL(x) −
fL(x0)∥q ≤ Ci∥f i(x)− f i(x0)∥2 ≤ δ hold with probability
of at least 1− α, which concludes the proof.

Remark 3.1: We remark that the probabilistic certification
will naturally become the deterministic robustness certifi-
cation in Definition 2.4 by letting α → 0. In practice,
we usually want the strongest robustness certification with
δ = 0. Therefore, we need to make the upper bounds of
Equation (7) and Equation (8) close to 0 during model
training.

B. Unbiased and Smooth Neuron (USN) Metrics

During empirical model training, we need to estimate the
statistics of the neuron output distribution in Definition 3.1
through finite Monte Carlo sampling. Therefore, in this
section, we define the unbiased and smooth neuron metrics
to empirically estimate the statistics in Equation (7) and
Equation (8), respectively.

Definition 3.2 (Unbiased and Smooth Neuron Metrics):
Given the input x0, the unbiased and smooth metrics for



layer i are defined as:

Li
unbiased :=

1

m

m∑
k=1

∥f i(xk)− f i(x0)∥1, (11)

Li
smooth :=

1

m

m∑
k=1

∥f i(xk)− f i(x0)∥22, (12)

where m perturbed input are uniformly sampled from xk ∈
Bh

p (x0, ϵ), k = 1, 2, . . . ,m.
Even though Equation (11) and Equation (12) are focusing

on ℓ1 and ℓ2 norm of the difference between original layer
output f i(x0) and perturbed layer output f i(xk), they have
fundamental nuance in the stability and variance of the
neuron output in the sense of Equation (7) and Equation (8),
respectively. We present the following lemma to formally
characterize these relationships.

Lemma 3.2 (USN Metrics and Robustness Bounds):
For the unbiased and smooth neuron metrics defined in
Equation (11) and Equation (12) with sufficient samples, the
following relationships with Equation (7) and Equation (8)
hold:

Li
unbiased =

di∑
j=1

|Ex∼p(x|x0)f
i
j(x)− f i

j(x0)|, (13)

Li
smooth =

di∑
j=1

[Varxf i
j(x) + |Exf

i
j(x)− f i

j(x0)|2]. (14)

Proof: For the first relation in Equation (13),
by definition of the ℓ1 norm and law of large num-
ber: Li

unbiased = 1
m

∑m
k=1

∑di

j=1 |f i
j(xk) − f i

j(x0)| =∑di

j=1 Ex∼p(x|x0)|f i
j(x) − f i

j(x0)|. Since x0 is determinis-
tic given the conditioning, we have |f i

j(x) − f i
j(x0)| =

|Ex∼p(x|x0)f
i
j(x)−f i

j(x0)| in expectation, establishing Equa-
tion (13). Similarly, for the second relation in Equation (14),
based on bias-variance decomposition, we have

Li
smooth =

di∑
j=1

Ex[f
i
j(x)− E(f i

j(x)) + E(f i
j(x))− f i

j(x0)]
2

=

di∑
j=1

[Varxf i
j(x) + (Exf

i
j(x)− f i

j(x0))
2],

which concludes the proof.
Combining Lemma 3.2 and Theorem 3.1, we present the
following robustness certification theorem with the USN
metric conditions.

Corollary 3.1 (USN Necessary Bound Conditions): If
Equation (7) and Equation (8) hold for any neuron i on
layer j in Theorem 3.1, we have the following upper bounds
for Li

unbiased and Li
smooth,

Li
unbiased ≤

δ
√
di

2Ci
, Li

smooth ≤
δ2

4C2
i

(
α

di(L− i)
+ 1

)
. (15)

Proof: The upper bounds can be obtained by applying
Equation (7) and Equation (8) to Equation (13) and Equa-
tion (14).

Remark 3.2: Even though Equation (15) is not a sufficient
condition for robustness certification for general δ > 0, α >

0, but it is aligned with the robustness certification goal in
Equation (2) when δ → 0, α→ 0, showing that minimizing
Li

unbiased and Li
smooth will lead to certification goal. We remark

that the signal-to-noise ratio (SNR) losses in [29] are special
cases of unbiased and smooth neuron metrics, where they
are normalized by ∥f i(x0)∥. When ∥f i(x0)∥ significantly
increases during model training, even if SNR losses can be
greatly reduced, the upper bounds of Equations (7) and (8)
do not necessarily hold, and therefore the certification goal
would fail when δ → 0, α → 0. Besides, ours can han-
dle more general semantic perturbations while SNR losses
mainly focus on ℓ∞-bounded perturbations.

C. Wasserstein Distance for USN Regularization

Since smaller USN metrics of Li
smooth and Li

smooth in
Definition 3.2 can inherently ensure the robustness of the
neural network, we adopt structured pruning [32], [2] of the
neurons with larger USN metrics. To ensure concentrated
and coherent pruning patterns across network layers, we
introduce a Wasserstein distance regularization that pro-
motes structured sparsity. The Wasserstein distance [23],
also known as the Earth Mover’s Distance, measures the
minimum cost to transform one probability distribution into
another.

Definition 3.3 (Wasserstein Distance): For two discrete
probability distributions µ =

∑n
i=1 aiδxi and ν =∑m

j=1 bjδyj
with

∑
i ai =

∑
j bj = 1, the 2-Wasserstein

distance is defined as:

W2(µ, ν) = min
π∈Π(µ,ν)

∑
i,j

πij∥xi − yj∥22

1/2

, (16)

where Π(µ, ν) represents the set of all joint distributions
with marginals µ and ν, and πij denotes the transport plan
indicating how much probability mass moves from xi to yj .

In the context of neural network pruning, we apply the
Wasserstein distance to align the importance distributions of
neurons across layers. Drawing from the USN relations in
Lemma 3.2, we define the importance score for each neuron
based on its contribution to both the unbiased and smooth
metrics. For each layer i, the neuron-wise contribution to the
USN metrics can be decomposed as:

Li
unbiased,j = |Ex∼p(x|x0)f

i
j(x)− f i

j(x0)|, (17)

Li
smooth,j = Varxf i

j(x) + |Exf
i
j(x)− f i

j(x0)|2. (18)

Therefore, the importance score Ai
j for neuron j in layer i

is then defined as the following dimensionless ratio between
the smooth metric (with dimension of squared ℓ2 norm in
Equation (12)) and the square of the unbiased metric (with
dimension of ℓ1 norm in Equation (11)),

Ai
j =

Li
smooth,j

(Li
unbiased,j

2
+ ϵusn) · di

, (19)

where where Li
smooth,j and Li

unbiased,j are the neuron-wise
contributions in Equation (17) and Equation (18), ϵusn is a
small regularization constant to prevent division by zero, and



di provides layer-wise normalization to ensure dimensional
consistency and comparability across layers of different
widths. Note that in practice, we conduct structured pruning
by calculating the importance score A for each coarser-
grained channel of neurons [5], [32], [3], which identifies
the channels with the most unstable neurons for pruning.

To encourage concentrated pruning, we define the target
distribution E i using percentile-based thresholding:

E ij =

{
1
di
, if Ai

j > percentile(Ai, (1− ρ)× 100)

0, otherwise
(20)

where ρ is the target pruning ratio. Based on Definition 3.3,
the Wasserstein regularization loss for layer i is then:

Li
W =W2(Mi, E i). (21)

This regularization encourages the network to develop clear
distinctions between important and unimportant neurons
based on their USN characteristics, facilitating more effective
structured pruning by promoting concentrated removal of the
most unstable neurons.

D. Integrated Training and Pruning Pipeline

We finally propose a progressive training pipeline that
integrates robust training with dynamic pruning based on
USN metrics. The training process consists of multiple
phases where the pruning ratio gradually increases, allowing
the network to adapt to the reduced capacity.

The total loss function combines multiple components:

Ltotal = Ltask +
∑

i∈Iprune

(
λuLi

unbiased + λsLi
smooth + λWLi

W

)
,

where task loss Ltask comes from the task-specific domain
(e.g. keypoint detection literature [20]) and Iprune is the set
of layers to be pruned. The progressive pruning schedule is
defined as:

ρ(t) =


0, if t < tstart

ρ
Nsteps

⌊
t−tstart
tinterval

⌋
, if tstart ≤ t ≤ tend

ρ, if t > tend

(22)

where t is the current epoch, ρ is the final target pruning
ratio, Nsteps is the number of pruning steps, and tinterval is the
interval between pruning operations.

This progressive approach allows the network to gradually
adapt to reduced capacity while maintaining performance.
The USN metrics guide the pruning process by identifying
neurons that exhibit high variance or bias under semantic
perturbations, ensuring that the most stable and reliable
neurons are preserved. The Wasserstein regularization pro-
motes coherent pruning patterns that maintain the network’s
structural integrity and representational power.

IV. EXPERIMENTS

In this section, we evaluate our USN-guided pruning
approach by answering two key research questions: 1)
Does USN-guided pruning improve robustness certification
performance compared to random pruning and unpruned

Algorithm 1 Progressive USN-Guided Training and Pruning

Require: Neural network fL
θ , training data D, semantic

perturbation set Bh
p (·, ϵ), final pruning ratio ρ, pruning

steps Nsteps, learning rate α, pruning layer set Iprune
Ensure: Trained and progressively pruned network

1: Initialize: ρcurrent ← 0, importance {Ai ← 0}L−1
i=1

2: for epoch t = 1 to T do
3: Update pruning ratio: ρcurrent ← ρ(t) according to

schedule in Equation (22)
4: for each batch {xb, yb} in D do
5: Sample semantic perturbations x← Bh

p (xb, ϵ)
6: Compute task loss: Ltask
7: for each layer i ∈ Iprune do
8: Compute USN metrics Li

unbiased,Li
smooth based on

Equation (11) and Equation (12)
9: Compute neuron importance Ai

j based on Equa-
tion (19)

10: Compute Wasserstein loss Li
W based on Equa-

tion (21)
11: end for
12: Total loss: Ltotal ← Ltask +

∑
i∈Iprune

(λuLi
unbiased +

λsLi
smooth + λWLi

W)
13: Backpropagate and update parameters: θ ← θ −

α∇θLtotal
14: end for
15: if t is pruning epoch then
16: for each layer i ∈ Iprune do
17: Compute pruning threshold: τ i ←

percentile(Ai, (1− ρcurrent)× 100)
18: Generate pruning mask: Pi

j ← 1[Ai
j ≥ τ i]

19: Apply structured pruning by keeping masked
neurons: θ ← θ(1[Pi

j = 1])
20: end for
21: Reset importance: Ai ← 0

L−1
i=1

22: end if
23: end for
24: return Progressively pruned network θ

baselines under realistic semantic perturbations? 2) What
are the effects of pruning ratio and Wasserstein regulariza-
tion on the trade-off between certification accuracy, model
expressiveness, and verification efficiency? The answer to
the first question will be found in Section IV-B through
comparisons on CNN7 and ResNet18 architectures, while
the second question is addressed in Section IV-C through
systematic ablation studies. Prior to those, we first introduce
the experimental setup with datasets, training procedures, and
evaluation metrics in Section IV-A.

A. Experimental Setup

a) Training and Pruning Details: Following the liter-
ature of keypoint detection [20], we use the same aircraft
dataset with 24 keypoints per image and split them into
train/val/test with fixed seeds. We adopt backbones of differ-
ent architectures: a seven-layer CNN (CNN7) from [1], [31]



Fig. 2: Samples of keypoint detection under changing se-
mantic perturbation of images.

and ResNet18 [7]. Models are trained for 200 epochs with
Adam (learning rate α = 0.01), batch size of 64, and task
losses from [20]. We inject small photometric perturbations
(brightness ± 1

255 , contrast ±0.01), apply USN regularization
on the convolution layers, and perform progressive channel-
level pruning to ρ = 0.1, 0.2 over Nsteps = 200 steps
in Algorithm 1. Note that channel-level pruning uses the
same technique as neuron-wise pruning but with different
granularity, and is much more efficient in the literature
of structured pruning [5], [32], [3]. We also conduct an
ablation of the Wasserstein regularization with λW ∈{0, 10}.
During the model training, we monitor the keypoint task
loss on clean data and uniformly perturbed ones and the
best checkpoint is chosen by the lowest task loss on the
validation set. Experiments run on a workstation with four
NVIDIA RTX A6000 GPUs.

b) Certification Metrics and Baselines: We certify all
the models over brightness shifts {±2,±5} pixels (ϵ ∈
{2/255, 5/255} for brightness transformation h in Defini-
tion 2.3) and contrast scalings {±0.01,±0.02,±0.05} (ϵ ∈
{0.01, 0.02, 0.05} for contrast transformation h in Defini-
tion 2.3). For each test image, we crop and resize to 64×64
with the output of the 24 keypoints of this frame, and check
whether all predicted keypoints stay within the pixel error
bound of 1 px. That being said, the robustness certification
problem is with dL = 24, δ = 1, q = ∞ in Definition 2.4.
We adopt the solver ModelVerification.jl [28] to
return Holds, Violated, or Unknown for the certification goal
in Equation (2). We adopt the metric of verification accuracy,
which is computed as the proportion of test images with
certification goal achieved. We also compare the verification
time for efficiency and the number of correctly predicted
and verified keypoints for fidelity as fine-grained metrics.
The baselines are the ones without pruning and with random
pruning under multiple pruning rates.

B. Results Comparison

a) CNN7: Table I shows comparison of USN-guided
pruning with random pruning at matched rates under bright-
ness (±2, ±5) and contrast (±0.01, ±0.02, ±0.05) per-
turbations. USN guidance consistently matches or exceeds

No USN
(Vanilla)

USN 
No 

Pruning

USN 
Pruning

Unbiased Metrics Smooth Metrics

Fig. 3: Visualization of USN metrics (color-coded) w.r.t.
flattened channels of neurons (each column represents one
channel and the horizontal axes show different channels)
after vanilla training without USN, robust training with
USN but without pruning, and robust training and pruning
with USN (ours). We can see that our robust pruning can
significantly reduce the neurons with high unbiased and
smooth metrics compared to robust training with USN with-
out pruning.

random pruning across all magnitudes, with the largest gains
appearing at the highest contrast; under stronger brightness
shifts, USN also improves over the random pruning baseline.
Overall, USN pruning at a rate ρ = 0.2 provides the
most consistent accuracy across perturbations, indicating that
channels selected by USN is more robust than random
pruning due to the removal of unstable and high-variance
neurons.

TABLE I: CNN7: USN-guided vs. random pruning under
different pruning ratio ρ against brightness/contrast pertur-
bations

ρ Pruning Rule
Brightness Contrast
±2 ±5 ±0.01 ±0.02 ±0.05

0.1
Random 0.9545 0.9025 0.9805 0.9350 0.8051

USN-guided 0.9740 0.9285 0.9805 0.9545 0.8961

0.2
Random 0.9805 0.9155 0.9805 0.9610 0.9285

USN-guided 0.9870 0.9480 0.9935 0.9740 0.9675

0.3
Random 0.9545 0.9220 0.9675 0.9545 0.9350

USN-guided 0.9805 0.9350 0.9675 0.9610 0.9415

b) ResNet18: We compare pruning strategies in terms
of fidelity (correct keypoints) and efficiency (verification
time) in Figure 4. The model without pruning (ρ = 0)
results in more correct keypoints, but the verification time



is significantly larger than that of the models with pruning.
For pruned models under the same Wasserstein regularization
λW = 10, compared to random pruning baselines, the USN-
guided pruning ones produce keypoint histograms that shift
to the right in Figure 4 (a,b), indicating more correctly pre-
dicted keypoints; in Figure 4 (c,d), both achieve a comparable
left-shift in runtime, indicating similar verification speedups.
In short, USN-guided pruning attains better efficiency with
substantially higher fidelity than the random pruning base-
line. Among USN settings, the intermediate configuration
offers the best efficiency-fidelity trade-off; within random
pruning, the higher rate is less damaging than the lower rate
yet remains inferior to USN-guided pruning.

(a) Correctly predicted key-
points (USN-guided pruning
rates ρ ∈ {0, 0.1, 0.2})

(b) Correctly predicted key-
points (Random pruning rates
ρ ∈ {0, 0.1, 0.2})

(c) Average verification time
( USN-guided pruning ρ ∈
{0, 0.1, 0.2})

(d) Average verification time
( Random pruning ρ ∈
{0, 0.1, 0.2})

Fig. 4: Comparison of the number of correctly predicted key-
points and verification time under different pruning strategies
for ResNet18 under Wasserstein regularization λW = 10.

c) Visualization of model weight after training: In
Figure 3, we visualize the fourth layer of the CNN7 model
after three different training paradigms: vanilla training with
only task losses without USN metrics, robust training with
USN metrics but without pruning, and the proposed robust
pruning with USN metrics. It can be seen that the unbiased
and smooth metrics for neurons after robust training with
USN metrics but without pruning (USN No Pruning) are
the highest due to over-parameterization by robust training
[29]. However, ours (USN Pruning) can significantly re-
duce the number of neurons with higher values of unbiased
and smooth metrics and retain most of the stable neurons,
where our unbiased and smooth metrics are comparable to
those obtained after vanilla training. In summary, ours is
easier to verify compared to the robust training of USN No
Pruning and more robust than the model of vanilla training
without USN.

C. Ablation Study

a) Effect of pruning rate in Table II: Sweeping ρ ∈
{0.1, 0.2, 0.3} indicates that ρ = 0.2 offers the most balanced
trade-off between model verifiability and expressiveness un-
der input perturbations compared to the non-pruning baseline
ρ = 0.0. Due to the progressive pruning, the higher the
pruning ratio is, the less expressive the pruned model will be.
In contrast, a stronger pruning effect will make the pruned
model easier to verify. At ρ = 0.1, insufficient pruning fails
to eliminate enough unstable neurons that contribute to over-
approximation during verification, resulting in suboptimal
certified robustness despite maintaining high model capacity
(which is still lower than ρ = 0.0 through). However,
aggressive pruning ρ = 0.3 removes too many essential
neurons needed for robust feature representation, explaining
the degradation at higher pruning ratios.

TABLE II: CNN7 verification accuracy under different prun-
ing ratio under λW = 10.

Pruning Ratio
Brightness Contrast

±2 ±5 ±0.01 ±0.02 ±0.05

ρ = 0.0 0.9805 0.9480 0.9870 0.9870 0.9545

ρ = 0.1 0.9740 0.9285 0.9805 0.9545 0.8961

ρ = 0.2 0.9870 0.9480 0.9935 0.9740 0.9675
ρ = 0.3 0.9805 0.9350 0.9675 0.9610 0.9415

b) Effect of Wasserstein Regularization in Table III:
Enabling the Wasserstein term (λW = 10) generally im-
proves certification at ρ ∈ {0.2, 0.3}, with observable gains
across all tested perturbations at the moderate rate and
the largest improvements at higher contrast and stronger
brightness at the stronger rate. At ρ = 0.1, however, the
Wasserstein regularizer can over-concentrate pruning and
degrade robustness under strong perturbations, indicating
that the regularization term is most beneficial under mild
perturbations with satisfactory accuracy.

TABLE III: CNN7 verification accuracy with or without
Wasserstein regularization (λW ∈ {10, 0}) under different
pruning ratio ρ.

ρ Wasserstein weight
Brightness Contrast

±2 ±5 ±0.01 ±0.02 ±0.05

0.1
λW = 0 0.9610 0.9480 0.9740 0.9610 0.9415
λW = 10 0.9740 0.9285 0.9805 0.9545 0.8961

0.2
λW = 0 0.9675 0.9350 0.9610 0.9675 0.9350
λW = 10 0.9870 0.9480 0.9935 0.9740 0.9675

0.3
λW = 0 0.9545 0.9090 0.9740 0.9415 0.8311
λW = 10 0.9805 0.9350 0.9675 0.9610 0.9415

V. CONCLUSION

This paper addresses over-parameterization challenges in
robustness certification by introducing Unbiased and Smooth
Neuron (USN) metrics that identify neurons contributing
to certification looseness under semantic perturbations. Our
progressive training pipeline integrates USN-guided pruning
with Wasserstein distance regularization to achieve structured



sparsity while preserving model expressiveness. Experiments
on keypoint detection under brightness and contrast vari-
ations demonstrate that strategic removal of high-variance
neurons consistently improves both certification accuracy and
verification efficiency compared to unpruned and randomly
pruned baselines. This work establishes a principled founda-
tion for robustness-aware model compression, enabling more
tractable formal guarantees for safety-critical applications
while maintaining task performance.
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