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ABSTRACT

Machine Learning and Deep Learning methods have become the state-of-the-art
approach to solve data classification tasks. In order to use those methods, it is
necessary to acquire, and label, a considerable amount of data; however, this is
not straightforward in some fields since data annotation is time consuming and
might require expert knowledge. This challenge can be tackled by means of semi-
supervised learning methods that take advantage of both labelled and unlabelled
data. In this work, we present a new semi-supervised learning method based on
techniques from Topological Data Analysis. In particular, we have used a ho-
mological approach that consists in studying the persistence diagrams associated
with data from binary classification tasks using the bottleneck and Wasserstein
distances. In addition, we have carried out a thorough analysis of the developed
method using 5 structured datasets. The results show that the semi-supervised
method developed in this work outperforms both the results obtained with mod-
els trained with only manually labelled data, and those obtained with classical
semi-supervised learning methods, improving the models up to a 16%.

1 INTRODUCTION

Machine Learning and Deep Learning techniques have become the state-of-the-art approach to solve
classification problems in a wide variety of fields such as biology (Affonso et al., 2017), secu-
rity (Akçay et al., 2016), or medicine (Araújo et al., 2017). One of the main problems of these
techniques is the great amount of data that they need (Sun et al., 2017). This may not seem a prob-
lem due to the large amount of data that is generated in a daily basis; however, data acquisition is not
easy in some fields due to, for example, a limited budget to obtain samples, the need to perform an
invasive medical procedure or destructive processes. In addition, in supervised learning, one of the
main paradigms in machine learning, data has to be manually annotated, and it is well-known that
this might be a problem due to the time and experience that is required to conduct this task (Irvin
et al., 2019). To tackle this challenge, a family of methods that has been successfully applied in the
literature is semi-supervised learning (Berthelot et al., 2019; Laine & Aila, 2017).

Semi-supervised learning methods provide a mean of using unlabelled data to improve models’ per-
formance when we have access to a large corpus of data that is difficult to annotate. Traditional
semi-supervised learning algorithms, such as Label Spreading (Zhou et al., 2004) or Label Propaga-
tion (Zhu & Ghahramani, 2002), focus on the distance among the data points to annotate unlabelled
data points; that is, on the metric and density characteristics of the data in a dataset. However,
topological characteristics of the data are not used, and this is the approach proposed in this paper.

Topological Data Analysis (from now on, TDA) has arisen as a field to extract topological and
geometrical information from data, to reveal dynamical organisation of the brain (Saggar et al.,
2018), to recognising atmospheric river patterns in large climate datasets (Muszynski et al., 2019),
or to examine spreading processes on networks (Taylor et al., 2015). An important result of TDA
is the Manifold Hypothesis (Fefferman et al., 2016), that states that high dimensional data tends to
lie in low dimensional manifolds, and that has inspired our definition of a semi-supervised learning
method for binary classification tasks. Intuitively, our method is based on the idea that given two
sets of data points A and B, we can define two manifolds associated with each set, MA and MB

respectively. Now, given an unlabelled data point x that belongs to either A or B; if x belongs to A,
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analogously for B, then the manifold associated with A ∪ {x} and MA will be more similar than
the manifold associated with B ∪ {x} and MB .

The rest of the paper is devoted to introduce the aforementioned idea formally. Namely, we provide
a complete description of our semi-supervised method based on TDA notions in Section 2. Subse-
quently, we conduct a thorough analysis for our method in 5 structured datasets, and compare its
performance with classical semi-supervised learning methods, see Section 3. Finally, we end the
paper with some conclusions and some ideas for further work.

All the code developed for this project and also the conducted experiments are available at the project
webpage https://anonymous.4open.science/r/TopologicalSSL-E12C/.

2 METHOD

In this section, we describe the semi-supervised learning algorithm that we have designed to tackle
binary classification tasks. We start with a set X1 of points from class 1, a set X2 of points from class
2, and a set X of unlabelled points. The objective of our algorithms is to annotate the elements of X
by using topological properties of X1 and X2. We assume some familiarity with notions employed
in TDA such as Vietoris-Rips filtration (we denote by VX to the Vietoris-Rips filtration associated
with a set X), persistence diagrams (we denote by P (F ) to the persistence diagram associated with
a filtration F ), and the bottleneck and Wasserstein distances (denoted by dB and dW respectively).
For a detailed introduction to these topics see (Zomorodian, 2012).

Our semi-supervised learning algorithm takes as input the sets X1 and X2, a point x ∈ X , a thresh-
old value t, and a flag that indicates whether the bottleneck or the Wasserstein distance should be
used, we denote the chosen distance as d. The output produced by our algorithm is whether the point
x belongs to X1, X2 or none of them. In order to decide the output of the algorithm, our hypothesis
is that if a point belongs to X1, analogously for X2, the topological variation that X1 will suffer
when adding the point will be minimal; whereas if the point does not belong to X1, the variation
will be greater. In particular, we proceed as follows:

1. Construct the Vietoris-Rips filtrations VX1
, VX2

, VX1∪{x} and VX2∪{x};

2. Construct the persistence diagrams P (VX1
), P (VX2

), P (VX1∪{x}) and P (VX2∪{x});

3. Compute the distances d(P (VX1), P (VX1∪{x})) and d(P (VX2), P (VX2∪{x})), from now
on d1 and d2 respectively;

4. If both d1 and d2 are greater than the threshold t, return none; otherwise, return the set
associated with the minimum of the distances d1 and d2.

The above algorithm is diagrammatically described in Figure 1, and it is applied for all the points of
the set of unlabelled points X . Note that if we use a threshold value of 0, the algorithm will annotate
all the points of X; however, this might introduce some noise as we will see in the experiments of
the next section.

3 EVALUATION

In this work, we have used 5 different datasets taken from the UCI Machine Learning Reposi-
tory (Dua & Graff, 2017) — the datasets are banknote, breast cancer, ionosphere, pima indian dia-
betes, and sonar; a summary of the features of these datasets is provided in the appendix. For our
study, we have split each of the datasets of the benchmark into two different sets: a training set with
the 80% of the data, and a testing set with the 20% of the data. In addition, for each training dataset,
we have selected 25 samples per class using them as labelled data, and removing the annotation of
the rest of the training data to test the semi-supervised learning methods.

To check the correct performance of our methods we have trained two machine learning algorithms
that are SVM (Cortes & Vapnik, 1995) and Random Forest (Ho, 1995) using the scikit-learn li-
brary (Pedregosa et al., 2011). In particular, we have trained these models with the initial annotated
data obtaining a base result. Subsequently we have used the developed methods, and three classical
semi-supervised learning techniques (namely, Label Propagation (Zhu & Ghahramani, 2002), Label
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distance 0.1285

distance 0.4958

Figure 1: Example of the application of our method using the bottleneck distance, and using 0.6 as threshold
value.

Spreading (Zhou et al., 2004), and self-training (Yarowsky, 1995)) to annotate the unlabelled data.
Finally, we have retrained the two ML models with all the annotated data, to see the variation in the
models’ performance. Such a performance has been evaluated using the accuracy metric. In addi-
tion, in order to evaluate the behaviour of the annotation methods we have taken into account the
percentage of the data points correctly labelled and the percentage of data labelled with respect to
the total available data. For testing our methods, we have used 10 variations of our semi-supervised
learning method by considering the bottleneck and the Wasserstein distance and using 5 different
threshold values (0.8, 0.6, 0.4, 0.2 and 0.0). Our method has been implemented in the Python
programming language by using the functionality provided by the scikit-tda library (Saul & Tralie,
2019).

The performance of the aforementioned methods on the studied datasets is included in Table 1.
From these results we can withdraw several conclusions. In general, our method offers good results,
improving the base results in 8 out of the 10 models. Moreover, our method obtains better results
than the classical semi-supervised learning techniques in 8 out of the 10 models, the only drawback
is that different threshold and distances must be tested. Regarding the choice of distance, there are
not considerable differences between the bottleneck and the Wasserstein distance. On the contrary,
the value of the threshold is relevant for the performance of the models. When using the bottleneck
distance, we have observed that the best results are obtained when setting the threshold value to 0.8.
This is also the case for most of the experiments conducted with the Wasserstein distance, but for
that distance there is not an optimum threshold — although, threshold values of 0.8 and 0.6 produce
the best results for 9 out of 10 experiments.

Finally, we analyse the percentage of points that are labelled by each version of our algorithm,
see Table 2. As expected, when the threshold value decreases, the percentage of labelled points
increases. However, when the threshold value decreases, the percentage of correctly labelled points
also decreases; hence, using such an annotation might introduce some noise. As we have previously
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Table 1: Accuracy results for the SVM and RF classifiers trained with data annotated by each of the annotation
methods (classical, homological and connectivity) together with the results obtained with the initial data (base)
in the 5 structured datasets. Best result for each dataset is highlighted in bold face.

Banknote Breast Cancer Ionosphere Prima Indian Sonar Mean (std)
Method SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

Base 97.0 88.6 89.3 96.1 80.0 93.3 65.7 60.8 61.3 64.5 78.7(15.2) 80.7(16.7)

Label Propagation 97.4 93.2 90.3 89.3 86.7 86.7 64.3 68.5 58.1 54.8 79.3(17.1) 78.5(16.3)
Label Spreading 97.4 93.2 90.3 89.3 86.7 86.7 64.3 68.5 58.1 54.8 79.3(17.1) 78.5(16.3)

Self Training classifier 95.1 93.6 35.9 35.9 85.0 86.7 66.4 66.4 58.1 67.7 68.1(23.2) 70.1(22.4)

Bottleneck threshold 0.8 99.2 92.4 93.2 91.3 78.3 95.0 63.6 64.3 61.3 64.5 79.1(17.0) 81.5(15.6)
Bottleneck threshold 0.6 99.2 91.3 89.3 90.3 75.0 88.3 59.4 63.6 48.4 45.2 74.3(20.9) 75.7(20.6)
Bottleneck threshold 0.4 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 74.4(20.5) 74.1(19.5)
Bottleneck threshold 0.2 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 74.4(20.5) 74.1(19.5)
Bottleneck threshold 0.0 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 77.1(22.6) 74.1(19.5)

Wasserstein threshold 0.8 97.4 89.8 92.2 88.4 80.0 95.0 68.5 67.8 61.3 64.5 79.9(15.3) 81.1(13.9)
Wasserstein threshold 0.6 99.2 93.6 89.3 87.4 70.0 91.7 61.5 61.5 74.2 61.3 78.9(15.2) 79.1(16.3)
Wasserstein threshold 0.4 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)
Wasserstein threshold 0.2 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)
Wasserstein threshold 0.0 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)

seen in Table 1, models trained with annotations produced by our algorithm using threshold values
of 0.8 and 0.6 usually produce better results than using smaller threshold values. In particular, when
we fix a threshold value that is lower than 0.4, all points are labelled; but, the percentage of correctly
labelled points is usually lower than the percentages of classical semi-supervised learning methods.
On the contrary, the amount of points that are correctly annotated when using a threshold value of
0.8 or 0.6 is greater than in the classical techniques; and, as we have previously seen this produces
better models. Therefore, we can conclude that is more important the quality than the quantity of
data.

Table 2: Percentage of labelled data points and percentage of correctly labelled data points by each semi-
supervised method

Banknote Breast Cancer Ionosphere Prima Indian Sonar
% labelled % correct % labelled % correct % labelled % correct % labelled % correct % labelled % correct

Label Propagation 100 93.67 100 90.87 100 81.74 100 70.43 100 63.78
Label Spreading 100 93.67 100 90.87 100 81.74 100 70.43 100 63.78

Self Training Classifier 100 95.65 100 39.18 100 82.99 100 66.26 100 70.87

Bottleneck threshold 0.8 15.12 100 50.72 97.16 30.71 100 5.91 88.24 0 0
Bottleneck threshold 0.6 84.59 92.73 91.82 90.31 90.04 83.41 32.87 68.78 87.4 53.15
Bottleneck threshold 0.4 100 90.26 100 85.58 100 80.08 100 57.22 100 48.03
Bottleneck threshold 0.2 100 90.26 100 85.58 100 80.08 100 57.22 100 48.03
Bottleneck threshold 0.0 100 90.26 100 85.58 100 80.08 100 57.22 100 48.03

Wasserstein threshold 0.8 17.49 100 38.7 97.52 24.9 100 9.57 92.73 0 0
Wasserstein threshold 0.6 73.53 99.1 86.3 91.92 57.68 89.21 55.65 73.44 32.28 97.56
Wasserstein threshold 0.4 100 94.99 100 88.22 100 78.42 100 65.57 100 74.02
Wasserstein threshold 0.2 100 94.99 100 88.22 100 78.42 100 65.57 100 74.02
Wasserstein threshold 0.0 100 94.99 100 88.22 100 78.42 100 65.57 100 74.02

4 CONCLUSIONS AND FURTHER WORK

In this work, we have studied the application of Topological Data Analysis techniques to the semi-
supervised learning setting to tackle binary classification problems with a limited amount of labelled
data. The results show that our method can create classification models that achieve better results
than those obtained when using classical semi-supervised learning methods.

We plan to extend our work in different ways. First of all, the proposed method can be expanded to
multi-class classification tasks, and, an iterative version of the algorithm can be easily developed. In
addition, we plan to design new semi-supervised learning algorithms based on other notions from
TDA, such as the connectivity of the data.
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A FEATURES OF THE STUDIED DATASETS

Dataset # Examples # Unlabelled examples # Features

Banknote 1372 1322 4
Breast Cancer 569 519 30

Ionosphere 351 301 34
Pima Indian Diabetes 768 718 8

Sonar 208 158 60

Table 3: Description of the datasets employed in our experiments.
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