
EMS-SD: Efficient Multi-sample Speculative Decoding
for Accelerating Large Language Models

Anonymous ACL submission

Abstract

Speculative decoding emerges as a pivotal001
technique for enhancing the inference speed002
of Large Language Models (LLMs). Despite003
recent research aiming to improve prediction004
efficiency, multi-sample speculative decoding005
has been overlooked due to varying numbers006
of accepted tokens within a batch in the veri-007
fication phase. Vanilla method adds padding008
tokens in order to ensure that the number of009
new tokens remains consistent across samples.010
However, this increases the computational and011
memory access overhead, thereby reducing the012
speedup ratio. We propose a novel method that013
can resolve the issue of inconsistent tokens ac-014
cepted by different samples without necessitat-015
ing an increase in memory or computing over-016
head. Furthermore, our proposed method can017
handle the situation where the prediction to-018
kens of different samples are inconsistent with-019
out the need to add padding tokens. Sufficient020
experiments demonstrate the efficacy of our021
method. Our code will be released later.022

1 Introduction023

Large Language Models (LLMs) (Radford et al.,024

2019; Achiam et al., 2023; Touvron et al., 2023;025

Wang et al., 2023) have demonstrated considerable026

capabilities, particularly in the realm of natural lan-027

guage processing. Autoregressive Large Language028

Models generate a token in a single pass, whereas029

speculative decoding allows large models to gener-030

ate multiple tokens in a single pass, thereby greatly031

improving inference speed. It is crucial to high-032

light that the inference time of LLMs on a single033

token and multiple tokens is approximate. Con-034

sequently, reducing the number of inference steps035

can significantly reduce the inference time.036

A plethora of efficient speculative decoding037

methods have been proposed recently. However,038

none of these methods provide a comprehensive039

study of speculative sampling in multi-sample sce-040

narios. To the best of our knowledge, only EA-041

1 2 4 8 12 16 20 24
Batch Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

d
Up

3.94

3.21

2.26

1.37

0.99
0.83

0.70 0.66

3.50

2.83

2.17

1.81
1.63

1.46 1.41

Greedy Decoding
Vanilla Method
Our Method

Figure 1: Speedup ratio of Opt-6.7b on the CNN/Daily
Mail Dataset for greedy settings when batch size ≥ 1,
utilizing LLMA (Yang et al., 2023b) as the basic spec-
ulative decoding method. Our method demonstrates su-
perior performance to the vanilla method under varying
batch sizes. The larger the batch size, the more pro-
nounced the advantage of our method.

GLE (Li et al., 2024) presents results for batch 042

sizes ≤ 4 but doesn’t discuss larger batch sizes. 043

The primary challenge in multi-sample specula- 044

tive decoding is the inconsistency in the number 045

of accepted tokens across samples following a sin- 046

gle inference. Vanilla solution is to add padding 047

tokens in order to achieve uniformity. This ap- 048

proach is also employed by EAGLE. Nevertheless, 049

these padding tokens increase the computational 050

and memory access overhead, which becomes sig- 051

nificant as batch size increases, thereby reducing 052

speedup ratio. 053

Can we perform multi-sample specula- 054

tive decoding without increasing compu- 055

tational and memory access overhead? 056

We proposed a novel and efficient method to 057

resolve this issue. Specifically, we propose unpad 058

Key-Value (KV) cache in the verification phase, 059

which specifies the start locations of the KV cache 060

for different samples, thus eliminating the need for 061

padding tokens. Furthermore, in anticipation of the 062

potential discrepancy in the number of predicted 063

1

tokens across different samples, we propose the064

unpad input tokens method as a solution in the065

prediction phase. This method concatenates all066

input tokens prior to inference and expands these067

tokens during the calculation of attention.068

The main contributions are as follows:069

1. We proposed an Efficient Multi-sample Spec-070

ulative Decoding method (EMS-SD), which071

takes full account of the inhomogeneity be-072

tween different samples. Even if the new073

generated token numbers of different samples074

vary, the KV cache is continuous without the075

addition of padding tokens. Similarly, when076

the prediction token numbers of different sam-077

ples vary, all input tokens are spliced without078

the addition of padding tokens.079

2. Sufficient experiments have proven that our080

proposed method achieves a much higher081

speedup than vanilla methods in multi-sample082

speculative decoding.083

3. We are the first to study speculative decod-084

ing in the context of multi-sample situations,085

and we have proposed an effective method for086

addressing this issue. Our method can be eas-087

ily integrated into almost all basic speculative088

sampling methods.089

2 Related Works090

Large Language Models. Since the advent of the091

GPT (Radford et al., 2019) series of models, par-092

ticularly after the emergence of ChatGPT (Achiam093

et al., 2023), there has been a proliferation of094

large language models, including Llama (Touvron095

et al., 2023), Vicuna (Chiang et al., 2023), Chat-096

GLM (Zeng et al., 2022), QWen (Bai et al., 2023),097

Baichuan (Yang et al., 2023a), Gemini (Team et al.,098

2023), Pangu-π (Wang et al., 2023), Mistral (Jiang099

et al., 2023, 2024), etc.100

Speculative decoding. Speculative decoding can101

be divided into two stages in general: prediction102

and verification. Some works have been published103

proposing efficient prediction methods. These pre-104

diction methods can be broadly classified into two105

categories: those that require training and those106

that do not. For example, methods that do not re-107

quire training include LLMA (Yang et al., 2023b),108

REST (He et al., 2023), Lookahead (Fu et al.,109

2023), PLD (Saxena, 2023), etc. In contrast, meth-110

ods that do require training include draft model111

prediction (Leviathan et al., 2023), Medusa (Cai112

et al., 2024), Hydra (Ankner et al., 2024), kanga-113

roo (Liu et al., 2024), EAGLE (Li et al., 2024), and 114

so forth. 115

Dynamic Tree decoding. SpecInfer (Miao et al., 116

2023) introduces tree decoding mechanism, which 117

predicts multiple tokens at the same position to 118

improve the acceptance rate. The tree structure is 119

manually designed, and so is Medusa, EAGLE, etc. 120

Some recent studies have focused on the problem of 121

dynamic tree decoding. Sequoia (Chen et al., 2024) 122

introduces a hardware-aware tree optimizer. And 123

RSD (Jeon et al., 2024) dynamically modifies the 124

tree structure within fixed computational budgets. 125

3 Approach 126

3.1 Rethinking Vanilla Multi-sample 127

Speculative Decoding 128

Restrictions on memory access. It should be 129

noted that mainstream AI frameworks such as Py- 130

Torch (Paszke et al., 2019) only support aligned 131

key-value cache access. Consequently, two key 132

requirements must be met for LLMs inference: (1) 133

the number of tokens across different samples with 134

in a batc must be equal prior to inference, and (2) 135

the input token count must remain consistent for 136

all samples during inference. To ensure uniformity, 137

padding tokens are added to samples with varying 138

token lengths. Additionally, attention masks are 139

used to prevent the computation of padding tokens. 140

Add padding tokens to align the output lengths 141

of different samples. The primary issue is that 142

the number of accept tokens during the verification 143

phase varies considerably between samples within 144

a batch. To illustrate, if k tokens are predicted in the 145

prediction stage, then the number of accept tokens 146

can be varied from 1 to k+1. Vanilla method adds 147

padding tokens to ensure that the number of new to- 148

kens is the same for each sample within in a batch. 149

Nevertheless, this approach leads to a considerable 150

increase in the computational and memory access 151

overhead, which in turn results in a significant re- 152

duction in the speedup. In Appendix B, we present 153

a theoretical analysis of the impact of padding to- 154

kens on speedup. 155

Add padding tokens to align the input lengths 156

of different samples. A further issue is that the 157

number of predicted tokens for different samples 158

in the prediction stage may vary. In this case, 159

padding token also needs to be added to align 160

the input lengths. This issue does not arise in all 161

circumstances, and is most commonly observed 162

in retrieval-based prediction scenarios, including 163

2

Efficiently Draft

Context
Decoding

Verify in Parallel

Efficiently Draft

Verify in Parallel

Sample 0
Sample 1

Vanilla Method

Our Method

context KV cache
step 1 KV cache

Decoding Step 1 Decoding Step 2

Efficiently Draft

Context
Decoding

Efficiently Draft

pad KV cache

accept token
draft token
pad token
useless token

step 2 KV cache

unpad input tokens

Verify in Parallel

unpad input tokens

Verify in Parallel

unpad KV cache unpad KV cache

Context Decoding

Sample 0
Sample 1

Sample 1Sample 0 Sample 1Sample 0

start locations

Figure 2: Our Method v.s. Vanilla Method. We specify the location of the KV cache for each sample individually,
thus eliminating the necessity for the addition of padding to the KV cache. And we concatenate all input tokens of
each sample into a single sequence without padding tokens when the number of prediction tokens differs between
samples. Our method demonstrates superior performance than the vanilla method, without the need for additional
computational and memory access overhead.

LLMA (Yang et al., 2023b) and REST (He et al.,164

2023). This is due to the fact that the retrieval-165

based prediction method employs a text matching166

process, whereby different samples may not be167

able to match the predicted text simultaneously. In168

more general methods, such as draft model predic-169

tion (Leviathan et al., 2023), generate same number170

of prediction tokens for different samples. Some171

recent studies have focused on the problem of dy-172

namic tree decoding (Chen et al., 2024; Jeon et al.,173

2024). It is possible that in the future, there may be174

different optimal prediction trees or optimal num-175

bers of tokens for different samples.176

Case analysis. As illustrated in Figure 2 and Ta-177

ble 1, we construct two samples within a batch as178

an example. In the decoding step 1, sample 1 have179

to add 3 padding tokens in order to ensure that180

the input lengths are identical to those of sample181

0. Subsequently, following the verification phase,182

sample 1 must add 3 padding tokens in the KV183

cache in order to ensure that the output lengths are184

identical to those of sample 0. In the decoding step 185

2, sample 0 have to add 3 padding tokens during 186

the predication phase and 4 padding tokens in the 187

KV cache subsequent to the verification phase. 188

3.2 Efficient Multi-sample Speculative 189

Decoding 190

Vanilla Method tends to result in elevated compu- 191

tational and memory access overheads. In con- 192

trast, our approach does not entail such drawbacks, 193

thereby conferring a higher speedup ratio. In this 194

section, we first point out that aligned KV cache 195

access is not immutable, and then present two key 196

components of our approach: unpad KV cache and 197

unpad input tokens. 198

Aligned KV cache access is not mandatory. In 199

autoregressive models, each token is conditioned 200

only on preceding tokens during the attention com- 201

putation. Theoretically, given the location of the 202

input token and access to the KV cache, we can 203

calculate the attention output. These operations 204

3

Table 1: The two constructed samples demonstrate in Figure 2. During the two decoding steps, the number of
tokens predicted and accepted by the two samples differs. If the vanilla method is employed, it’s necessary to
incorporate padding tokens in both predication and verification phases of speculative decoding.

Sample
Decoding Step 1 Decoding Step 2

Predication Phase Verification Phase Predication Phase Verification Phase
Predict Padding Accept Padding Predict Padding Accept Padding

0 5 0 4 0 2 3 2 4
1 2 3 1 3 5 0 6 0

can be encapsulated within CUDA kernels, as evi-205

denced by implementations in frameworks such as206

FasterTransformer (NVIDIA, 2021), FlashAtten-207

tion (Dao et al., 2022), and PyTorch (Paszke et al.,208

2019) 1. When invoking these kernels, we can com-209

pute attention output for different tokens, even if210

these different tokens are in different samples and211

rely on different numbers of preceding tokens.212

Unpad KV cache. Firstly, we introduce the first213

major component: unpad KV cache. This elimi-214

nates the need to add padding tokens when different215

samples accept different lengths in the verification216

phase. In particular, we specify the start location of217

the KV cache for each sample individually, rather218

than aligning writes in a manner similar to Pytorch.219

It should be noted that the varying start locations of220

samples lead to slight discrepancies in the compu-221

tational workload for the attention CUDA kernels.222

Nevertheless, since all tokens across varying posi-223

tions and samples compute their attention outputs224

in parallel, the overall speed is dictated by the to-225

ken necessitating the greatest computational load,226

typically the one with the highest number of pre-227

ceding tokens. As illustrated in the lower part of228

Figure 2, the start locations of KV cache of the229

two samples is distinct. For each input token, we230

initially compute its KV cache and subsequently231

write it to memory based on the specified position232

for each sample. Thereafter, the attention outputs233

for all tokens, across various samples and positions,234

are calculated in parallel.235

By employing unique KV cache start positions236

for each sample, we can independently determine237

the subsequent start location during verification,238

regardless of varying acceptance lengths across239

samples. Consequently, this approach negates the240

need for extra padding tokens, thereby preventing241

memory waste and computational overhead. As242

1These frameworks provide the basic CUDA kernel for
computing attention output. We need to modify these kernels
to implement our method for supporting speculative decoding
in multi-sample situations.

shown in Figure 2, sample 0 accepted 4 tokens, 243

advancing the KV cache start location by 4. While 244

sample 1 accepted 1 token, advancing it by 1. 245

Unpad input tokens. Secondly, in order to ad- 246

dress the issue of differing numbers of input tokens 247

across different samples, we proposed the "unpad 248

input tokens" method as a solution. In general, 249

prior to inputting into the Transformer network, 250

all input tokens are concatenated together, and the 251

number of input tokens for each sample is recorded. 252

Additionally, during the attention result calcula- 253

tions, the CUDA kernel reconstructs the original 254

batch indices and sequence positions for each to- 255

ken. This reconstruction enables us to identify the 256

specific KV cache that each token needs to rely on. 257

Figure 3 shows the general processing flow. Refer 258

to Appendix C for specific processing procedures. 259

0 0 0 0 0 0 1 1 1
5 6 7 8 9 10 3 4 5

sample id
sequence id

concat input tokens prior inference

input tokens of sample 0 sample 1

restore the sample/sequence index

depends on the first
5 KV caches in sample 1

Sample 0
Sample 1

context KV cache
step 1 KV cache

pad KV cacheaccept token
draft token start locations

Figure 3: The detailed processing of unpad input to-
kens of decoding step 1 in Figure 2. Sample 0 pre-
dicted 5 tokens, while sample 1 predicted 2 tokens. All
tokens are concatenated before inference, and the sam-
ple/sequence index is restored when attention is com-
puted within the CUDA kernels. Consequently, each
token is aware of the specific KV caches to which it
can utilize for parallel computation.

4

Table 2: Ablation study using LLMA were conducted on two key methods: unpad KV cache and unpad input
tokens. Under different batch sizes, our method demonstrated a significantly higher acceleration ratio than vanilla
method. The method "unpad KV cache" played a more prominent role.TPS stands for tokens per second.

Batch Size Inference Method Unpad KV
Cache

Unpad In-
put tokens

TPS Speed up

1
Greedy Decoding - - 79.44
Vanilla Method - - 313.04 3.94

2

Greedy Decoding - - 137.49
Vanilla Method × × 441.64 3.21

Our Method
✓ × 439.40 3.20
× ✓ 477.72 3.47
✓ ✓ 480.59 3.50

4

Greedy Decoding - - 257.37
Vanilla Method × × 581.54 2.26

Our Method
✓ × 610.41 2.37
× ✓ 728.86 2.83
✓ ✓ 729.17 2.83

8

Greedy Decoding - - 468.89
Vanilla Method × × 640.58 1.37

Our Method
✓ × 687.11 1.47
× ✓ 948.71 2.02
✓ ✓ 1017.75 2.17

16

Greedy Decoding - - 774.59
Vanilla Method × × 640.94 0.83

Our Method
✓ × 734.86 0.95
× ✓ 1134.25 1.46
✓ ✓ 1264.07 1.63

24

Greedy Decoding - - 936.45
Vanilla Method × × 616.19 0.66

Our Method
✓ × 708.53 0.76
× ✓ 1150.16 1.23
✓ ✓ 1321.45 1.41

4 Experiments260

4.1 Implementation details261

Base Speculative Decoding Methods. The effi-262

cacy of our approach is evaluated through two fun-263

damental speculative decoding methods. These in-264

clude LLMA (Yang et al., 2023b), a retrieval-based265

method, and draft model prediction (Leviathan266

et al., 2023), which employs draft models to pre-267

dict. In the LLMA method, the match length is set268

to 2 and the copy length to 7. In the draft model269

prediction method, the draft model is employed to270

predict 4 tokens.271

Models and Datasets. We adopt the Opt (Zhang272

et al., 2022) Series models, including Opt-1.3b,273

Opt-2.7b, and Opt-6.7b. 1 For the draft model pre-274

1As the FasterTransformer framework itself does not sup-

diction method, we utilized Opt-125m as the draft 275

model. The test data set comprised a total of 480 276

pieces of data selected from the CNN/Daily Mail 277

Test subset (See et al., 2017). All experiments are 278

conducted on a single NVIDIA A100 GPU. All 279

experimental results were subjected to three inde- 280

pendent tests and the mean values were calculated. 281

Metrics. In order to ascertain the speed of a given 282

method, we employ the tokens per second as an 283

indicator. Furthermore, the speed up ratio repre- 284

sents the multiple between the use of the specu- 285

lative sampling method and its absence. Given 286

that the generation length of the CNN/Daily Mail 287

Dataset is relatively brief (less than 128), we limit 288

our consideration to the incremental decoding pro- 289

port the Llama model, we did not utilize the more popular
model like Llama for testing purposes.

5

Table 3: The efficacy of our method evaluated on two smaller models using LLMA. Our method demonstrates
superior performance on different batch sizes and models of varying sizes. When the batch size increases, the
speedup ratio of the original method declines rapidly, whereas our method exhibits a more gradual decline.

Model Batch Size Greedy Decoding Vanilla Method Our Method
TPS TPS Speed up TPS Speed up

Opt-1.3b

1 211.97 651.73 3.07
2 326.38 815.62 2.50 928.62 2.85
4 570.51 948.01 1.66 1228.60 2.15
8 1028.84 924.63 0.90 1552.83 1.51

12 1437.61 876.22 0.61 1615.94 1.12
16 1765.01 851.62 0.48 1557.77 0.88

Opt-2.7b

1 128.31 389.61 3.04
2 205.95 484.31 2.35 550.62 2.67
4 362.88 545.67 1.50 707.25 1.95
8 643.38 527.27 0.82 885.83 1.38

12 881.70 521.42 0.59 973.53 1.10
16 1087.33 521.16 0.48 1072.35 0.99

cess. In speculative decoding, the average accep-290

tance length is a significant metric, with a larger av-291

erage acceptance length often indicative of a higher292

speedup ratio. Since some padding tokens need to293

be added in the vanilla multi-sample speculative294

decoding method, the average padding ratio is also295

a significant metric. The larger the average padding296

ratio, the lower the speedup ratio.297

Specific code implementation. Our proposed298

method in question necessitates the alteration of the299

CUDA kernel. And we implemented our method300

on the FasterTransformer (NVIDIA, 2021) frame-301

work, which is a widely used C++ acceleration302

library that facilitates the implementation of our303

method. The proposed methods were implemented304

by modifying the Python calling interface and the305

CUDA kernels. Further details can be found in the306

open-source.307

4.2 Experiments using LLMA308

In this section, LLMA is adopted as the basic309

method of speculative decoding.310

Ablation study on two Key components: unpad311

KV cache and unpad input tokens. As illustrated312

in Table 2, the opt-6.7b model was employed to313

conduct ablation experiments on two key methods.314

Firstly, it can be observed that under varying batch315

sizes, our method exhibits a superior speedup com-316

pared to the vanilla method. When the batch size317

was set to 8, our method achieved a speedup of 2.17318

times, whereas the vanilla method only achieved a319

speedup of 1.37 times. Secondly, both sub-methods320

are of significance, with "unpad KV cache" playing321

a particularly pivotal role. 322

Experiments on different model sizes. In addi- 323

tion, we tested two smaller-sized models, namely 324

opt-1.3b and opt-2.7b. As illustrated in Table 3, 325

the two smaller models exhibit higher speedup ra- 326

tios when utilising our method in comparison to 327

the vanilla method, regardless of the varying batch 328

sizes. When the batch size was set to 8, the opt- 329

1.3b model demonstrated an acceleration of 1.51 330

times, whereas the original method exhibited no 331

acceleration effect and was slower than the greedy 332

decoding method. 333

4.3 Experiments using Draft Model 334

Prediction 335

In this section, the draft model prediction method 336

is adopted as the basic method of speculative de- 337

coding. It is important to note that when utilizing 338

the draft model prediction approach, the number 339

of predictions for each sample is identical. Conse- 340

quently, only "unpad KV cache" are employed in 341

this section. 342

As illustrated in Table 4, we utilize the opt-125m 343

model as the draft model, and test three models 344

of varying sizes. Our method exhibits a superior 345

speedup compared to the vanilla method across 346

diverse models and varying batch sizes. 347

4.4 Analysis of Speedup Decrease with 348

Multi-sample 349

As illustrated in Table 2, it is evident that the 350

speedup ratio exhibits a decline in the context of 351

multiple samples. When the batch size is set to 352

6

Table 4: Evaluating the effectiveness of our method on three models of different sizes using draft model prediction,
with opt-125m model as the draft model. In models of varying sizes, our method exhibits a greater speedup than
the vanilla method.

Model Batch Size Greedy Decoding Vanilla Method Our Method
TPS TPS Speed up TPS Speed up

Opt-1.3b

1 211.97 280.03 1.32
2 326.38 398.22 1.22 410.82 1.26
4 570.51 604.83 1.06 628.04 1.10
8 1028.84 864.43 0.84 954.51 0.93

Opt-2.7b

1 128.31 213.08 1.66
2 205.95 306.42 1.49 316.56 1.54
4 362.88 452.65 1.25 464.56 1.28
8 643.38 611.80 0.95 691.54 1.07

12 881.70 685.64 0.78 843.70 0.96

Opt-6.7b

1 79.44 177.69 2.24
2 137.49 273.53 1.99 280.52 2.04
4 257.37 432.38 1.68 438.87 1.71
8 468.89 582.28 1.24 686.75 1.46

12 644.47 635.49 0.99 824.23 1.28
16 774.59 675.88 0.87 939.32 1.21
20 863.32 709.52 0.82 1018.68 1.18
24 936.45 728.04 0.78 1100.82 1.18

1 2 3 4 5

5

10

15

20

In
fe

re
nc

e
tim

e
(m

s)

Batch size=4

1 2 3 4 5

Batch size=16

Input token numbers per sample
Opt-6.7b Opt-2.7b Opt-1.3b

Figure 4: The inference time of different numbers of in-
put tokens per sample under different batch sizes. We
set the number of existing tokens in each sample to 512.
When the number of input tokens per sample is varied
with a batch size of 4, the inference time remains essen-
tially unchanged. However, when the batch size is in-
creased to 16, the inference time changes significantly.

4, the speedup ratio is 2.83, while when the batch353

size is set to 16, the speedup ratio is 1.63. Similar354

conclusions can be drawn from Table 4.355

We have identified two factors contributing to356

the reduction in the speedup ratio. Firstly, when357

the batch size is sufficiently large and multiple to-358

kens are processed simultaneously, the individual359

inference time for LLMs escalates considerably.360

As illustrated in Figure 4, the inference time for 361

the opt-6.7b model with a batch size of 16 is 22.6 362

milliseconds for the processing of five tokens per 363

sample, whereas for a single token, it is 16.6 mil- 364

liseconds, which is 1.36 times slower. 365

Secondly, the principal reason for this decline 366

in performance is the considerable disparity in the 367

speedup across different samples. The average ac- 368

ceptance length is positively correlated with the 369

speedup ratio. As illustrated in Figure 5(a), the av- 370

erage acceptance length difference of opt-1.3b/2.7b 371

on different samples is greater than that of opt-6.7b 372

when the LLMA method is employed. Figure 5(d) 373

shows that the discrepancies in the average accep- 374

tance length across models were relatively modest 375

when utilising a draft model to predict. 376

As batch size increases, the average acceptance 377

length difference within the batch also rises, and 378

the minimum average acceptance length within the 379

batch decreases. As illustrated in Figure 5(b), a 380

comparison of the opt-6.7b and opt-2.7b models 381

reveals that the speedup ratio of the latter is more 382

uneven on the test samples. As the batch size in- 383

creases, the minimum average acceptance length 384

within the batch decreases at a faster rate, although 385

their speedup ratios are similar when the batch size 386

is equal to one. Figure 5(c)(f) illustrates the pro- 387

7

1 2 3 4 5 6 7 8
Average Acceptance length

0.00

0.05

0.10

0.15

0.20

0.25

0.30 Opt-1.3b
Opt-2.7b
Opt-6.7b
Mean

(a) Probability density

1 2 4 8 12 16 20 24
Batch Size

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 Opt-1.3b

Opt-2.7b
Opt-6.7b

(b) Minimum average acceptance length
within batch

1 2 4 8 12 16 20 24
Batch Size

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Opt-1.3b
Opt-2.7b
Opt-6.7b

(c) Average Padding Ratio

1 2 3 4 5 6
Average Acceptance length

0.0

0.2

0.4

0.6

0.8 Opt-1.3b
Opt-2.7b
Opt-6.7b
Mean

(d) Probability density

1 2 4 8 12 16 20 24
Batch Size

2.0

2.5

3.0

3.5

4.0 Opt-1.3b
Opt-2.7b
Opt-6.7b

(e) Minimum average acceptance length
within batch

1 2 4 8 12 16 20 24
Batch Size

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Opt-1.3b
Opt-2.7b
Opt-6.7b

(f) Average Padding Ratio

Figure 5: A comprehensive analysis of the factors that contribute to the reduction of the speedup ratio in multi-batch
scenarios. Figure (a)(b)(c) employ LLMA as the basic speculative decoding method, while Figure (d)(e)(f) utilize
the draft model prediction method, utilising opt-125m as the draft model. Figure (a)(d) illustrates the probability
density function of the average acceptance length of distinct samples, with batch size set to 1. It is evident that
the average acceptance length of different samples exhibits considerable variability. Figure (b)(e) illustrates the
reduction in the minimum average acceptance length within batch as the batch size increases. Given that the
speedup ratios of different samples within the batch are disparate, the inference time of this batch is constrained by
the slowest sample. Figure (c)(f) illustrates the ratio of the number of padding tokens to the total number of newly
generated tokens, as a function of varying batch sizes, when employing the vanilla method.

portion of padding tokens in multi-sample cases388

utilising vanilla method. The opt-6.7b model, with389

batch size set to 8, exhibits a significant increase390

in the number of padding tokens, exceeding 60%391

using LLMA and exceeding 20% using draft model392

prediction. This explains why vanilla method have393

serious speedup ratio degradation in multi-sample394

cases.395

In order to maintain the speedup ratio in the396

case of multiple samples, the most straightforward397

method is to ensure that the speedup ratios of differ-398

ent samples are similar under the basic speculative399

decoding method. However, the optimal solution400

to this issue is dynamic batching (Yu et al., 2022),401

which entails replacing a finished sample in the402

batch with a new sample once it has been com-403

pleted, rather than waiting for all samples in the404

batch to be completed before proceeding to the next405

inference. The implementation of dynamic batch-406

ing is expected to enhance the efficiency of multi-407

sample processing, with the potential for achiev-408

ing a comparable speedup to that in single-sample 409

cases. 410

5 Conclusions 411

In this paper, we present the first study of multi- 412

sample speculative sampling. we introduce an ef- 413

fective method, called EMS-SD. EMS-SD is an 414

effective solution to the inconsistency problem of 415

different samples in the prediction and verification 416

stages, without the need of padding tokens. The 417

proposed method is flexibly integrated with almost 418

any basic speculative decoding method. Extensive 419

comparisons show that EMS-SD exhibits superior 420

performance compared to the vanilla method in 421

multi-sample speculative decoding. 422

Limitations 423

This work has four limitations: 1) Theoretical evi- 424

dence indicates that dynamic batching may serve to 425

mitigate the performance degradation that occurs in 426

8

multi-sample speculative decoding. However, this427

has not been empirically validated. Subsequent ex-428

periments will assess the efficacy of multi-sample429

speculative decoding in conjunction with dynamic430

batching. 2) The potential negative impact of non-431

contiguous memory accesses on performance was432

not considered. In batched greedy decoding, the433

memory access between different samples is con-434

tinuous. However, in the proposed method, due to435

the varying lengths of different samples, the mem-436

ory access is not continuous. This may have a437

negative effect on acceleration. 3) Although our438

method is independent of the inference framework,439

we have not yet implemented our method on frame-440

works such as PyTorch (Paszke et al., 2019) or441

vLLM (Kwon et al., 2023). This undoubtedly lim-442

its the ease of use of our method. In subsequent443

work, we will consider implementing our method444

in these frameworks. 4) Tree decoding will further445

accelerate speculative decoding, which has been446

widely verified in the single-sample speculative de-447

coding (Miao et al., 2023; Cai et al., 2024; Liu et al.,448

2024; Li et al., 2024). Nevertheless, the efficacy of449

integrating tree decoding with multi-sample spec-450

ulative reasoning has yet to be validated. Future451

experiments will evaluate the effectiveness of the452

multi-sample speculative decoding when integrated453

with tree decoding.454

References455

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama456
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,457
Diogo Almeida, Janko Altenschmidt, Sam Altman,458
Shyamal Anadkat, et al. 2023. Gpt-4 technical re-459
port. arXiv preprint arXiv:2303.08774.460

Zachary Ankner, Rishab Parthasarathy, Aniruddha461
Nrusimha, Christopher Rinard, Jonathan Ragan-462
Kelley, and William Brandon. 2024. Hydra:463
Sequentially-dependent draft heads for medusa de-464
coding.465

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,466
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei467
Huang, et al. 2023. Qwen technical report. arXiv468
preprint arXiv:2309.16609.469

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu470
Peng, Jason D. Lee, Deming Chen, and Tri Dao.471
2024. Medusa: Simple llm inference acceleration472
framework with multiple decoding heads. arXiv473
preprint arXiv: 2401.10774.474

Zhuoming Chen, Avner May, Ruslan Svirschevski,475
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and476
Beidi Chen. 2024. Sequoia: Scalable, robust,477

and hardware-aware speculative decoding. arXiv 478
preprint arXiv:2402.12374. 479

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 480
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 481
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 482
2023. Vicuna: An open-source chatbot impressing 483
gpt-4 with 90%* chatgpt quality. See https://vicuna. 484
lmsys. org (accessed 14 April 2023), 2(3):6. 485

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 486
Christopher Ré. 2022. Flashattention: Fast and 487
memory-efficient exact attention with io-awareness. 488
Advances in Neural Information Processing Systems, 489
35:16344–16359. 490

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 491
2023. Breaking the sequential dependency of llm 492
inference using lookahead decoding. 493

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, 494
and Di He. 2023. Rest: Retrieval-based speculative 495
decoding. 496

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Juny- 497
oung Park, Mingu Lee, and Christopher Lott. 2024. 498
Recursive speculative decoding: Accelerating llm in- 499
ference via sampling without replacement. arXiv 500
preprint arXiv:2402.14160. 501

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 502
sch, Chris Bamford, Devendra Singh Chaplot, Diego 503
de las Casas, Florian Bressand, Gianna Lengyel, 504
Guillaume Lample, Lucile Saulnier, et al. 2023. 505
Mistral 7b. arXiv preprint arXiv:2310.06825. 506

Albert Q Jiang, Alexandre Sablayrolles, Antoine 507
Roux, Arthur Mensch, Blanche Savary, Chris 508
Bamford, Devendra Singh Chaplot, Diego de las 509
Casas, Emma Bou Hanna, Florian Bressand, et al. 510
2024. Mixtral of experts. arXiv preprint 511
arXiv:2401.04088. 512

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 513
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 514
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 515
cient memory management for large language model 516
serving with pagedattention. In Proceedings of the 517
ACM SIGOPS 29th Symposium on Operating Sys- 518
tems Principles. 519

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 520
2023. Fast inference from transformers via specu- 521
lative decoding. In International Conference on Ma- 522
chine Learning, pages 19274–19286. PMLR. 523

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 524
Zhang. 2024. Eagle: Speculative sampling requires 525
rethinking feature uncertainty. In International Con- 526
ference on Machine Learning. 527

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng 528
Ni, Kai Han, and Yunhe Wang. 2024. Kangaroo: 529
Lossless self-speculative decoding via double early 530
exiting. arXiv preprint arXiv:2404.18911. 531

9

http://arxiv.org/abs/2402.05109
http://arxiv.org/abs/2402.05109
http://arxiv.org/abs/2402.05109
http://arxiv.org/abs/2402.05109
http://arxiv.org/abs/2402.05109
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
http://arxiv.org/abs/2311.08252
http://arxiv.org/abs/2311.08252
http://arxiv.org/abs/2311.08252

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao532
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming533
Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhi-534
hao Jia. 2023. Specinfer: Accelerating generative535
llm serving with speculative inference and token tree536
verification. arXiv preprint arXiv:2305.09781.537

NVIDIA. 2021. Fastertransformer. https://github.538
com/NVIDIA/FasterTransformer.539

Adam Paszke, Sam Gross, Francisco Massa, Adam540
Lerer, James Bradbury, Gregory Chanan, Trevor541
Killeen, Zeming Lin, Natalia Gimelshein, Luca542
Antiga, et al. 2019. Pytorch: An imperative style,543
high-performance deep learning library. Advances544
in neural information processing systems, 32.545

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,546
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-547
guage models are unsupervised multitask learners.548
OpenAI blog, 1(8):9.549

Apoorv Saxena. 2023. Prompt lookup decoding.550

Abigail See, Peter J. Liu, and Christopher D. Manning.551
2017. Get to the point: Summarization with pointer-552
generator networks. In Proceedings of the 55th An-553
nual Meeting of the Association for Computational554
Linguistics (Volume 1: Long Papers), pages 1073–555
1083, Vancouver, Canada. Association for Computa-556
tional Linguistics.557

Gemini Team, Rohan Anil, Sebastian Borgeaud,558
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,559
Radu Soricut, Johan Schalkwyk, Andrew M Dai,560
Anja Hauth, et al. 2023. Gemini: a family of561
highly capable multimodal models. arXiv preprint562
arXiv:2312.11805.563

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier564
Martinet, Marie-Anne Lachaux, Timothée Lacroix,565
Baptiste Rozière, Naman Goyal, Eric Hambro,566
Faisal Azhar, et al. 2023. Llama: Open and effi-567
cient foundation language models. arXiv preprint568
arXiv:2302.13971.569

Yunhe Wang, Hanting Chen, Yehui Tang, Tianyu570
Guo, Kai Han, Ying Nie, Xutao Wang, Hailin571
Hu, Zheyuan Bai, Yun Wang, et al. 2023.572
Pangu-pi: Enhancing language model architectures573
via nonlinearity compensation. arXiv preprint574
arXiv:2312.17276.575

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong576
Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,577
Dian Wang, Dong Yan, et al. 2023a. Baichuan 2:578
Open large-scale language models. arXiv preprint579
arXiv:2309.10305.580

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin581
Jiang, Linjun Yang, Rangan Majumder, and Furu582
Wei. 2023b. Inference with reference: Lossless ac-583
celeration of large language models. arXiv preprint584
arXiv:2304.04487.585

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo- 586
jeong Kim, and Byung-Gon Chun. 2022. Orca: A 587
distributed serving system for {Transformer-Based} 588
generative models. In 16th USENIX Symposium 589
on Operating Systems Design and Implementation 590
(OSDI 22), pages 521–538. 591

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 592
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 593
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: 594
An open bilingual pre-trained model. arXiv preprint 595
arXiv:2210.02414. 596

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 597
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 598
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 599
2022. Opt: Open pre-trained transformer language 600
models. arXiv preprint arXiv:2205.01068. 601

A Preliminaries 602

Autoregressive Decoding.Autoregressive large 603

language models (LLMs) P generates a token at 604

each step. Let x be the sequence of tokens, with 605

xj denoting the token at position j. The probabil- 606

ity distribution of the the token at position i over 607

vocabulary V , yi, is contingent upon the preced- 608

ing tokens. Consequently, yi can be expressed as 609

Equation 1. 610

yi ∼ P (y|x[0,i)) (1) 611

For greedy decoding, the subsequent token is 612

selected according to the maximum value of the 613

probability distribution. 614

xi = argmax
y∈V

yi (2) 615

Single-sample Speculative Decoding. With re- 616

gard to Speculative Decoding, the process can be 617

divided into two stages: prediction and verifica- 618

tion. In the prediction stage, a prediction method, 619

f , is employed to predict the subsequent k tokens 620

di, .., di+k−1 at each step. 621

di, .., di+k−1 = f(x[0,i)) (3) 622

In the verification stage, these k predicted tokens 623

are simultaneously input to the LLMs, together 624

with existing tokens. This enables the LLMs to 625

generate k + 1 tokens in a single decoding. 626

xj =argmax
y∈V

P (y|x[0,i), d[i,j)), 627

i ≤ j < i+ k + 1 (4) 628

10

https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/apoorvumang/prompt-lookup-decoding/
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

12 4 8 12 16 20 24 28 32
Batch Size

2

3

4

5

6

7

8

p = 0.4
p = 0.5
p = 0.6

p = 0.7
p = 0.8
p = 0.9

(a) Maximum Acceptance Length

12 4 8 12 16 20 24 28 32
Batch Size

0

1

2

3

4

5

p = 0.4
p = 0.5
p = 0.6

p = 0.7
p = 0.8
p = 0.9

(b) Average Padding Length

12 4 8 12 16 20 24 28 32
Batch Size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

p = 0.4
p = 0.5
p = 0.6

p = 0.7
p = 0.8
p = 0.9

(c) Average Padding Ratio

Figure 6: Numerical simulation of the expected value of three variables: the maximum acceptance length τmax,
the average padding length δ and the average padding ratio r.

The output token xi is identical to the result gen-629

erated by the Autoregressive method. Nevertheless,630

it is essential to ascertain the remaining k tokens631

(xj , i+1 ≤ j < i+k+1) to ascertain their accept-632

ability. The acceptance length τ can be calculated633

using the Equation 5. Since di+k is undefined, it634

follows that xi+k and di+k are always unequal.635

τ =argmax
j

{xi+j−1 ̸= di+j−1|636

xi+m−1 = di+m−1, 1 ≤ m < j},637

1 ≤ j ≤ k + 1 (5)638

Consequently, the LLMs is capable of accept-639

ing τ tokens simultaneously, rather than just one,640

within a similar timeframe. It is important to641

note that the average acceptance length τ and the642

speedup ratio are closely related. As the average643

acceptance length increases, the speedup ratio also644

rises.645

B Theoretical Analysis of the Impact of646

Padding Tokens in Vanilla647

Multi-sample Speculative Decoding648

As mentioned in Section 3.1, the introduction of649

additional padding tokens in the vanilla method650

will result in a reduction in speedup ratio in multi-651

sample cases. We assume that k tokens in the pre-652

diction stage, and the prediction accuracy of the653

next token is p, thus the accepted length τ conforms654

to the geometric distribution. The probability mass655

function of τ can be formulated as Equation 6. And656

the expected value E(τ) is formulated as Equa-657

tion 7.658

P (τ = k) = pk−1(1− p), k = 1, 2, 3, 4, ... (6)659

660

E(τ) =
1

1− p
(7) 661

If b samples are inferred simultaneously (batch 662

size is set to b), the maximum acceptance length 663

τmax and the average padding length δ can be ex- 664

pressed as Equation 8 and 9. Furthermore, we 665

define the average padding ratio r, which is the 666

ratio of δ and τmax, as shown in Formula 10. It can 667

be demonstrated that as the value of r increases, 668

the proportion of padding also increases, resulting 669

in a greater waste of computational and memory 670

access overhead. It can be observed that as the av- 671

erage padding ratio increases, the negative impact 672

on acceleration also increases. 673

τmax = max(τ0, τ1, ..., τb−1) (8) 674
675

δ = τmax −
1

b
(τ0 + τ1 + ...+ τb−1) (9) 676

677
r = δ/τmax (10) 678

The probability mass function of τmax can be 679

expressed as Equation 11. 680

P (τmax = k) = 681{
(1− pk)b − (1− pk−1)b, if k > 1

(1− p)b, if k = 1
(11) 682

The expected value of τmax and δ are challeng- 683

ing to express in a concise manner. This is why 684

we employed numerical simulation method. As 685

shown in Figure 6, We show the expected value 686

of τmax, δ and r as they vary with the prediction 687

accuracy of next token p and batch size b. In prac- 688

tical applications, the maximum acceptance length 689

is constrained by the limitations of the predicted 690

11

length. In this figure, we limited the maximum691

acceptance length to 8.692

Two conclusions can be drawn from Figure 6.693

Firstly, the maximum acceptance length and the694

average padding length both increase as the pre-695

diction accuracy of next token and the batch size696

increase. Secondly, when the maximum acceptance697

length is limited, the higher the prediction accuracy698

of next token, the lower the average padding ra-699

tio. In particular, when the prediction accuracy700

of next token is below 0.8 and the batch size is701

greater than 8, the padding ratio increases rapidly702

to exceed 50%. However, even if the prediction703

accuracy reaches 90%, 30% of the computational704

and memory access overhead are still wasted.705

C The Specific Process of Unpad Input706

Tokens707

Before being fed into the Transformer model, all708

input tokens are merged into a single sequence, and709

the quantity of input tokens for each sample is doc-710

umented.This process is detailed in Algorithm 1.711

Furthermore, when computing the attention out-712

put, the original batch index and sequence position713

of each token are restored in the CUDA kernel.714

This process is detailed in Algorithm 2. In ad-715

dition, modifications will be required to the grid716

responsible for invoking the CUDA kernel during717

the attention calculation process. Equation 12 illus-718

trateds the specific alterations. In the context of the719

CUDA kernel, the value of blockIdx.y represents720

the index of the current token among all inputs.721

grid(num_heads, batch_size) →722

grid(num_heads, total_input_token_nums)
(12)

723

12

Algorithm 1: Concatenate the input tokens of different samples
Data: list_of_input_tokens
Result: concatenated_input_tokens, token_nums_per_sample, total_input_token_nums

1 batch_size = len(list_of_input_tokens)
2 concatenated_input_tokens = []
3 token_nums_per_sample = [0 for _ in range(batch_size)]
4 total_input_token_nums = 0
5 for i = 0 to batch_size− 1 do
6 total_input_token_nums += len(list_of_input_tokens[i])
7 token_nums_per_sample[i] = len(list_of_input_tokens[i])
8 concatenated_input_tokens.extend(list_of_input_tokens[i])
9 end

Algorithm 2: Restore the original batch index and sequence position in CUDA kernels
Data: token_nums_per_sample, blockIdx
Result: original_batch_index, original_sequence_position

1 batch_size = len(token_nums_per_sample)
2 original_sequence_position = blockIdx.y
3 original_batch_index = 0
4 for i = 0 to batch_size− 1 do
5 if original_sequence_position ≥ token_nums_per_sample[i] then
6 original_batch_index += 1
7 original_sequence_position -= token_nums_per_sample[i]

8 else
9 break

10 end
11 end

13

