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ABSTRACT

Time series modeling presents unique challenges due to autocorrelation in both his-
torical data and future sequences. While current research predominantly addresses
autocorrelation within historical data, the correlations among future labels are often
overlooked. Specifically, modern forecasting models primarily adhere to the direct
forecast (DF) paradigm, generating multi-step forecasts independently and disre-
garding label correlations over time. In this work, we demonstrate that the learning
objective of DF is biased in the presence of label correlation. To address this issue,
we propose the Frequency-enhanced Direct Forecast (FreDF), which mitigates label
correlation by learning to forecast in the frequency domain, thereby reducing esti-
mation bias. Our experiments show that FreDF significantly outperforms existing
state-of-the-art methods and is compatible with a variety of forecast models. Code
is available at https://anonymous.4open.science/r/FreDF-0FB1.

1 INTRODUCTION

Time series modeling aims to encode historical sequence to predict future data, which is crucial in
diverse applications: long-term forecast in weather prediction (Bi et al., 2023), short-term prediction
in industrial maintenance (Ma et al., 2023), and data imputation in healthcare (Si et al., 2020). A key
challenge in time series modeling, distinguishing it from canonical regression tasks, is the presence
of autocorrelation, which refers to the dependence between time steps inherent in both the input and
label sequences.

To accommodate autocorrelation in input sequences, diverse forecast models have been developed,
exemplified by recurrent (Salinas et al., 2020), convolution (Wu et al., 2023) and graph neural
networks (Yi et al., 2023a). Recently, Transformer-based models, utilizing self-attention mechanisms
to dynamically assess autocorrelation, have gained prominence (Liu et al., 2024; Nie et al., 2023).
Concurrently, there is a growing trend of incorporating frequency analysis into forecast models.
By representing input sequence in the frequency domain, input autocorrelations can be efficiently
accommodated, which improves forecast performance of Transformers (Zhou et al., 2022), GNNs (Yi
et al., 2023a) and MLPs (Yi et al., 2023b). These pioneering works highlight the importance of
autocorrelation and frequency analysis in advanced time series modeling.

Another critical aspect is the autocorrelation within the label sequence, where each future step is
autoregressively dependent on its predecessors. This phenomenon, known as label autocorrelation,
poses significant challenges that have not been adequately addressed. Specifically, recent forecasting
methods predominantly employ the direct forecast (DF) paradigm (Liu et al., 2024; Nie et al., 2023),
which generates multi-step predictions simultaneously via a multi-output head (Liu et al., 2022b),
optimizing forecast errors across all steps concurrently. However, this approach implicitly assumes
step-wise independence in the label sequence, overlooking the inherent label autocorrelation present
in time series data. We theoretically demonstrate that this oversight results in biased forecasts,
revealing a significant defect with the existing DF paradigm.

To address this issue, we introduce the Frequency-enhanced Direct Forecast (FreDF), a straightfor-
ward yet effective refinement of the DF paradigm. The central idea is to align the forecasts and label
sequences in the frequency domain, where the label correlation is found to be effectively diminished.
This method not only resolves the discrepancy between DF assumptions and the actual time-series
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characteristics but also retains the advantages of the DF approach, such as sample efficiency and
simplicity of implementation. Our main contributions are summarized as follows:

• We uncover label autocorrelation as a critical yet underexplored challenge in modern time series
modeling and theoretically justify how it biases the learning objective of the prevalent DF paradigm.

• We propose FreDF, a straightforward yet effective modification to the DF paradigm that learns to
forecast in the frequency domain, thereby mitigating label correlation and reducing bias. To our
knowledge, this is the first work to leverage frequency analysis to enhance forecast paradigms.

• We verify the efficacy of FreDF through extensive experiments, where it outperforms state-of-the-art
methods substantially and supports various forecast models.

2 PRELIMINARIES AND RELATED WORK

2.1 PROBLEM DEFINITION

In this study, uppercase letters (e.g., Y ) denote random matrix, with subscripts (e.g., Yi,j) indi-
cating matrix entries. An uppercase letter followed by parentheses (e.g., Y (n)) represents an
observation of the random matrix. A multi-variate time series can be represented as a sequence
[X(1), X(2), · · · , X(N)], where X(n) ∈ R1×D is the sample at the n-th timestamp with D covari-
ates. Define input sequence L ∈ RH×D and label sequence Y ∈ RT×D where H and T are sequence
lengths. At an arbitrary n-th step, these sequences are observed as L = [X(n−H+ 1), ..., X(n)]
and Y = [X(n+ 1), ..., X(n+T)]. The goal of time series forecast is identifying a model
g : RH×D → RT×D within a model family G (e.g., decision trees, neural networks) that gener-
ates the prediction sequence Ŷ = g(L) approximating the label sequence Y .

There are two critical aspects to accommodate autocorrelation in time series modeling: (1) selecting
a model family G that encodes autocorrelation in input sequences, which underscores the design of
model architectures; (2) generating forecasts that respect label autocorrelation, which highlights the
efficacy of forecast paradigms. Our survey concentrates on examining both aspects.

2.2 MODEL ARCHITECTURES

To exploit autocorrelation in the input sequences, diverse architectures have been developed. Initial
statistical methods include VAR (Watson, 1993) and ARIMA (Asteriou & Hall, 2011). Subsequently,
neural networks became increasingly prominent for their ability to automate feature interaction
and capture nonlinear correlations. Exemplars include RNNs (e.g., DeepAR (Salinas et al., 2020),
S4 (Gu et al., 2021)), CNNs (e.g., TimesNet (Wu et al., 2023)), and GNNs (e.g., MTGNN (Mateos
et al., 2019)), each designed to effectively encode autocorrelation. Current progress reaches a debate
between Transformer-based and MLP-based architectures, each with its advantages and limitations.
Transformers (e.g., PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024), ScaleFormer (Shabani
et al., 2022)) excel in encoding autocorrelation but come with high computational costs, while MLPs
(e.g., DLinear (Zeng et al., 2023), TimeMixer (Wang et al., 2024)) are more efficient but less adept at
autocorrelation encoding.

An emerging approach is representing sequence in the frequency domain. This method, in comparison
to modeling autocorrelation in the temporal domain, manages autocorrelation effectively with limited
cost. A prominent example is FedFormer (Zhou et al., 2022), which computes attention scores in
the frequency domain, leading to improved efficiency, efficacy, and noise reduction capabilities. The
success of this technique extends to various architectures like Transformers (Zhou et al., 2022; Wu
et al., 2021), MLPs (Yi et al., 2023b) and GNNs (Yi et al., 2023a; Cao et al., 2020), which makes it a
versatile plugin in the design of neural networks for time series forecast.

2.3 ITERATIVE FORECAST V.S. DIRECT FORECAST

There are two paradigms to generate multi-step forecast: iterative forecast (IF) and direct forecast
(DF) (Liu et al., 2022b). The IF paradigm follows the canonical sequence-to-sequence manner, which
forecasts one step at a time and uses previous predictions as input for subsequent forecasts. This
recursive approach respects label autocorrelation in forecast generation, widely used by early-stage
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methods (Lai et al., 2018; Salinas et al., 2020). However, IF suffers from high variance due to error
propagation, which significantly impairs performance in long-term forecasts (Taieb & Atiya, 2015).
Therefore, modern works Li et al. (2021) advocate the DF paradigm, which generates multi-step
forecasts simultaneously using a multi-output head, featured by fast inference, implementation ease
and superior accuracy. Currently, DF has been a dominant paradigm, continuing to be employed in
modern works (Wu et al., 2023; Liu et al., 2024).

Significance of this work. Our work refines the DF paradigm by performing forecasting in the fre-
quency domain1. In contrast to recent advancements that incorporate frequency analysis within model
architectures to manage input autocorrelation (Yi et al., 2023b;a), accelerate computation (Lange
et al., 2021), and improve generation quality (Yuan & Qiao, 2024), our approach specifically fo-
cuses on refining the loss function to mitigate the bias caused by label autocorrelation, which is an
unexplored yet significant aspect in modern time series analytics (Li et al., 2021)2.

3 PROPOSED METHOD

3.1 MOTIVATION

Autocorrelation is a fundamental characteristic of time series data, where each observation is highly
dependent on its predecessors (Zeng et al., 2023). This inherent dependency distinguishes time series
from other data modalities and poses unique challenges for modeling. To capture autocorrelation,
various neural network architectures have been developed (Wu et al., 2021; Liu et al., 2024). These
architectures effectively model autocorrelation within the input sequence. However, they fall short
when it comes to addressing autocorrelation in the label sequence—the future time steps we aim to
predict. Handling autocorrelation in the label sequence is challenging, as it requires the learning
objective to implicitly encapsulate label correlations, a task that cannot be achieved merely by
modifying neural architectures.

Modern time series forecasting models are primarily trained under the multitask learning manner,
known as the direct forecasting (DF) paradigm. Specifically, the DF paradigm employs a multi-output
model gθ : RH×D → RT×D to generate T -step forecasts Ŷ = gθ(L). The model parameters θ are
optimized by minimizing the temporal loss:

L(tmp) :=

T∑
t=1

∥∥∥Yt − Ŷt∥∥∥2
2
. (1)

In this learning objective, the temporal loss at each forecast step is computed independently, treating
each future time step as a separate task. While this method has shown empirical effectiveness, it
overlooks the autocorrelation present within the label sequence Y . Specifically, the label sequence is
autoregressively generated, with Yt+1 being highly dependent on Yt, as illustrated by the blue arrows
in Figure 1(a). In contrast, the learning objective in (1) assumes that each step in the label sequence
can be independently modeled, as indicated by the black arrows in Figure 1(a). This misalignment
between the model’s assumptions and the data’s characteristics introduces bias into the learning
objective of the DF paradigm, as demonstrated in Theorem 3.1.
Theorem 3.1 (Bias of DF). Given input sequence L and label sequence Y , the learning objective (1)
of the DF paradigm is biased against the practical negative-log-likelihood (NLL), expressed as:

Bias =

T∑
i=1

1

2σ2
(Yi − Ŷi)2 −

T∑
i=1

1

2σ2(1− ρ2i )

Yi −
Ŷi + i−1∑

j=1

ρij(Yj − Ŷj)

2

, (2)

where Ŷi indicates the prediction at the i-th step, ρij denotes the partial correlation between Yi and
Yj given L, ρ2i =

∑i−1
j=1 ρ

2
ij .

1Given the inferior performance of the IF paradigm (Li et al., 2021), this paper advocates adapting the DF
paradigm to handle label autocorrelation, rather than revisiting IF to directly model label autocorrelation.

2Several existing loss function-based methods have applied FFT for image reconstruction (Jiang et al., 2021;
Wang et al., 2023b; Xie et al., 2023) and time-series generation Yuan & Qiao (2024), as well as DTW-based loss
functions for shape alignment (Le Guen & Thome, 2019; 2020). FreDF distinguishes itself in two key aspects:
(1) it employs FFT to enhance the DF paradigm specifically for time series analysis; and (2) it uniquely identifies
and eliminates bias induced by label correlation, supported by theoretical guarantees.
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Figure 1: Visualizing label correlation in time series forecasting. (a) shows the generation process of
time series with dependencies depicted as arrows. (b) shows the label correlation in the time domain,
where each element ρi,j indicates the partial correlation between Yi and Yj given L. (c-d) shows the
label correlation in the frequency domain, where each element ρi,j indicates the partial correlation
between Fi and Fj given L, shown with the real (c) and imaginary part (d). Due to the symmetry
inherent in FFT, the prediction length in the frequency domain is halved.

According to Theorem 3.1, the presence of label correlations ρij causes the loss to be biased against
the NLL of the real data. Notably, this bias diminishes to zero when the labels are uncorrelated
(ρij = 0). Therefore, label correlation is a crucial aspect for training time series forecast models.

3.2 REDUCE LABEL CORRELATION WITH FOURIER TRANSFORM

As established in Theorem 3.1, the bias in the learning objective decreases as label correlations
diminish. To achieve this reduction, a promising strategy is transforming the label sequence into
a representation where these correlations are minimized. The Discrete Fourier Transform (DFT),
defined in Definition 3.2, offers an intuitive and effective approach by projecting the sequence onto a
set of orthogonal sine and cosine bases. In this transformed space, the label sequence is described
as a linear combination of predefined temporal patterns that are orthogonal, which effectively
bypasses the autocorrelation in the time domain. The efficacy of this transformation in reducing label
correlation is formalized in Theorem 3.3, where different frequency components become decorrelated.
Consequently, the reduced ρi̸=j lowers the bias against the NLL, which benefits the training of time
series forecast models.

Definition 3.2 (Discrete Fourier Transform, DFT). The normalized DFT of a sequence Y =
[Y0, ..., YT−1] is defined as its projection onto a set of orthogonal Fourier bases with different
frequencies. The projection on the basis associated with frequency k is computed as

Fk =

T−1∑
t=0

Yt exp

(
−j(2πk

T
)t

)
/
√
T,

where j is the imaginary unit , exp(·) is the Fourier basis orthogonal for different k values. DFT
refers to the set of projections F = [F1, ..., FT−1], denoted as F = F(Y ), which can be computed
via the fast Fourier transform (FFT) algorithm with complexity O(H logH).

Theorem 3.3 (Decorrelation between frequency components). Let Y be a zero-mean, discrete-time,
wide-sense stationary random process of length T. As T → ∞ , the DFT coefficients become
asymptotically uncorrelated at different frequencies:

lim
T→∞

E[FkF
∗
k′ ] =

{
SY (fk), if k = k′,

0, if k ̸= k′,

where fk = k
T and SY (f) is the power spectral density of Y .

Case study. To validate our theoretical claims, we conducted a case study on the Weather dataset,
illustrated in Figure 1. The main observations are summarized as follows:

• Evidence of Label Autocorrelation: We quantified the partial correlations between different steps
Yi and Yj of the label sequence Y , conditioned on the input L. The results revealed that a significant
number of non-diagonal elements exhibit substantial values, with approximately 37.5% exceeding

4
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0.3. This indicates that different time steps in Y are correlated even after accounting for L,
confirming the presence of label autocorrelation. Moreover, the correlation patterns display regular
variations, evidenced by alternating light and dark regions in the correlation matrix, suggesting a
periodic nature in the series. Additional implementation details, empirical evidence, and formal
analysis are provided in Appendix A. The existence of label autocorrelation contributes to the bias
in the DF learning objective, as established in Theorem 3.1.

• Effectiveness of Frequency Domain Transformation: Figures 1 (c-d) visualize the partial
correlations between different frequency components of the transformed label sequence F . The
majority of non-diagonal elements show negligible values, with only about 3.6% exceeding 0.1.
This demonstrates that transforming the label sequence to the frequency domain significantly
reduces the partial correlations between different components, corroborating Theorem 3.3. The
reduction in label correlations ρi ̸=j leads to a decrease in the bias identified in Theorem 3.1,
underscoring the potential of forecasting in the frequency domain for more accurate and unbiased
predictions.

3.3 MODEL IMPLEMENTATION

In this section, we construct FreDF, a simple yet effective enhancement to the current DF training
paradigm. The key is to align the forecasts and label sequences in the frequency domain to mitigate
the bias caused by label autocorrelation.

According to the workflow in Figure 2, the historical sequence L is fed into the model to generate
T -step forecasts, denoted as Ŷ = g(L). The forecast error in the time domain, L(tmp), is computed
according to (1). Subsequently, both the predicted and actual label sequences are transformed into
the frequency domain using DFT, and the forecast error in the frequency domain is calculated as:

L(feq) : =
∣∣∣F(Ŷ )−F(Y )

∣∣∣ , (3)

where | · |1 denotes the element-wise ℓ1 norm, summing the absolute values of all elements in
the matrix. Since FFT is differentiable (Wu et al., 2021; Zhou et al., 2022), the frequency-
domain loss L(freq) can be optimized using standard stochastic gradient descent methods. We
advocate the use of the ℓ1 loss in the frequency domain instead of the squared loss due to the
numerical characteristics of the transformed label sequence. Specifically, different frequency
components often exhibit vastly varying magnitudes; lower frequencies possess significantly
higher amplitudes compared to higher frequencies, making the squared loss prone to instabil-
ity. By employing the ℓ1 loss, we ensure a more balanced and stable optimization process.
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Figure 2: The workflow of FreDF. Key oper-
ations in the time and frequency domains are
highlighted in red and blue, respectively.

Finally, the forecast error in the time and frequency
domains are fused as follow, where 0 ≤ α ≤ 1
controls the relatively strength of frequency-domain
alignment:

Lα := α · L(feq) + (1− α) · L(tmp). (4)

Aligning forecasts and label sequence in the fre-
quency domain, FreDF reduces the bias produced
by label correlation while preserving the benefits of
DF, such as efficient inference and multi-task learn-
ing capabilities. An important feature of FreDF
is its model and transformation agnosticism. It is
compatible with various forecasting models g (e.g.,
Transformers and MLPs). This flexibility signifi-
cantly broadens the potential application scope of
FreDF across different time series forecasting scenarios.

4 EXPERIMENTS

To demonstrate the efficacy of FreDF, six aspects are empirically investigated:
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Table 1: Long-term forecasting performance.

Models
FreDF iTransformer FreTS TimesNet MICN TiDE DLinear FEDformer Autoformer Transformer TCN
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021) (2017) (2017)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.392 0.399 0.415 0.416 0.407 0.415 0.413 0.418 0.399 0.423 0.419 0.419 0.404 0.407 0.440 0.451 0.596 0.517 0.943 0.733 0.891 0.632

ETTm2 0.278 0.319 0.294 0.335 0.335 0.379 0.297 0.332 0.300 0.356 0.358 0.404 0.344 0.396 0.302 0.348 0.326 0.366 1.322 0.814 3.411 1.432

ETTh1 0.437 0.435 0.449 0.447 0.488 0.474 0.478 0.466 0.525 0.515 0.628 0.574 0.462 0.458 0.441 0.457 0.476 0.477 0.993 0.788 0.763 0.636

ETTh2 0.371 0.396 0.390 0.410 0.550 0.515 0.413 0.426 0.624 0.549 0.611 0.550 0.558 0.516 0.430 0.447 0.478 0.483 3.296 1.419 3.325 1.445

ECL 0.170 0.259 0.176 0.267 0.209 0.297 0.214 0.307 0.187 0.297 0.251 0.344 0.225 0.319 0.229 0.339 0.228 0.339 0.274 0.367 0.617 0.598

Traffic 0.421 0.279 0.428 0.286 0.552 0.348 0.535 0.309 0.636 0.335 0.760 0.473 0.673 0.419 0.611 0.379 0.637 0.399 0.680 0.376 1.001 0.652

Weather 0.254 0.274 0.281 0.302 0.255 0.299 0.262 0.288 0.261 0.319 0.271 0.320 0.265 0.317 0.311 0.361 0.349 0.391 0.632 0.552 0.584 0.572

PEMS03 0.113 0.219 0.116 0.226 0.146 0.257 0.118 0.223 0.099 0.214 0.316 0.370 0.233 0.344 0.174 0.302 0.501 0.513 0.126 0.233 0.666 0.634

PEMS08 0.141 0.238 0.159 0.258 0.174 0.277 0.154 0.245 0.717 0.459 0.319 0.378 0.294 0.377 0.232 0.322 0.630 0.572 0.249 0.266 0.713 0.629

Note: We fix the input length as 96 following the established benchmarks (Liu et al., 2024; Wu et al., 2023). Bold typeface highlights the
top performance for each metric, while underlined text denotes the second-best results. The results are averaged over prediction lengths
(96, 192, 336 and 720), with full results in Table 5.

1. Performance: Does FreDF work? Section 4.2 compares FreDF against state-of-the-art baselines
using public datasets. The long-term forecasting task is investigated in Section 4.2 and the
short-term forecasting and imputation tasks are explored in Appendix E.1.

2. Mechanism: How does it work? Section 4.3 offers an ablative study to dissect the the contributions
of FreDF’s individual components, elucidating their roles in enhancing forecasting accuracy.

3. Generality: Does it support other forecasting models? Section 4.4 verifies the adaptability of
FreDF across different forecasting models, with additional results documented in Appendix E.5.

4. Flexibility: Does it support alternatives to FFT? Section 4.4 replaces FFT with other transforma-
tions to showcase its flexibility of implementation.

5. Sensitivity: Does it necessitate careful finetuning? Section 4.5 presents a sensitivity analysis of
the hyperparameter α, where FreDF maintains efficacy across a broad range of parameter values.

6. Efficiency: Is FreDF effective given limited samples? Section 4.6 offers a learning curve analysis,
where FreDF achieves comparable performance with limited samples to that obtained using
substantially more time-domain labels, indicating an advantageous sample efficiency.

4.1 SETUP

Datasets. The datasets for long-term forecast and imputation include ETT (4 subsets), ECL, Traffic,
Weather and PEMS following Wu et al. (2021) and Liu et al. (2024). The dataset for short-term
forecast is M4 following Wu et al. (2023). Each dataset is divided chronologically for training,
validation and test. Detailed dataset descriptions are provided in Appendix D.1.

Baselines. Our baselines include various established models in the time series field, which can be
grouped into three categories: (1) Transformer-based methods: Transformer (Vaswani et al., 2017),
Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022), iTransformer (Liu et al., 2024); (2)
MLP-based methods: DLinear (Zeng et al., 2023), TiDE (Das et al., 2023), FreTS (Yi et al., 2023b);
(3) other notable models: TimesNet (Wu et al., 2023), MICN (Wang et al., 2023a), TCN (Bai et al.,
2018). Notably, iTransformer (Liu et al., 2024) is the state-of-the-art baseline released in ICLR-24.

Implementation. The baseline models are reproduced using the scripts sourced from TimesNet (Wu
et al., 2023). They are trained with Adam (Kingma & Ba, 2015) optimizer to minimize the MSE loss.
When integrating FreDF to enhance an established model, we respect the associated hyperparameter
settings in the public benchmark (Wu et al., 2023), merely tuning α and learning rate conservatively.
Experiments are conducted on Intel(R) Xeon(R) Platinum 8383C CPUs NVIDIA RTX 3090 GPUs.
More implementation details are provided in Appendix D.2.

4.2 OVERALL PERFORMANCE

The performance on the long-term forecast task is present in Table 1, where we select iTransformer as
the forecast model g and enhance it with FreDF paradigm. Overall, FreDF improves the performance

6
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Figure 3: Visualization of forecast sequence generated with and without FreDF in the time (a-b) and
frequency (c-d) domain.

Table 2: Ablation study results.

Model L(tmp) L(feq) Data T=96 T=192 T=336 T=720 Avg

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DF ! %

ETTm1 0.346 0.379 0.391 0.400 0.426 0.422 0.493 0.460 0.414 0.415
ETTh1 0.390 0.409 0.442 0.440 0.479 0.457 0.483 0.479 0.449 0.446
ECL 0.147 0.239 0.166 0.258 0.178 0.271 0.209 0.298 0.175 0.266
Weather 0.201 0.246 0.250 0.282 0.302 0.317 0.370 0.361 0.280 0.302

FreDF† % !

ETTm1 0.324 0.361 0.374 0.387 0.403 0.405 0.468 0.443 0.392 0.399
ETTh1 0.380 0.399 0.429 0.425 0.474 0.451 0.467 0.464 0.437 0.435
ECL 0.144 0.232 0.158 0.247 0.171 0.262 0.204 0.291 0.169 0.258
Weather 0.165 0.205 0.225 0.255 0.278 0.295 0.359 0.349 0.257 0.276

FreDF ! !

ETTm1 0.324 0.362 0.372 0.385 0.402 0.404 0.468 0.443 0.391 0.398
ETTh1 0.381 0.400 0.430 0.426 0.474 0.451 0.463 0.461 0.437 0.435
ECL 0.144 0.233 0.158 0.247 0.172 0.263 0.204 0.293 0.169 0.259
Weather 0.163 0.202 0.220 0.252 0.274 0.293 0.356 0.346 0.253 0.273

of iTransformer substantially. For instance, on the ETTm1 dataset, FreDF decreases the MSE of
iTransformer by 0.019. This improvement is comparable to the advancement observed in the dataset
over 1.5 years, from Fedformer in 2022 to TimesNet in 2023, with a MSE reduction of 0.017. Similar
gains are evident in other datasets, which can be attributed to reconciliation of label autocorrelation
with the DF paradigm, validating efficacy of FreDF.

Notably, FreDF enhances the performance of iTransformer to surpass even those models that originally
outperformed iTransformer on some datasets. It indicates that the improvements by FreDF exceed
those achievable through dedicated architectural design alone, emphasizing the importance of handling
label autocorrelation and FreDF.

Showcases. We visualize the forecast sequences to highlight the improvements of FreDF in forecast
quality. A ETTm2 snapshot with T=336 is depicted in Figure 3. While the model without FreDF can
follow the general trends of the label sequence, it struggles to capture the sequence’s high-frequency
components, resulting in a forecast with a visibly lower frequency. Additionally, the forecast sequence
exhibits numerous burrs. These issues reflect the limitations of forecasting in the time domain, namely
the difficulty in capturing high-frequency components and the neglect of autocorrelation between
sequential steps. FreDF addresses these limitations effectively. The forecasts generated under FreDF
not only keep pace with the label sequence, accurately capturing high-frequency components, but
also exhibit a smoother appearance with fewer irregularities, due to its awareness of autocorrelation.

Table 3: Varying FFT implementation results.

Model ETTh1 ETTm1 ECL

MSE ∆ MAE ∆ MSE ∆ MAE ∆ MSE ∆ MAE ∆

iTransformer 0.449 - 0.447 - 0.415 - 0.416 - 0.176 - 0.267 -
+ FreDF-T 0.437 ↓ 2.63% 0.435 ↓ 2.62% 0.392 ↓ 5.49% 0.399 ↓ 4.01% 0.170 ↓ 3.41% 0.259 ↓ 2.77%
+ FreDF-D 0.445 ↓ 0.92% 0.440 ↓ 1.42% 0.395 ↓ 4.77% 0.398 ↓ 4.33% 0.171 ↓ 2.51% 0.260 ↓ 2.52%
+ FreDF-2 0.432 ↓ 3.94% 0.431 ↓ 3.57% 0.392 ↓ 5.60% 0.399 ↓ 4.05% 0.166 ↓ 5.32% 0.256 ↓ 4.20%

Note: ∆ denotes the relative error reduction compared to iTransformer with DF paradigm.
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Figure 4: Benefit of incorporating FreDF in varying models, shown with colored bars for means over
prediction lengths (96, 192, 336, 720) and error bars for 99.9% confidence intervals.

4.3 ABLATION STUDIES

In this section, we dissect the contributions of the temporal and frequency loss for enhancing forecast
performance. The results are detailed in Table 2, where iTransformer is employed as the forecast
model. Overall, the frequency loss consistently improves performance compared to the temporal
loss. The rationale is that label autocorrelation can be effectively managed in the frequency domain,
aligning better with the conditional independence assumption inherent in DF. Moreover, learning to
forecast in both domains generally showcase improvement compared to relying solely on one domain.
However, the improvement over L(feq) is marginal. Hence, exclusively focusing on frequency domain
forecasting emerges as a viable strategy in most cases, offering promising performance without the
complexity of balancing learning objectives.

4.4 GENERALIZATION STUDIES

In this section, we investigate the utility of FreDF with different forecast models and domain
transformation strategies, to showcase the generality of FreDF. In the bar-plots, the forecast errors are
averaged over prediction lengths (96, 192, 336, 720), with error bars as 95% confidence intervals.

Varying forecast models. We explore the versatility of FreDF in augmenting representative neural
forecasting models: iTransformer, DLinear, Autoformer, and Transformer. FreDF demonstrates
significant enhancements across these models compared to the traditional DF paradigm, as illustrated
in Figure 4. Notably, Transformer-based models such as the Autoformer and Transformer substantially
benefit from the integration of FreDF. On the ECL dataset, for instance, the Autoformer (developed
in 2021) enhanced by FreDF outperforms DLinear (developed in 2023). More evidence of FreDF’s
versatility is provided in Appendix E. These results confirm FreDF’s potential as a plugin-and-play
strategy to enhance various time-series forecasting models.

Varying FFT implementations. We note that label correlation exists between not only different
steps, but also variables in multivariate forecasting. Therefore, we implement FFT along the time
(FreDF-T) and variable dimension (FreDF-D) to handle the corresponding correlations, with the
outcomes illustrated in Table 3. In general, conducting FFT along the time and variable axis brings
similar performance gain, which showcases the existence of correlation between different steps and
variables, respectively. In particular, FreDF-T slightly outperforms FreDF-D, which underscores
the relative importance of auto-correlation in the label sequence. Finally, a strategic approach is
viewing the multivariate sequence as an image, performing 2-dimensional FFT on both time and
variable axes (FreDF-2), which accommodates the correlations between both time steps and variables
simultaneously and further improves performance.

Varying transformations. Motivated by the fact that FFT can be viewed as projections onto sine
polynomials, we extend the implementation of FreDF by replacing FFT with projections onto other
established polynomials. Each polynomial set is adept at capturing specific data patterns, such as
trends and periodicity, which are challenging to learn in the time domain. The results are summarized
in Figure 5. Notably, projections onto Legendre and Fourier bases demonstrate superior performance.
This superiority is attributed to the orthogonality between polynomials, a feature not guaranteed
by others as analyzed in Appendix C. It underscores orthogonality when selecting polynomials for
implementing FreDF, which is pivotal for eliminating autocorrelations.
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Figure 5: Varying projection bases results, shown with colored bars for means over prediction lengths
(96, 192, 336, 720) and error bars for 99.9% confidence intervals.
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Figure 6: Varying strength of frequency loss (α) results, shown with colored lines for T=192, 336.

4.5 HYPERPARAMETER SENSITIVITY

The key hyperparameter of FreDF is the frequency loss strength α. The performance given different
α is summarized in Figure 6. Overall, increasing α from 0 to 1 results in a reduction of forecast
error, albeit with a slight increase towards the end of this range. For instance, on the ECL dataset
with T=192, both MAE and MSE decrease from approximately 0.258 and 0.167 to 0.247 and 0.158,
respectively. Such trend of diminishing error seems consistent across different prediction lengths and
datasets, supporting the benefit of learning to forecast in the frequency domain. Notably, the optimal
reduction in forecast error typically occurs at α values near 1, such as 0.8 for the ETTh1 dataset,
rather than at the absolute value of 1. Therefore, unifying supervision signals from both time and
frequency domains brings performance improvement. The claims above can be supported by more

4.6 LEARNING-CURVE ANALYSIS
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Figure 7: Learning curve on ETTm1 dataset.

In this section, we investigate the sample efficiency
of learning in the time versus frequency domains,
with the corresponding learning curves showcased
in Figure 7. Notably, given limited training data,
learning in the frequency domain demonstrates re-
markable efficacy. Specifically, with only 30% of
the training data, it achieves performance compa-
rable to learning in the time domain using the full
training dataset.

The underlying reason for this enhanced sample
efficiency can be attributed to the consistent and
more straightforward nature of the data representation. For instance, a sliding window on a sine
signal yields a set of distinct sequences in the time domain. However, in the frequency domain, these
sequences present a similar pattern: a prominent spike at a specific frequency and negligible values
elsewhere. This uniformity simplifies the learning process, as the patterns are more consistent and
straightforward to decipher, thereby reducing the reliance on extensive training datasets.
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5 CONCLUSION

In this study, we investigated the challenge of label correlation in time series modeling, which biases
the learning objective of the DF paradigm away from the true likelihood of time series data. To
mitigate this issue, we developed FreDF, which reduces label correlation by transforming the label
sequence into the frequency domain, thereby diminishing the bias in the learning objective. Our
experiments demonstrate that FreDF not only enhances forecasting accuracy but also exhibits strong
adaptability across various tasks and forecasting models.

Limitation & future works. In this work, we mainly employ the Fourier transform for domain
transformation. Despite empirical efficacy, the predefined set of sine bases lacks the ability to adapt
to specific data properties. Alternative transforms such independent component analysis can produce
orthogonal bases considering data properties, representing a valuable avenue for future research.
Additionally, the issue of label autocorrelation extends beyond time series, affecting diverse contexts
involving structural labels, such as 3D point clouds, speech, and images. The potential of FreDF
to enhance performance in these contexts awaits further exploration. Lastly, the Fourier transform
assumes that each label is regularly sampled, limiting its applicability to irregular time-series. To
address this limitation, integrating advanced domain transformation techniques, such as non-uniform
Discrete Fourier Transform, could extend FreDF to handle irregular time-series.
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Michela Bia, Martin Huber, and Lukáš Lafférs. Double machine learning for sample selection models.
Journal of Business & Economic Statistics, 42(3):958–969, 2024.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-series
forecasting. In Proc. Adv. Neural Inf. Process. Syst., volume 33, pp. 17766–17778, 2020.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whit-
ney Newey, and James Robins. Double/debiased machine learning for treatment and structural
parameters: Double/debiased machine learning. The Econometrics Journal, 21(1), 2018.

Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting with
tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In Proc. Int. Conf. Learn. Represent., 2021.

Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Focal frequency loss for image re-
construction and synthesis. In Proc. IEEE Int. Conf. Comput. Vis., pp. 13899–13909. IEEE,
2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Int. Conf.
Learn. Represent., 2015.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In SIGIR, 2018.

Henning Lange, Steven L Brunton, and J Nathan Kutz. From fourier to koopman: Spectral methods
for long-term time series prediction. J. Mach. Learn. Res., 22(41):1–38, 2021.

Vincent Le Guen and Nicolas Thome. Shape and time distortion loss for training deep time series
forecasting models. In Proc. Adv. Neural Inf. Process. Syst., volume 32, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Vincent Le Guen and Nicolas Thome. Probabilistic time series forecasting with shape and temporal
diversity. In Proc. Adv. Neural Inf. Process. Syst., volume 33, pp. 4427–4440, 2020.

Jianxin Li, Xiong Hui, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence
time-series forecasting. In Proc. AAAI Conf. Artif. Intell., 2021.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
time series modeling and forecasting with sample convolution and interaction. In Proc. Adv. Neural
Inf. Process. Syst., 2022a.

Shiyu Liu, Rohan Ghosh, and Mehul Motani. Towards better long-range time series forecasting using
generative forecasting. CoRR, abs/2212.06142, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In Proc. Int. Conf.
Learn. Represent., 2024.

Xin Ma, Dehao Wu, Shaoxu Gao, Tongze Hou, and Youqing Wang. Autocorrelation feature analysis
for dynamic process monitoring of thermal power plants. IEEE Trans. Cybern., 53(8):5387–5399,
2023.

Gonzalo Mateos, Santiago Segarra, Antonio G. Marques, and Alejandro Ribeiro. Connecting the
dots: Identifying network structure via graph signal processing. IEEE Signal Process. Mag., 36(3):
16–43, 2019.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In Proc. Int. Conf. Learn. Represent., 2023.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast, 36(3):1181–1191, 2020.

Amin Shabani, Amir Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: Iterative multi-scale refining
transformers for time series forecasting. In Proc. Int. Conf. Learn. Represent., 2022.

Yajuan Si, Mari Palta, and Maureen Smith. Bayesian profiling multiple imputation for missing
hemoglobin values in electronic health records. Ann. Appl. Stat., 14(4):1903, 2020.

Souhaib Ben Taieb and Amir F Atiya. A bias and variance analysis for multistep-ahead time series
forecasting. IEEE Trans. Neural. Netw. Learn. Syst., 27(1):62–76, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Adv. Neural Inf. Process. Syst.,
2017.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
scale local and global context modeling for long-term series forecasting. In Proc. Int. Conf. Learn.
Represent., 2023a.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In Proc. Int.
Conf. Learn. Represent., 2024.

Wenxuan Wang, Jing Wang, Chen Chen, Jianbo Jiao, Lichao Sun, Yuanxiu Cai, Shanshan Song,
and Jiangyun Li. Fremae: Fourier transform meets masked autoencoders for medical image
segmentation. CoRR, abs/2304.10864, 2023b.

Mark W. Watson. Vector autoregressions and cointegration. Working Paper Series, Macroeconomic
Issues, 4, 1993.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. In Proc. Adv. Neural Inf. Process. Syst.,
2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In Proc. Int. Conf. Learn.
Represent., 2023.

Jiahao Xie, Wei Li, Xiaohang Zhan, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Masked
frequency modeling for self-supervised visual pre-training. In Proc. Int. Conf. Learn. Represent.
OpenReview.net, 2023.

Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph
perspective. In Proc. Adv. Neural Inf. Process. Syst., 2023a.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
forecasting. In Proc. Adv. Neural Inf. Process. Syst., 2023b.

Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation. In
Proc. Int. Conf. Learn. Represent., 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proc. AAAI Conf. Artif. Intell., 2023.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. Int. Conf. Mach.
Learn., 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

CONTENTS

A Overview of DML for Partial Correlation Estimation 14

A.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.4 More Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B Theoretical Justification 15

C Generalized Transformation onto Different Bases 20

D Reproduction Details 22

D.1 Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

E More Experimental Results 23

E.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E.2 Running cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.3 Random Seed Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E.4 Amplitude v.s. Phase Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E.5 Generalization Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E.6 Hyperparameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E.7 Comparison with DTW-based learning objectives . . . . . . . . . . . . . . . . . . 30

E.8 Comparison with additional forecast architectures . . . . . . . . . . . . . . . . . . 30

F Broader Impact 34

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A OVERVIEW OF DML FOR PARTIAL CORRELATION ESTIMATION

A.1 MOTIVATION

In this section, we introduce the rationale for employing double machine learning (DML) to quantify
the partial correlations. Our focus is on the autocorrelation represented by Yt → Yt′ where 0 ≤ t <
t′ < T. However, the fork structure Yt ← L(n) → Yt′ creates a pseudo correlation between Yt′
and Yt. In this case, the autocorrelation Yt → Yt′ is influenced by the pseudo correlations from the
fork structure, rendering traditional correlation measures, such as Pearson correlation, ineffective for
quantifying the autocorrelation Yt → Yt′ .

To effectively address this influence and quantify partial correlation, it is essential to employ methods
that excel in distinguishing direct relationships from spurious ones. DML is chosen for calculating
partial correlation for three key reasons (Bia et al., 2024; Chernozhukov et al., 2018): (1) its model-
agnostic nature, which does not depend on specific machine learning model specifications; (2) its
ease of implementation and independence from exhaustive hyperparameter tuning. DML offers a
robust and reliable quantification to the autocorrelation that we care about.

A.2 METHOD

In this section, we detail the implementation of DML, a two-step procedure designed for estimating
partial correlation. We define T ∈ R as the treatment variable, Y ∈ R as the outcome variable,
X ∈ RD as the control variable that needs to be accounted for. The implementation of DML is
depicted in Figure 8 (b) which consists of two steps below.

• Orthogonalization. This step involves orthogonalizing both the outcome (Y) and the treatment
(T ) with respect to the control variables (X ). To this end, we first use two machine learning models,
namely ϕ and ψ, to predict the outcome and the treatment based on X . These predictions aim to
capture the components in Y and T that are influenced by X . Subsequently, such impact of X can
be eliminated by calculating the residuals:

Ỹ = Y − ϕ(X ),
T̃ = T − ψ(X ).

(5)

• Regression. This step involves regressing the orthogonalized outcome Ỹ on the orthogonalized
treatment T̃ . A linear regression model is utilized for this purpose:

Ỹ = βT̃ + ϵ, (6)

where ϵ is the error term; β is the model coefficient that can be identified via ordinary least squares.
The β can be identified in a supervised learning manner, with objective to minimize the MSE of the
prediction and real values. The identified β quantifies the partial correlation between the treatment
and the outcome, having accounted for the influence of X .

By regressing the orthogonalized outcome on the orthogonalized treatment, DML captures the direct
effect of the treatment on the outcome without the interference from control variables , as depicted
in Figure 8 (c). That is, DML isolates the desired partial correlation T → Y from the influencing
correlation T ← X → Y .

A.3 EXPERIMENTAL SETTINGS

In this section, we outline the experimental settings implemented to employ DML for quantifying the
correlations of interest.

General settings. For the base learners ϕ and ψ, we opt for a linear regression model optimized
using ordinary least squares for its efficiency3. Following Appendix A.1, we treat the history sequence

3The linear regression model, chosen for its computational efficiency, is crucial in managing the experiment’s
scale, where the total number of DML estimators can be exceedingly high (e.g., 36,864 for T=192). This
selection is justified as other more complex models, like random forests, do not significantly alter the results in
our experiments.
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Pseudo correlation from
confounder 

(a)

Pseudo correlation from
confounder 

(b)

Pseudo correlation from
confounder 

(c)

Figure 8: Visualization of partial correlation and DML approach for partial correlation quantification.
(a) The correlation graph where the pseudo correlation is caused by the fork structure T ← X → Y .
(b) The implementation of DML, where β is the identified strength of the partial correlation T → Y .
(c) The partial correlation identified by DML.

L as the control variable to adjust, and simplify the process by considering the last step in L as
representative. Moreover, we focus exclusively on the correlations within the last feature of each
dataset4. This focus makes Y a scalar value within the real number space rather than a D-dimensional
vector in this experiment.

Specifications for identifying time-domain partial correlation. To assess the partial correlation
Yt → Yt′ , we treat Yt as the treatment and Yt′ as the outcome. The DML model is trained using a
set of N observations: {L(n)}n=1:N, {Yt(n)}n=1:N, and {Yt′(n)}n=1:N. The coefficient β derived
from the DML model is interpreted as the strength of the partial correlation Yt → Yt′ .

Specifications for identifying frequency-domain partial correlation. To quantify the partial
correlation Fk → Fk′ , we treat Fk as the treatment and Fk′ as the outcome. The DML model
is trained using a set of N observations: {L(n)}n=1:N, {Fk(n)}n=1:N, and {Fk′(n)}n=1:N. The
coefficient β derived from the DML model is interpreted as the strength of the partial correlation
Fk → Fk′ . A notable complexity arises due to Fk being a complex number. Since DML and
similar analytical methods are typically designed for real numbers instead of complex numbers, the
identification in this context entails separate consideration of the real and imaginary parts of Fk.

A.4 MORE EXPERIMENTAL RESULTS

In this section, we provide comprehensive results of the identified partial correlation strengths, which
mirrors the autocorrelation effect in the time and frequency domain. We first present the results
on three different datasets: Traffic, ETTh1, and ECL in Figure 9, with prediction length set to 192.
Subsequently, we present the results given varying prediction lengths: 48, 96, 192, 336 in Figure 10,
based on the ECL dataset.

The experimental results show similar patterns with those reported in the main text. Specifically,
the non-diagonal elements in Figure 9 (a-c) and Figure 10 (a-d) demonstrate significant values,
which affirms the presence of label autocorrelation in the time domain. In contrast, the non-diagonal
elements in Figure 9 (d-i) and Figure 10 (e-l) show negligible values, which suggests that frequency
components of F are almost independent given L.

In a nutshell, these findings verify the existence of label autocorrelation in the time domain which
contradicts the independence assumption of the DF paradigm. By transforming to the frequency
domain, the dependency raised by label autocorrelation is largely bypassed, which aligns with DF’s
independence assumption as per Theorem 1.

B THEORETICAL JUSTIFICATION

Theorem B.1 (Bias of DF, simplified). Given a input sequence L and a univariate label sequence
Y = [Y1, Y2] (the prediction length is set to 2 for simplicity), the learning objective (1) of DF

4This focus is aligned with the study’s objective of analyzing autocorrelations instead of inter-feature
correlations, which simplifies the interpretation of results.
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Figure 9: More comprehensive visualizations of label autocorrelation in different domains and
datasets, with columns representing different datasets: Traffic, ETTh1, and ECL, from left to right.
Panels (a-c) show the label correlation in the time domain, where each element ρi,j indicates the
partial correlation between Yi and Yj given L. Panels (d-i) show the label correlation in the frequency
domain, where each element ρi,j indicates the partial correlation between Fi and Fj given L, shown
with the real (d-f) and imaginary part (g-i). Due to the symmetry inherent in FFT, the prediction
length in the frequency domain is halved.
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Figure 10: More comprehensive visualizations of label autocorrelation in different domains and label
lengths, with columns representing label lengths H=48, 96, 192, 336 from left to right. Panels (a-d)
show the label correlation in the time domain, where each element ρi,j indicates the partial correlation
between Yi and Yj given L. Panels (e-l) show the label correlation in the frequency domain, where
each element ρi,j indicates the partial correlation between Fi and Fj given L, shown with the real
(e-h) and imaginary part (i-l).
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paradigm is biased, and the bias is quantified as:

Bias =
1

2σ2
(Y2 − Ŷ2)2 −

1

2σ2(1− ρ2)
(Y2 − (Ŷ2 + ρ(Y1 − Ŷ1))2, (7)

where Ŷi indicates the prediction at the i-th step and ρ denotes the partial correlation between Y1
and Y2 given L.

Proof. Aligning with the maximum likelihood analysis, we assume the label sequence obeys a
normal distribution with mean µ = [Ŷ1, Ŷ2] and covariance ζ = [[σ2, ρσ2], [ρσ2, σ2

2 ]]. The negative
log-likelihood (NLL) of Y given historical sequence L can be expressed as

− log p(Y |L) =− log p(Y1|L)− log p(Y2|L, Y1)

=− log(
1√
2πσ

exp(− (Y1 − Ŷ1)2

2σ2
))

− log(
1√

2π(1− ρ2)σ
exp(− (Y2 − (Ŷ2 + ρ(Y1 − Ŷ1))2

2σ2(1− ρ2)
))

Removing coefficients unrelated to g, the practical NLL that contributes the gradients to update g is

NLL :=
1

2σ2
(Y1 − Ŷ1)2 +

1

2σ2(1− ρ2)
(Y2 − (Ŷ2 + ρ(Y1 − Ŷ1))2

If the independence assumption of different time step holds (i.e., Y1 and Y2 are conditionally
independent given L), we have ρ = 0 and p(Y2|L, Y1) = p(Y2|L). In this case, the MSE loss that is
employed by DF mirrors the practical NLL (the term σ is often set to 1 when implementing MSE):

MSE =
1

2σ2
(Y1 − Ŷ1)2 +

1

2σ2
(Y2 − Ŷ2)2

If the independence assumption does not hold, i.e., ρ ̸= 0, the MSE loss in the time domain is biased
to the practical NLL. The bias is quantified as:

Bias =
1

2σ2
(Y2 − Ŷ2)2 −

1

2σ2(1− ρ2)
(Y2 − (Ŷ2 + ρ(Y1 − Ŷ1))2

So far we have specified the bias introduced by label autocorrelation, which makes the MSE loss in
the time domain fail to reflect the practical NLL and therefore misleads the update of forecast model
g under DF paradigm.

Theorem B.2 (Bias of DF). Given a input sequence L and a univariate label sequence Y , the
learning objective (1) of the DF paradigm is biased against the practical NLL, expressed as:

Bias =

T∑
i=1

1

2σ2
(Yi − Ŷi)2 −

T∑
i=1

1

2σ2(1− ρ2i )

Yi −
Ŷi + i−1∑

j=1

ρij(Yj − Ŷj)

2

, (8)

where Ŷi indicates the prediction at the i-th step, ρij denotes the partial correlation between Yi and
Yj given L, ρ2i =

∑i−1
j=1 ρ

2
ij .

Proof. Assume that the label sequence Y conditioned on the input sequence L follows a multivariate
normal distribution with mean vector µ = [Ŷ1, Ŷ2, . . . , ŶT] and covariance matrix Σ , where the
diagonal entries Σii = σ2 and the off-diagonal entries are Σij = ρijσ

2 for i ̸= j . Here, ρij denotes
the partial correlation between Yi and Yj given L. Under these assumptions, the NLL of the label
sequence Y given L can be decomposed into a sum of conditional NLLs due to the properties of the
multivariate normal distribution:

− log p(Y | L) = −
T∑

i=1

log p(Yi | L, Y1, Y2, . . . , Yi−1),
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where each conditional probability p(Yi | L, Y1, . . . , Yi−1) is Gaussian with mean Ŷi +∑i−1
j=1 ρij(Yj − Ŷj) and variance σ2(1− ρ2i ), ρ2i =

∑i−1
j=1 ρ

2
ij . Thus, the NLL can be expressed as

− log p(Y | L) =
T∑

i=1

1

2
log(2πσ2(1− ρ2i )) +

1

2σ2(1− ρ2i )

Yi −
Ŷi + i−1∑

j=1

ρij(Yj − Ŷj)

2
 .

For the purpose of gradient-based optimization, constant terms independent of the model predictions
Ŷi can be omitted. Therefore, the practical NLL contributing to the gradients is given by

NLL =

T∑
i=1

1

2σ2(1− ρ2i )

Yi −
Ŷi + i−1∑

j=1

ρij(Yj − Ŷj)

2

,

which immediately follows from discarding the constants irrelevant with the gradient of Ŷ .

On the other hand, the DF paradigm typically employs the MSE loss, expressed as

MSE =

T∑
i=1

1

2σ2
(Yi − Ŷi)2.

which deviates from the practical NLL. The bias is expressed as:

Bias = MSE−NLL =

T∑
i=1

1

2σ2
(Yi − Ŷi)2 −

T∑
i=1

1

2σ2(1− ρ2i )

Yi − Ŷi + i−1∑
j=1

ρij(Yj − Ŷj)

2

.

When there exists label autocorrelation, i.e., ρij ̸= 0, the bias above exists. In the special case (e.g.,
calculating the loss in the frequency domain) where the label autocorrelation is diminished, i.e.,
ρij → 0, the bias approaches zero almost surely.

Corollary B.3 (Bias of DF, multivariate). Given a input sequence L and a multivariate label sequence
Y ∈ RT×D, suppose Z ∈ RT×D be the flattened version of Y obtained by concatenating the rows,
the learning objective (1) of the DF paradigm is biased against the practical NLL, expressed as:

Bias =

T×D∑
i=1

1

2σ2
(Zi − Ẑi)

2 −
T×D∑
i=1

1

2σ2(1− ρ2i )

Zi −

Ẑi +

i−1∑
j=1

ρij(Zj − Ẑj)

2

, (9)

where Ẑi indicates the prediction of Zi, ρij denotes the partial correlation between Zi and Zj given
L, ρ2i =

∑i−1
j=1 ρ

2
ij .

Proof. This corollary immediately follows from Theorem B.2, by viewing the multivariate label
sequence Z as an augmented univariate sequence.

Theorem B.4 (Decorrelation between frequency components). Let Y be a zero-mean, discrete-time,
wide-sense stationary random process of length T. As T → ∞ , the DFT coefficients become
asymptotically uncorrelated at different frequencies:

lim
T→∞

E[FkF
∗
k′ ] =

{
SY (fk), if k = k′,

0, if k ̸= k′,

where fk = k
T and SY (f) is the power spectral density of Y .
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Proof. Recalling that the normalized DFT coefficients Fk are defined as Fk =

1/
√
T
∑T−1

t=0 Yte
−j2πkt/T, k = 0, 1, . . . ,T− 1. On this basis, the expected value of the

product FkF
∗
k′ can be expressed as:

E[FkF
∗
k′ ] = E

[
T−1∑
t=0

Yte
−j2πkt/T ·

T−1∑
t′=0

Yt′e
j2πk′t′/T

]
/T

=

T−1∑
t=0

T−1∑
t′=0

RY [t− t′]e−j2πkt/Tej2πk
′t′/T/T,

(10)

which immediately follows from interchanging the order of summation and expectation, and using
the autocorrelation function RY [t− t′] = E[YtYt′ ]. Let τ = t− t′ ; then t′ = t− τ . Substituting
and simplifying the exponentials gives:

E[FkF
∗
k′ ] =

T−1∑
t=0

T−1−t∑
τ=−t

RY [τ ]e
−j2π(kt/T−k′(t−τ)/T)/T

=

T−1∑
τ=−(T−1)

RY [τ ]e
j2πk′τ/T

min(T−1,T−1+τ)∑
t=max(0,τ)

ej2π(k
′−k)t/T/T

 .

where the inner sum over t involves a sum of complex exponentials. When k ̸= k′ , the exponentials
oscillate rapidly as T increases, causing the inner term to diminish due to destructive interference.
That is, for k ̸= k′ :

lim
T→∞

E[FkF
∗
k′ ] = 0.

When k = k′ , the exponential term becomes unity, and the inner sum simplifies to:

lim
T→∞

min(T−1,T−1+τ)∑
t=max(0,τ)

1/T = lim
T→∞

1− |τ |/T = 1.

which immediately follows by E[FkF
∗
k′ ] = SY (fk), where SY is the power spectral density of Y

that can be calculated as the DFT of RY . The proof is therefore completed.

C GENERALIZED TRANSFORMATION ONTO DIFFERENT BASES

Transforming time series data onto predefined spaces is a fundamental aspect of signal processing and
data analysis, with various strategies available depending on the choice of bases. The transformation
is implemented by projecting the original signal onto a different set of predefined bases, such as
the Fourier bases, Legendre bases, and Chebyshev bases. These bases are known for their mutual
orthogonality, and the selection of bases depends on the specific characteristics and requirements
of the analysis. We provide some formal definition of prevalent transformations below, where we
formulate signals as continuous functions for the ease of demonstration.

Fourier transform. It employs sinusoidal functions as bases which prove to be mutually orthogonal.
hese polynomials are particularly effective for analyzing periodic signals or signals with a strong
frequency component. Let k be the frequency, the associated basis function and projection onto it can
be formulated as follows:

fk(t) = exp(−j(2π/H)kt),

Fk =

∫ ∞

−∞
x(t)fk(t)dt

(11)

Legendre transform. It uses the Legendre polynomials as bases which prove to be mutually
orthogonal on the interval [−1, 1]. These polynomials are particularly useful for representing functions
defined on a finite interval, which makes them suitable for certain types of data smoothing and
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Figure 11: Forecast sequences generated by iTransformer on the snapshots where periodicity and
trend are dominant. The bases are selected as Fourier polynomial (b) for periodic mode and Legendre
(d) polynomial for trend mode.

approximation tasks. The k-th Legendre polynomial and the associated projection can be formulated
as follows:

fk(t) =
1

2kk!

dk

dtk
[(t2 − 1)k],

Fk =

∫ 1

−1

x(t)fk(t)dt

(12)

Chebyshev transform. It uses the Chebyshev polynomials as bases. These bases are NOT orig-
inally orthogonal, but can be proved mutually orthogonal on the interval [−1, 1] with respect to
the weight 1/

√
1− t2. These polynomials are particularly useful for approximating functions with

rapid variations. The k-th Chebyshev polynomial and the associated projection can be formulated as
follows, where weighting factor accounts for the varying density of Chebyshev nodes, making this
basis well-suited for numerical computations and function approximations.

fk(t) = cos(k arccos(t)),

Fk =

∫ 1

−1

x(t)fk(t)√
1− t2

dt
(13)

Laguerre transform. It uses the Laguerre polynomials as bases. These bases are NOT originally
orthogonal, but can be proved mutually orthogonal on the interval [0,∞] with respect to the expo-
nential weight exp(t). These polynomials are particularly useful in quantum mechanics and other
fields involving exponential decay. The k-th Laguerre polynomial and the associated projection can
be formulated as follows:

fk(t) = exp(t)
dk

dtk
(exp(−t)tk),

Fk =

∫ ∞

0

x(t)fk(t)

exp(t)
dt

(14)

These polynomial sets are adept at capturing specific data patterns, such as trends and periodicity
that are challenging to learn in the time domain. Their efficacy in FreDF is depicted in Figure 11.
Specifically, learning in the time domain fails to capture the increasing trends or follow the high-
frequency periods. The involvement of FreDF largely handles the issues and improves the forecast
quality.

In summary, the choice of an orthogonal basis for transforming time series data—whether it be
Fourier, Legendre, or Chebyshev—depends on the nature of the data and the specific objectives of
the analysis. Each basis has unique properties that make it suitable for different types of applications.
Understanding these properties is crucial for effectively employing these transformation strategies in
time series analysis.
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Table 4: Detailed dataset descriptions. D denotes the number of variates. Forecast Length denotes the
prediction lengths investigated in this dataset. Frequency denotes the sampling interval of time points.
Train, Validation, Test denotes the number of samples employed in each split. The taxonomy and
statistic are aligned with the recent works (Wu et al., 2023; Liu et al., 2024).

Dataset D Forecast Length Train / validation / test Frequency Domain

ETTh1 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTh2 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTm1 7 96, 192, 336, 720 34465/11521/11521 15min Health

ETTm2 7 96, 192, 336, 720 34465/11521/11521 15min Health

Weather 21 96, 192, 336, 720 36792/5271/10540 10min Weather

ECL 321 96, 192, 336, 720 18317/2633/5261 Hourly Electricity

Traffic 862 96, 192, 336, 720 12185/1757/3509 Hourly Transportation

PEMS03 358 12, 24, 36, 48 15617/5135/5135 5min Transportation

PEMS08 170 12, 24, 36, 48 10690/3548/265 5min Transportation

D REPRODUCTION DETAILS

All scripts have been incorporated in our anonymous repository, to reproduce the overall
performance results, ablation results and hyper-parameter sensitivity results. They will be
released publicly with pretrained checkpoints, hyperparameter settings and logging files.

D.1 DATASET DESCRIPTIONS

The datasets utilized in this study encompass a wide range of time series data, each with its unique
characteristics and temporal resolutions:

• ETT (Li et al., 2021) comprises data on 7 factors related to electricity transformers, collected from
July 2016 to July 2018. This dataset is divided into four subsets: ETTh1 and ETTh2, with hourly
recordings, and ETTm1 and ETTm2, documented every 15 minutes.

• Weather (Wu et al., 2021) includes 21 meteorological variables gathered every 10 minutes through-
out 2020 from the Weather Station of the Max Planck Biogeochemistry Institute.

• ECL (Electricity Consumption Load) (Wu et al., 2021) presents hourly electricity consumption
data for 321 clients.

• Traffic (Wu et al., 2021) features hourly road occupancy rates from 862 sensors in the San Francisco
Bay area freeways, spanning from January 2015 to December 2016.

• PEMS (Liu et al., 2022a) contains the public traffic network data in California collected by 5-minute
windows. Two public subsets (PEMS03, PEMS08) are adopted in this work.

Data processing and the division into training, validation, and testing sets adhere to the protocol
established by TimesNet (Wu et al., 2023). This approach ensures chronological order division to
prevent data leakage. Regarding forecast settings, the length of the lookback series is standardized at
96 across the ETT, Weather, ECL, and Traffic datasets, with varying prediction lengths of 96, 192, 336,
and 720. Further dataset specifics are delineated in Table 4.

D.2 IMPLEMENTATION DETAILS

The baseline models in this study were meticulously reproduced using training scripts obtained from
the TimesNet Repository (Wu et al., 2023) after reproducibility verification. Models were trained
employing the Adam optimizer (Kingma & Ba, 2015), with learning rates selected from the set
10−3, 5× 10−4, 10−4 to minimize the MSE loss. A consistent batch size of 32 was employed across
all models. The training regime was capped at a maximum of 10 epochs, incorporating an early
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stopping mechanism that was activated upon a lack of improvement in validation performance over 3
epochs.

In experiments integrating FreDF for existing forecast models, we closely adhered to the original
hyperparameter settings as specified in their respective publications. The only parameters finetuned
were the learning rate and the relative strength of frequency-domain alignment in [0,1]. Finetuning the
learning rate was essential to accommodate huge disparities in the magnitude of MSE loss observed
between the time and frequency domains. Fine-tuning was conducted to minimize the MSE averaged
across all prediction lengths on the validation dataset. Although finetuning for each prediction length
separately can further bosst the performance, we omitted it since the efficacy of FreDF does not rely
on dedicate hyperparameter configurations, and current results suffice to showcase the efficacy of
FreDF.

E MORE EXPERIMENTAL RESULTS

E.1 OVERALL PERFORMANCE

Long-term forecast. We provide comprehensive performance comparison on the long-term forecast
task in Table 5. The iTransformer model is employed to operationalize the FreDF paradigm. Despite
the iTransformer’s existing performance gap compared to other baseline models, the incorporation
of FreDF enhances its performance in the majority of cases, securing the lowest MSE in 31 out of
45 cases and MAE in 40 out of 45 cases. The consistent improvement across nearly all scenarios
underscores FreDF’s robustness. The few instances where FreDF does not achieve the lowest MSE is
attributed to the inherent advantages of other models over the iTransformer in specific contexts (for
example, FreTS versus iTransformer on the Weather dataset).

Case Study with PatchTST and Varying Historical Length. PatchTST (Nie et al., 2023) is
a powerful baseline, whose predictive performance strongly correlates with historical length. To
explore this, we open a thread here to study the performance of iTransformer and PatchTST under
different historical lengths, and to observe whether FreDF could improve both. The results in Table 6
with the Weather dataset indicate a consistent improvement with the integration of FreDF for both
iTransformer and PatchTST. It’s noteworthy that under our experimental conditions, PatchTST with
H = 336 achieved results comparable to the original “PatchTST/42” in Nie et al. (2023), and FreDF
still managed to reduce the MSE by 0.002, demonstrating its robustness across historical lengths.

Short-term forecast. We provide a detailed comparison for the short-term forecast task in Table 7,
with FreTS serving as the base model for FreDF implementation. Similar to the long-term forecast
results, FreDF enhances FreTS’s performance in most instances. Interestingly, FreTS exhibits superior
performance over FreDF in quarterly forecast lengths. This observation aligns with the expectation
that FreDF is optimized to minimize overall average forecast error on the validation set rather than
targeting specific forecast lengths. While it is possible to fine-tune FreDF for each forecast length to
cater to the distinct properties and optimal hyperparameter settings of different tasks, this approach
was not pursued as the current results adequately demonstrate FreDF’s effectiveness.

Missing data imputation. We investigate missing data imputation task. iTransformer, identified as
the best baseline for imputation tasks, is selected as the testbed for FreDF. iTransformer is selected as
the base model for FreDF implementation. All models are trained in an autoencoding manner: given
input sequences with missing entries, the models are tasked with reconstructing the non-missing
entries in the training phase, and employed to impute the missing entries in the inference phase.
The empirical results in Table 8 demonstrate the efficacy of FreDF in this task: it improves the
performance of iTransformer significantly, outperforming most competitive methods, hitting the
minimum MSE in 23 out of 30 cases and minimum MAE in 19 out of 30 cases. A unique aspect of
this task is that the label sequences are irregularly sampled due to missing entries, which disrupts the
physical semantics associated with the Fourier transform. This implies that the principal strength of
FreDF lies beyond the semantics of Fourier transform. Instead, its efficacy is rooted in its capability
to align the data property and the model assumption underlying DF paradigm.
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Table 5: Full results on the long-term forecasting task. The length of history window is set to 96 for
all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.

Models
FreDF iTransformer FreTS TimesNet MICN TiDE DLinear FEDformer Autoformer Transformer TCN
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021) (2017) (2017)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.324 0.362 0.346 0.379 0.339 0.374 0.338 0.379 0.318 0.366 0.364 0.387 0.345 0.372 0.389 0.427 0.468 0.463 0.591 0.549 0.887 0.613
192 0.373 0.385 0.392 0.400 0.382 0.397 0.389 0.400 0.364 0.396 0.398 0.404 0.381 0.390 0.402 0.431 0.573 0.509 0.704 0.629 0.877 0.626
336 0.402 0.404 0.427 0.422 0.421 0.426 0.429 0.428 0.398 0.428 0.428 0.425 0.414 0.414 0.438 0.451 0.596 0.527 1.171 0.861 0.890 0.636
720 0.469 0.444 0.494 0.461 0.485 0.462 0.495 0.464 0.514 0.501 0.487 0.461 0.473 0.451 0.529 0.498 0.749 0.569 1.307 0.893 0.911 0.653

Avg 0.392 0.399 0.415 0.416 0.407 0.415 0.413 0.418 0.399 0.423 0.419 0.419 0.404 0.407 0.440 0.451 0.596 0.517 0.943 0.733 0.891 0.632

E
T

T
m

2 96 0.173 0.252 0.184 0.266 0.190 0.282 0.185 0.264 0.178 0.275 0.207 0.305 0.195 0.294 0.194 0.284 0.240 0.319 0.317 0.408 3.125 1.345
192 0.241 0.298 0.257 0.315 0.260 0.329 0.254 0.307 0.240 0.317 0.290 0.364 0.283 0.359 0.264 0.324 0.300 0.349 1.069 0.758 3.130 1.350
336 0.298 0.334 0.315 0.351 0.373 0.405 0.314 0.345 0.299 0.354 0.377 0.422 0.384 0.427 0.319 0.359 0.339 0.375 1.325 0.869 3.185 1.375
720 0.398 0.393 0.419 0.409 0.517 0.499 0.434 0.413 0.482 0.479 0.558 0.524 0.516 0.502 0.430 0.424 0.423 0.421 2.576 1.223 4.203 1.658

Avg 0.278 0.319 0.294 0.335 0.335 0.379 0.297 0.332 0.300 0.356 0.358 0.404 0.344 0.396 0.302 0.348 0.326 0.366 1.322 0.814 3.411 1.432

E
T

T
h1

96 0.382 0.400 0.390 0.410 0.399 0.412 0.422 0.433 0.383 0.418 0.479 0.464 0.396 0.410 0.377 0.418 0.423 0.441 0.796 0.691 0.767 0.633
192 0.430 0.427 0.443 0.441 0.453 0.443 0.465 0.457 0.500 0.491 0.521 0.503 0.449 0.444 0.421 0.445 0.498 0.485 0.813 0.699 0.739 0.619
336 0.474 0.451 0.480 0.457 0.503 0.475 0.492 0.470 0.546 0.530 0.659 0.603 0.487 0.465 0.468 0.472 0.506 0.496 1.181 0.876 0.717 0.613
720 0.463 0.462 0.484 0.479 0.596 0.565 0.532 0.502 0.671 0.620 0.893 0.736 0.516 0.513 0.500 0.493 0.477 0.487 1.182 0.885 0.828 0.678

Avg 0.437 0.435 0.449 0.447 0.488 0.474 0.478 0.466 0.525 0.515 0.628 0.574 0.462 0.458 0.441 0.457 0.476 0.477 0.993 0.788 0.763 0.636

E
T

T
h2

96 0.289 0.337 0.301 0.349 0.350 0.403 0.320 0.364 0.361 0.404 0.400 0.440 0.343 0.396 0.347 0.391 0.383 0.424 2.072 1.140 3.171 1.364
192 0.363 0.385 0.382 0.402 0.472 0.475 0.409 0.417 0.495 0.490 0.528 0.509 0.473 0.474 0.430 0.443 0.557 0.511 5.081 1.814 3.222 1.398
336 0.419 0.426 0.430 0.434 0.564 0.528 0.449 0.451 0.671 0.588 0.643 0.571 0.603 0.546 0.469 0.475 0.470 0.481 3.564 1.475 3.306 1.452
720 0.415 0.437 0.447 0.455 0.815 0.654 0.473 0.474 0.968 0.712 0.874 0.679 0.812 0.650 0.473 0.480 0.501 0.515 2.469 1.247 3.599 1.565

Avg 0.371 0.396 0.390 0.410 0.550 0.515 0.413 0.426 0.624 0.549 0.611 0.550 0.558 0.516 0.430 0.447 0.478 0.483 3.296 1.419 3.325 1.445

E
C

L

96 0.144 0.233 0.148 0.239 0.189 0.277 0.171 0.273 0.168 0.280 0.237 0.329 0.210 0.302 0.200 0.315 0.199 0.315 0.252 0.352 0.688 0.621
192 0.159 0.247 0.167 0.258 0.193 0.282 0.188 0.289 0.177 0.289 0.236 0.330 0.210 0.305 0.207 0.322 0.215 0.327 0.266 0.364 0.587 0.582
336 0.172 0.263 0.179 0.272 0.207 0.296 0.208 0.304 0.185 0.296 0.249 0.344 0.223 0.319 0.226 0.340 0.232 0.343 0.292 0.383 0.590 0.588
720 0.204 0.294 0.209 0.298 0.245 0.332 0.289 0.363 0.218 0.323 0.284 0.373 0.258 0.350 0.282 0.379 0.268 0.371 0.287 0.371 0.602 0.601

Avg 0.170 0.259 0.176 0.267 0.209 0.297 0.214 0.307 0.187 0.297 0.251 0.344 0.225 0.319 0.229 0.339 0.228 0.339 0.274 0.367 0.617 0.598

Tr
af

fic

96 0.391 0.265 0.397 0.272 0.528 0.341 0.504 0.298 0.609 0.317 0.805 0.493 0.697 0.429 0.577 0.362 0.609 0.385 0.686 0.385 1.451 0.744
192 0.410 0.273 0.418 0.279 0.531 0.338 0.526 0.305 0.621 0.328 0.756 0.474 0.647 0.407 0.603 0.372 0.633 0.400 0.679 0.377 0.842 0.622
336 0.424 0.280 0.432 0.286 0.551 0.345 0.540 0.310 0.641 0.342 0.762 0.477 0.653 0.410 0.615 0.378 0.637 0.398 0.663 0.361 0.844 0.620
720 0.460 0.298 0.467 0.305 0.598 0.367 0.570 0.324 0.671 0.354 0.719 0.449 0.694 0.429 0.649 0.403 0.668 0.415 0.693 0.381 0.867 0.624

Avg 0.421 0.279 0.428 0.286 0.552 0.348 0.535 0.309 0.636 0.335 0.760 0.473 0.673 0.419 0.611 0.379 0.637 0.399 0.680 0.376 1.001 0.652

W
ea

th
er

96 0.164 0.202 0.201 0.247 0.184 0.239 0.178 0.226 0.182 0.250 0.202 0.261 0.197 0.259 0.221 0.304 0.284 0.355 0.332 0.383 0.610 0.568
192 0.220 0.253 0.250 0.283 0.223 0.275 0.227 0.266 0.234 0.301 0.242 0.298 0.236 0.294 0.275 0.345 0.313 0.371 0.634 0.539 0.541 0.552
336 0.275 0.294 0.302 0.317 0.272 0.316 0.283 0.305 0.268 0.325 0.287 0.335 0.282 0.332 0.338 0.379 0.359 0.393 0.656 0.579 0.565 0.569
720 0.356 0.347 0.370 0.362 0.340 0.363 0.359 0.355 0.361 0.399 0.351 0.386 0.347 0.384 0.408 0.418 0.440 0.446 0.908 0.706 0.622 0.601

Avg 0.254 0.274 0.281 0.302 0.255 0.299 0.262 0.288 0.261 0.319 0.271 0.320 0.265 0.317 0.311 0.361 0.349 0.391 0.632 0.552 0.584 0.572

PE
M

S0
3 12 0.068 0.172 0.069 0.175 0.083 0.194 0.082 0.188 0.087 0.203 0.117 0.225 0.122 0.245 0.123 0.248 0.239 0.365 0.107 0.209 0.632 0.606

24 0.096 0.205 0.098 0.210 0.127 0.241 0.110 0.216 0.086 0.198 0.233 0.320 0.202 0.320 0.160 0.287 0.492 0.506 0.121 0.227 0.655 0.626
36 0.128 0.240 0.131 0.243 0.169 0.281 0.133 0.236 0.105 0.220 0.380 0.422 0.275 0.382 0.191 0.321 0.399 0.459 0.133 0.243 0.678 0.644
48 0.161 0.269 0.164 0.275 0.204 0.311 0.146 0.251 0.120 0.235 0.536 0.511 0.335 0.429 0.223 0.350 0.875 0.723 0.144 0.253 0.699 0.659

Avg 0.113 0.219 0.116 0.226 0.146 0.257 0.118 0.223 0.099 0.214 0.316 0.370 0.233 0.344 0.174 0.302 0.501 0.513 0.126 0.233 0.666 0.634

PE
M

S0
8 12 0.080 0.182 0.085 0.189 0.095 0.204 0.110 0.209 2.193 0.871 0.121 0.231 0.152 0.274 0.175 0.275 0.446 0.483 0.213 0.236 0.680 0.607

24 0.118 0.220 0.131 0.236 0.150 0.259 0.142 0.239 0.235 0.339 0.232 0.326 0.245 0.350 0.211 0.305 0.488 0.509 0.238 0.256 0.701 0.622
36 0.161 0.258 0.182 0.282 0.202 0.305 0.167 0.258 0.197 0.300 0.379 0.428 0.344 0.417 0.250 0.338 0.532 0.513 0.263 0.277 0.727 0.637
48 0.206 0.293 0.236 0.323 0.250 0.341 0.195 0.274 0.242 0.324 0.543 0.527 0.437 0.469 0.293 0.371 1.052 0.781 0.283 0.295 0.746 0.648

Avg 0.141 0.238 0.159 0.258 0.174 0.277 0.154 0.245 0.717 0.459 0.319 0.378 0.294 0.377 0.232 0.322 0.630 0.572 0.249 0.266 0.713 0.629

1st Count 31 40 0 0 1 0 1 1 10 4 0 0 0 0 3 0 0 0 0 0 0 0
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Table 6: Evaluation results on varying history window length with Weather dataset.

Models FreDF iTransformer FreDF PatchTST

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

H
is

to
ry

W
in

do
w

L
en

gt
h

96

96 0.164 0.202 0.201 0.247 0.174 0.217 0.200 0.244
192 0.220 0.253 0.250 0.283 0.230 0.266 0.234 0.268
336 0.275 0.294 0.302 0.317 0.279 0.301 0.311 0.321
720 0.356 0.347 0.370 0.362 0.355 0.351 0.365 0.353

Avg 0.254 0.274 0.281 0.302 0.259 0.284 0.278 0.297

192

96 0.164 0.207 0.184 0.235 0.158 0.205 0.167 0.213
192 0.211 0.250 0.236 0.277 0.200 0.241 0.204 0.244
336 0.262 0.290 0.268 0.296 0.259 0.287 0.266 0.291
720 0.341 0.343 0.342 0.345 0.330 0.334 0.333 0.337

Avg 0.244 0.272 0.258 0.288 0.237 0.267 0.242 0.271

336

96 0.159 0.204 0.164 0.215 0.150 0.200 0.153 0.203
192 0.204 0.248 0.211 0.256 0.193 0.240 0.194 0.240
336 0.253 0.288 0.260 0.292 0.245 0.280 0.247 0.282
720 0.325 0.336 0.327 0.339 0.320 0.332 0.321 0.336

Avg 0.235 0.269 0.241 0.276 0.227 0.263 0.229 0.265

720

96 0.164 0.215 0.172 0.228 0.144 0.194 0.191 0.246
192 0.209 0.257 0.218 0.265 0.190 0.242 0.192 0.241
336 0.251 0.291 0.273 0.306 0.243 0.283 0.241 0.285
720 0.318 0.342 0.340 0.353 0.310 0.330 0.311 0.331

Avg 0.236 0.276 0.251 0.288 0.222 0.262 0.234 0.276

Table 7: Full results on the short-term forecasting task. Avg indicates the results averaged over
forecasting lengths: yearly, quarterly, and monthly.

Models
FreDF FreTS iTransformer MICN DLinear Fedformer Autoformer
(Ours) (2023) (2024) (2023) (2023) (2023) (2023)

Metric SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

Yearly 13.556 3.046 0.798 13.576 3.068 0.801 13.797 3.143 0.818 14.594 3.392 0.873 14.307 3.094 0.827 13.648 3.089 0.806 18.477 4.26 1.101
Quarterly 10.374 1.229 0.919 10.361 1.223 0.916 10.503 1.248 0.932 11.417 1.385 1.023 10.500 1.237 0.928 10.612 1.246 0.936 14.254 1.829 1.314
Monthly 12.999 0.983 0.913 13.088 0.99 0.919 13.227 1.013 0.935 13.834 1.080 0.987 13.362 1.007 0.937 14.181 1.105 1.011 18.421 1.616 1.398
Others 5.294 3.614 1.127 5.563 3.71 1.17 5.101 3.419 1.076 6.137 4.201 1.308 5.12 3.649 1.114 4.823 3.243 1.019 6.772 4.963 1.495
Avg. 12.112 1.648 0.877 12.169 1.66 0.883 12.298 1.68 0.893 13.044 1.841 0.962 12.48 1.674 0.898 12.734 1.702 0.914 16.851 2.443 1.26

1st Count 3 3 3 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Showcases. We provide additional showcases illustrating the improvements in forecast sequences
by integrating FreDF in Figure 12 and 14. Overall, FreDF effectively eliminates blurs in the forecast
sequences and captures high frequency components in the label sequences. These successes are
attributed to the unique capability of FreDF to operate in the frequency domain. In this domain,
the challenges of autocorrelation are naturally mitigated, and the expression of high-frequency
components becomes more straightforward. These factors underly FreDF’s success in elevating the
quality of forecast generation.

E.2 RUNNING COST ANALYSIS

In this section, we analyze the computational complexity and running cost of FreDF through empirical
investigation. The core computation of FreDF involves calculating the FFT of both predicted and label
sequences, followed by calculating their point-wise MAE loss. Therefore, the overall complexity of
FreDF is governed primarily by the FFT operation, which is O(T logT), where T is the length of
predicted sequence. Figure 16 illustrates the empirical running costs of FreDF for varying sequence
lengths, capturing both the Forward Pass (calculating FFT for the predicted sequence) and Backward
Pass (computing the frequency loss and gradients w.r.t. the prediction sequence). Our results
confirm that the additional computational duration imposed by FreDF is about 1ms for a prediction
sequence with T < 720. Importantly, the frequency loss computation is not required during inference.
Therefore, FreDF does not compromise the model’s efficiency during either training or inference
stages.
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Table 8: Full results on the missing data imputation task. The length of history window is set to 96
for all baselines. Avg indicates the results averaged over missing ratios: 0.125, 0.25, 0.375, 0.5.

Models
FreDF iTransformer FreTS TimesNet MICN TiDE DLinear FEDformer Autoformer
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021)

pmiss MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 0.125 0.00153 0.02790 0.00213 0.03307 0.01102 0.07843 0.01152 0.07267 0.00236 0.03371 0.45052 0.45514 0.00148 0.02380 0.68262 0.38111 0.37654 0.35378
0.25 0.00287 0.03801 0.00402 0.04434 0.01089 0.07753 0.01245 0.07946 0.00284 0.03691 0.41777 0.45884 0.00154 0.02351 0.68235 0.38116 0.37059 0.35261

0.375 0.00256 0.03669 0.00458 0.04663 0.01100 0.07812 0.01407 0.08673 0.00323 0.03900 0.62935 0.55570 0.00175 0.02385 0.68191 0.38105 0.37877 0.36093
0.5 0.00152 0.02739 0.00363 0.04359 0.01102 0.07818 0.01676 0.09610 0.00352 0.04028 0.29342 0.39320 0.00192 0.02219 0.68119 0.38085 0.38052 0.36462
Avg 0.00212 0.03250 0.00359 0.04191 0.01098 0.07807 0.01370 0.08374 0.00299 0.03747 0.44776 0.46572 0.00167 0.02334 0.68202 0.38104 0.37660 0.35798
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0.25 0.00061 0.01846 0.00216 0.03491 0.01022 0.08269 0.00341 0.03978 0.04106 0.14847 0.28831 0.40031 0.10682 0.23654 0.45887 0.41007 0.20618 0.29771

0.375 0.00090 0.02242 0.00211 0.03473 0.01022 0.08258 0.00230 0.03296 0.04373 0.15224 0.25310 0.37626 0.10500 0.23415 0.45886 0.41006 0.20998 0.30337
0.5 0.00103 0.02393 0.00175 0.03177 0.01025 0.08284 0.00171 0.02856 0.04520 0.15380 0.21280 0.34526 0.10362 0.23127 0.45891 0.41011 0.21322 0.30764
Avg 0.00071 0.01935 0.00197 0.03333 0.01022 0.08266 0.00302 0.03682 0.04169 0.14882 0.27091 0.38609 0.10550 0.23501 0.45887 0.41007 0.20771 0.29969
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Avg 0.00051 0.01331 0.00062 0.01573 0.00656 0.06103 0.00161 0.01332 0.00320 0.03868 0.24106 0.32620 0.00484 0.05016 0.40554 0.42633 0.13727 0.18382
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Figure 12: Forecast sequences generated by iTransformer, Dlinear and Autoformer with and without
FreDF. The prediction length is set to 336 and the experiment is conducted on a snapshot of ETTm2.
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Figure 13: Spectrum of forecast sequences generated by iTransformer, Dlinear and Autoformer with
and without FreDF, where only the first 24 frequencies of the spectrum are selected. The prediction
length is set to 336 and the experiment is conducted on a snapshot of ETTm2.
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Figure 14: Forecast sequences generated by generated by iTransformer, Dlinear and Autoformer with
and without FreDF. The prediction length is set to 336 and the experiment is conducted on a snapshot
of ETTm2.
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Figure 15: Spectrum of forecast sequences generated by iTransformer, Dlinear and Autoformer with
and without FreDF, where only the first 24 frequencies of the spectrum are selected. The prediction
length is set to 336 and the experiment is conducted on a snapshot of ETTm2.
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Figure 16: Runnig time of the frequency loss in the forward pass (left panel) and backward pass
(right panel), shown with dashed lines for average and shaded areas for 99.9% confidence intervals.
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Table 9: Experimental results (mean±std) with varying seeds (2020-2024).

Dataset ETTh1 Weather

Models FreDF iTransformer FreDF iTransformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

96 0.377±0.001 0.396±0.001 0.391±0.001 0.409±0.001 0.168±0.003 0.205±0.003 0.203±0.002 0.246±0.002
192 0.428±0.001 0.424±0.001 0.446±0.002 0.441±0.002 0.220±0.001 0.254±0.001 0.249±0.001 0.281±0.001
336 0.466±0.001 0.442±0.001 0.484±0.005 0.460±0.003 0.281±0.002 0.298±0.002 0.299±0.002 0.315±0.002
720 0.468±0.005 0.465±0.003 0.499±0.015 0.489±0.010 0.364±0.008 0.354±0.006 0.371±0.001 0.361±0.001

Avg 0.435±0.002 0.432±0.002 0.455±0.006 0.450±0.004 0.258±0.004 0.278±0.003 0.280±0.001 0.301±0.002

Table 10: Performance comparison of aligning amplitude and phase characteristics.

Amp. Pha. ECL ETTm1 ETTh1

MSE MAE MSE MAE MSE MAE

! % 0.3356 0.4060 0.5936 0.5169 0.7303 0.5968
% ! 0.1836 0.2752 0.4204 0.4173 0.4751 0.4487
! ! 0.1698 0.2594 0.3920 0.3989 0.4374 0.4351

E.3 RANDOM SEED SENSITIVITY

In this section, we investigate the sensitivity of the results to the specification of random seeds. To
this end, we report the mean and standard deviation of the results by conducting experiments using 5
random seeds (2020, 2021, 2022, 2023, 2024). We investigate (1) iTransformer; (2) FreDF, which is
applied to refine iTransformer. The results in Table 9 indicate minimal performance variation, with
standard deviations below 0.005 in 7 out of 8 Avg cases. This showcases the insensitivity of models
in time series forecast to different random seed specifications.

E.4 AMPLITUDE V.S. PHASE ALIGNMENT

Minimizing the frequency loss (3) ensures alignment of both amplitude and phase characteristics
between the forecast and actual label sequences in the frequency domain. In signal processing, both
are foundational for representing the dynamics of signals. We dissect their contributions in Table 10
with results averaged over forecast lengths. Overall, both characteristics are essential for FreDF. In
particular, phase alignment emerges as particularly crucial: aligning amplitude characteristics without
phase alignment results in poor performance. This outcome is reasonable, since minor deviations of
phase characteristics could correspond significant discrepancies in the time domain.

E.5 GENERALIZATION STUDIES

In this detailed investigation, we further explore the universality of the Frequency-enhanced Direct
Forecast (FreDF) paradigm in improving a range of neural forecasting models across diverse datasets.
Our analysis encompasses the impact of FreDF on four prominent models: iTransformer, DLinear,
Autoformer, and Transformer. The performance improvements facilitated by FreDF are quantitatively
presented in Figure 17 across five distinct datasets. The forecast errors are averaged over prediction
lengths (96, 192, 336, 720), with error bars as 95% confidence intervals.

FreDF demonstrates a significant ability to elevate the performance of these forecasting models, with
Transformer-based models like the Autoformer and Transformer experiencing particularly notable
enhancements. A case in point is the ECL dataset, where FreDF enables the Autoformer—a model
introduced in 2021—to surpass the performance of DLinear, a state-of-the-art model developed in
2023. This and other examples detailed in Appendix E vividly illustrate FreDF’s effectiveness and
general applicability.

The results presented here affirm the broad utility of FreDF in augmenting neural forecast models,
suggesting its role as a versatile and universally applicable training methodology in the field of time
series forecasting. This evidence solidifies FreDF’s position as a powerful tool capable of addressing
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Figure 17: Performance of different forecast models with and without FreDF. The forecast errors are
averaged over prediction lengths and the error bars represent 95% confidence intervals.

a wide array of forecasting challenges, marking it as a significant contribution to the advancement of
forecasting methodologies.

E.6 HYPERPARAMETER SENSITIVITY

In this section, we investigate the influence of adjusting the frequency loss parameter, α, on the
efficacy of the Frequency-enhanced Direct Forecast (FreDF) paradigm. This exploration is conducted
across three models: iTransformer, Autoformer, and DLinear, with the respective results depicted in
Figures 18, 19, and 20.

A consistent observation across these models is that incrementally increasing α from 0 to 1 generally
leads to a decrease in forecast error, although a marginal increase in error is noted as α approaches
1. For example, within the ECL dataset for a prediction length of T=192, we witness a reduction in
both Mean Absolute Error (MAE) and Mean Squared Error (MSE), from approximately 0.258 and
0.167 down to 0.247 and 0.158, respectively. This pattern of error reduction, observed across various
prediction lengths and datasets, affirms the advantages of adopting a frequency domain learning
approach.

Notably, the most significant decrease in forecast error often occurs at α values close to 1, such as 0.8
for the ETTh1 dataset, rather than at the maximum value of 1. This finding suggests that integrating
supervisory signals from both the time and frequency domains can yield further enhancements in
forecasting performance.

E.7 COMPARISON WITH DTW-BASED LEARNING OBJECTIVES

In this section, we compare FreDF with works that employ DTW as learning objectives to align
the shape of the forecast sequence with the label sequence: Dilate (Le Guen & Thome, 2019)
and DPP (Le Guen & Thome, 2020). Notably, these works do not the bias introduced by label
autocorrelation, which makes them independent to the contribution of FreDF. To ensure a fair
comparison, we integrated the official implementations of the loss functions Le Guen & Thome
(2019; 2020) into the iTransformer model. As shown in Table 11, FreDF significantly outperforms
DTW-based methods across both datasets. This improvement stems from FreDF’s unique ability to
debias the learning objective, a capability that Dilate and DPP do not possess.

E.8 COMPARISON WITH ADDITIONAL FORECAST ARCHITECTURES

In this section, we apply FreDF to two additional forecast architectures, namely TimeMixer Wang
et al. (2024) and ScaleFormer Shabani et al. (2022) to showcase the generality of FreDF. To ensure a
fair comparison, we utilized their official repositories, downloading and configuring them according
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Figure 18: Performance of iTransformer enhanced by FreDF given different relative importance of
frequency loss α. These experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2
(d), ECL (e), Traffic (f) and Weather (g) datasets. Different columns correspond to different forecast
lengths T (from left to right: 96, 192, 336, 720, and their average with shaded areas being 50%
confidence intervals).
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Figure 19: Performance of Autoformer enhanced by FreDF given different relative importance of
frequency loss α. These experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2
(d), ECL (e), Traffic (f) and Weather (g) datasets. Different columns correspond to different forecast
lengths T (from left to right: 96, 192, 336, 720, and their average with shaded areas being 50%
confidence intervals).
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Figure 20: Performance of DLinear enhanced by FreDF given different relative importance of
frequency loss α. These experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2
(d), ECL (e), Traffic (f) and Weather (g) datasets. Different columns correspond to different forecast
lengths T (from left to right: 96, 192, 336, 720, and their average with shaded areas being 50%
confidence intervals).
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Table 11: Comparable results with DTW-based loss.

Dataset ETTm1 ETTh1

Models FreDF Dilate DPP FreDF Dilate DPP

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.324 0.362 0.498 0.443 0.631 0.495 0.382 0.400 0.790 0.567 0.815 0.577
192 0.373 0.385 0.993 0.625 0.975 0.617 0.430 0.427 0.950 0.643 0.916 0.633
336 0.402 0.404 0.946 0.628 0.945 0.626 0.474 0.451 0.978 0.663 0.986 0.660
720 0.469 0.444 0.999 0.652 1.079 0.678 0.463 0.462 0.922 0.654 0.898 0.649

Avg 0.392 0.399 0.859 0.587 0.907 0.604 0.437 0.435 0.910 0.632 0.904 0.630

Table 12: Comparable results with baselines utilizing multiresolution trends.

Dataset ETTm1 ETTh1

Models FreDF TimeMixer FreDF Scaleformer FreDF TimeMixer FreDF Scaleformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.316 0.354 0.322 0.361 0.365 0.391 0.393 0.417 0.364 0.393 0.375 0.445 0.375 0.415 0.407 0.445
192 0.360 0.377 0.362 0.382 0.417 0.436 0.435 0.439 0.422 0.424 0.441 0.431 0.414 0.440 0.430 0.455
336 0.383 0.399 0.392 0.405 0.478 0.461 0.541 0.500 0.454 0.432 0.490 0.458 0.463 0.468 0.462 0.475
720 0.447 0.440 0.453 0.441 0.575 0.533 0.608 0.530 0.467 0.460 0.481 0.469 0.484 0.499 0.545 0.551

Avg 0.377 0.393 0.382 0.397 0.459 0.455 0.494 0.471 0.427 0.427 0.446 0.441 0.434 0.455 0.461 0.482

to their specified requirements. We modified their temporal MSE loss with the proposed loss in the
FreDF. The loss strength parameters were fine-tuned on the validation set. As shown in Table 12,
FreDF significantly enhances the performance of these architectures, demonstrating FreDF’s ability
to support and improve existing models. These improvements underscore the independent and
complementary nature of FreDF’s contributions.

F BROADER IMPACT

Time series modeling is a fundamental field in machine learning, with diverse potential applications
in the real world, none of which we feel must be specifically highlighted here. This study contributes
to advancing the field by addressing the effects of label correlations, a factor we believe to be pivotal
for both the theoretical understanding and practical application for time series modeling. We hold
the belief that the issue of label autocorrelation is not confined solely to time series data, pervading
various fields where structural labels play a critical role: 3D point clouds, speech, and images. A
common oversight in these domains is the treatment of interconnected components—such as pixels
in vision tasks—as independent entities within the learning objective, which neglects the inherent
correlations between these components and therefore limiting the performance. The FreDF paradigm,
a significant stride towards mitigating this label autocorrelation issue, has potential to enhance various
aspects of machine learning.
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