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Abstract

While interests in tabular deep learning has significantly grown, conventional
tree-based models still outperform deep learning methods. To narrow this perfor-
mance gap, we explore the innovative retrieval mechanism, a methodology that
allows neural networks to refer to other data points while making predictions. Our
experiments reveal that retrieval-based training, especially when fine-tuning the
pretrained TabPFN model, notably surpasses existing methods. Moreover, the
extensive pretraining plays a crucial role to enhance the performance of the model.
These insights imply that blending the retrieval mechanism with pretraining and
transfer learning schemes offers considerable potential for advancing the field of
tabular deep learning.

1 Introduction

Tabular data has been widely utilized in the industry, leading to an increased interest in the research
field of deep learning for tabular data. However, even with the significant advancements of deep
learning in vision and language domains, previous studies [12, 17, 25] have confirmed that tree-based
methods, such as Random Forests [3] and XGBoost [5], still prevail over deep learning techniques in
tabular domains. In order to narrow the performance gap, recent research has introduced architectures
that leverage the decision tree algorithm [22, 15] or the self-attention mechanism [1, 14, 11, 26].
Moreover, several works have focused on transfer learning to exploit the benefits of deep neural
networks by pretraining on extensive datasets [28, 2, 13, 29].

Among various methodologies, a retrieval mechanism, which retrieves data points as the reference
for prediction, has opened up new avenues in the field of tabular deep learning [16, 26, 23, 13, 10].
These neural networks make predictions by learning relationships between features and labels
but also by referring to other samples, which resembles models like decision trees and nearest
neighbors [7]. One specific application involves using input that contains a support set, D =
(Xsupport ,ysupport ,Xquery), to predict the label of a query sample.

Specifically, TabPFN [13] builds on prior-data fitted networks [18] to pretrain on synthetically
generated tabular prior datasets. Their goal is to approximate the posterior predictive distribution of a
test sample, which is conditioned on the set of training samples (see Figure 1). While the trained
models exhibit strong performance on unseen real-world tabular datasets in a single forward pass, this
in-context learning [4] approach could have led to overlooking the further potential of retrieval-based
training, potentially constraining the ability to transfer knowledge gained during pretraining.

In this paper, our comprehensive experiments, grounded on TabPFN and tabular benchmarks [12],
reveal crucial insights emphasizing the significance of retrieval-based training. We demonstrate that
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Figure 1: The overview of TabPFN training framework. Synthetically generated datasets are randomly
divided into support and query sets during the pretraining phase, while train and test sets of tabular
benchmarks are utilized during the evaluation.

the retrieval mechanism outperforms previous methods by further fine-tuning the pretrained TabPFN
model. Moreover, a larger number of retrieved data points contributes to higher performance gains by
offering enhanced references for prediction. We also find that pretraining on extensive datasets plays
an important role when comparing to models trained from scratch. Consequently, we believe that
integrating the retrieval mechanism with pretraining and transfer learning schemes will significantly
influence the future landscape of tabular deep learning.

2 Related Work

2.1 Retrieval Mechanism in Tabular Data

Recent retrieval mechanism that implicitly or explicitly retrieves data points as the reference for
prediction have shown significant improvements for tabular datasets. Non-Parameteric Transformers
[16] take the entire dataset as input and learn relationships through self-attention between datapoints.
Similarly, intersample attention from SAINT [26] associates the target row with other rows in the
table. On the other hand, there are explicit retrieval-based models, like RIM [23] and TabR [10], that
initially retrieve relevant instances using search engine techniques and a retrieval module, respectively.
Subsequently, they utilize the features and labels of the selected rows to make the final prediction
for the target row. Our work is primarily inspired by the TabPFN method [13], which let the token
representations of test samples attend feature and label representations of training sets. While they
only demonstrated the zero-shot evaluation performance, we fine-tuned pretrained models on actual
tabular benchmarks, surpassing the previous deep learning approaches for tabular data.

2.2 Tabular Transfer Learning

Leveraging transfer learning methods from computer vision [6] and natural language processing
[8] is a promising approach for tabular deep learning. Striving for generalization to unseen tables,
various works in the tabular deep learning literature have attempted to pretrain on a large collection
of different tables to exploit cross-table information [29, 27], harness biases from LLMs [19, 27] and
adopt self/semi-supervised learning [20, 19]. XTab [29] processes entire tables using data featurizers
and uses transformers for knowledge transfer. CT-BERT [27], similar to XTab, employs a pretrained
BERT for natural language and translates tables into "[column name] is [value]" strings. STUNT [20]
uses few-shot semi-supervised learning on self-generated tasks from unlabeled data, emphasizing
column correlations. SPROUT [19] learns from unlabeled tables through LLMs, focusing on columns
correlated with target labels, and applies in-context learning on generated prompts. The retrieval
mechanism as used in this paper, can be seen as an alternative way of enabling transfer learning.

3 Methodology

TabPFN is a transformer-based architecture designed for zero-shot inference on small classification
tasks. It is built on a basic transformer architecture that takes (Xsupport ,ysupport ,Xquery) as input.
Each observation in the dataset is tokenized during the embedding process. For observation xi ∈ Rdf
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with corresponding class label yi ∈ Z and df features, the embedding is calculated as follows:

zsupport
i = Wxxi +wyyi (1)

zquery
i = Wxxi (2)

with weight matrices Wx ∈ Rd×df and wy ∈ Rd×1 for hidden dimension d. These embedded
tokens zi are then processed through a basic transformer where attention is applied between the
observations, with the exception of attention between pairs of inference observations. In the final
layer, tokens corresponding to the inference observations are passed through a classification head.
Figure 1 illustrates the overview of the TabPFN architecture.

The features xi are all variable-wise quantile transformed and scaled by df/di
f , where dif is the

effective number of features of observation i. The target yi is kept as an unnormalized integer
representing the class index. Categorical features are not one-hot encoded before the quantile
transformation. Under the pretraining settings outlined in the TabPFN paper, the model accomodates
up to df = 100 features per observation and a maximum of 10 classes.

For fine-tuning TabPFN, we use the checkpoint from the pretrained TabPFN model. Given a real-life
test dataset D = (Xtrain ,ytrain ,Xtest ,ytest), we create a distinct randomized 80% split of Xtrain

and ytrain to make a new training dataset Dtrain = (Xsupport
train ,ysupport

train ,Xquery
train ,yquery

train ) at every
training step. We fine-tune on these splits and evaluate by predicting on (Xtrain ,ytrain ,Xtest).

4 Experiments

We evaluate our fine-tuned TabPFN on tabular benchmarks [12] consisting of approximately 50
datasets categorized based on feature type (numerical or numerical and categorical) and tasks
(classification or regression). We focus on the medium-size benchmarks containing about 10,000
observations and less than a hundred features. To ensure consistency to benchmarks, we follow the
same procedures for data splitting, optimizer selection, learning rate scheduling, early stopping, and
accuracy or R2 score normalization.

The hyperparameters are as follows. We use a learning rate of 1.0× 10−5 and no weight decay for
fine-tuning. When training from scratch, we use a learning rate of 1.0 × 10−4 and weight decay
of 1.0 × 10−5. We use a support set size of 10,000 or 1,000. For a support set size of 10,000, the
entire training dataset is processed through the transformer, while for 1,000, we randomly sample
1,000 samples from the training set and ensemble 10 times for each test observation. For all TabPFN
variants, we run default settings without random search, as the search showed little benefit.

4.1 Main Results

We compare our finetuned TabPFN with three tree-based methods (XGBoost [5], Random Forest
[3], and GradientBoostingTree [9]) and four neural network-based methods (MLP, Resnet, SAINT
[26], and FT-Transformer [11]). Since TabPFN pretraining relies on synthetically generated data, we
consider this a fair comparison in the quantity of real-world data used.

Figure 2 presents the overall comparison of classification accuracy. Here, we fine-tuned TabPFN with
10,000 number of retrieved samples. Utilizing default settings for fine-tuning TabPFN outperforms all
neural network-based tabular data methods, even after extensive random hyperparameter searches for
baselines. Furthermore, it also outperforms the tree-based methods under default settings, although
tree-based methods tend to perform better on average after about 10 random searches. Additional
dataset-specific results are available in Appendix B.

4.2 Ablation Study

Table 1 displays results for various TabPFN variations on mixed and numerical classification tasks,
referring to the settings in Figure 2. There is a significant gap in normalized accuracy between
fine-tuning on 10k samples and learning from scratch, with Zeroshot performance falling in between.
We believe that these results imply the importance of fine-tuning phase after pretraining.

We also examine the size of the support set. TabPFN is pretrained on datasets smaller than 1,000
samples. The classification ICL and Fine-tuning results indicate that processing 10,000 samples is
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Figure 2: Comparison between fine-tuning TabPFN and baselines using the full 10,000 samples.

Table 1: Results on TabPFN variants for classification accuracy and regression R2 score. The
pretraining and fine-tuning are conducted on synthetic datasets and actual tabular datasets, respectively.
ICL denotes the in-context learning, Scratch denotes training from scratch.

classification regression

method pretrain fine-tune # retrieval mixed numerical mixed numerical

Scratch ✗ ✗ 10k 0.5008 0.6057 0.2199 0.2906
ICL ✓ ✗ 1k 0.4451 0.5421 0.0000 0.0000
ICL ✓ ✗ 10k 0.5989 0.6609 0.0000 0.0000
Fine-tune ✓ ✓ 1k 0.6221 0.7073 0.0677 0.0877
Fine-tune ✓ ✓ 10k 0.7598 0.8057 0.0353 0.0913

preferable to ensembling 1,000-sample segments. For large datasets with over one million samples,
the best approach appears to be utilizing as many observations as the GPU memory allows.

In regression tasks, fine-tuned TabPFN underperforms, as the expected R2 should be around 0.8
(see Appendix A). This results comes as no surprise, as TabPFN is not pretrained for regression.
The model’s embedding expects integer class labels, but we provide quantile-transformed regression
targets. This suggests the need for pretraining on regression or exploring alternative methods.

5 Conclusion

Our findings suggest that fine-tuning tabular data transformers pretrained using a retrieval mechanism
is a compelling avenue for improving neural network based tabular data prediction. While research
was predominantly centered on training neural networks from scratch, our results suggest that
adopting the transfer learning paradigm holds significant potential. Pretrained transformers, unlike
small tabular data architectures, can scale effectively in the size of the network. We imagine that
large-scale companies could take this concept by developing a billion parameter transformer fine-
tunable on downstream datasets. Such an approach, we believe, has the potential to decisively surpass
the performance of all tree-based methods.

Our analysis identifies several areas for future research, with one pressing concern the scalability in
the number of observations. Models like GPT-4 [21] are limited by a context length of 32k tokens
and CodeLlama [24] by context length of 100k, but real-world tabular datasets can have millions of
observations. Further research areas include refining the architecture to tailor it specifically to tabular
data, exploring the limitations of synthetic data, and enabling regression within the model. In essence,
our study opens doors to a range of exciting possibilities for enhancing tabular data prediction through
transfer learning, paving the way for general tabular data solver.
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