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Abstract

Diffusion Transformers (DiTs) deliver state-of-the-art image quality, yet their
training remains notoriously slow. A recent remedy—representation alignment
(REPA) that matches DiT hidden features to those of a non-generative teacher
(e.g., DINO)—dramatically accelerates the early epochs but plateaus or even
degrades performance later. We trace this failure to the capacity mismatch: once
the generative student begins modeling the joint data distribution, the teacher’s
lower-dimensional embeddings and attention patterns become a straitjacket rather
than a guide. We then introduce HASTE (Holistic Alignment with Stage-wise
Termination for Efficient training), a two-phase schedule that keeps the help and
drops the hindrance. Phase I applies a holistic alignment loss that simultaneously
distills attention maps (relational priors) and feature projections (semantic anchors)
from the teacher into mid-level layers of the DiT, yielding rapid convergence.
Phase II then performs one-shot termination that deactivates the alignment loss,
once a simple trigger such as a fixed iteration is hit, freeing the DiT to focus on
denoising and exploit its generative capacity. HASTE speeds up training of diverse
DiTs without architecture changes. On ImageNet 256×256, it reaches the vanilla
SiT-XL/2 baseline FID in 50 epochs and matches REPA’s best FID in 500 epochs,
amounting to a 28× reduction in optimization steps. HASTE also improves text
-to-image DiTs on MS-COCO, proving to be a simple yet principled recipe for
efficient diffusion training across various tasks. Our code is available here.

1 Introduction

Diffusion Transformers (DiTs) are stunningly good—and stunningly slow. Recent variants such
as DiT [37] and SiT [34] achieve state-of-the-art visual fidelity across a growing list of generative
tasks [8, 29, 2, 9]. Unfortunately, their training incurs vast compute and wall-clock budgets because
each update must back-propagate through hundreds of noisy denoising steps. A first wave of
accelerators tackles this either by architectural surgery—linearized attention, masking or gating [56,
53, 12, 54, 26]—or by training heuristics, e.g. importance re-weighting of timesteps [49]. These
interventions help, but often at the cost of specialized kernels or fragile hyper-parameter tuning.

Representation alignment: early rocket, late parachute? Recent work has demonstrated the
effectiveness of leveraging external representations to accelerate diffusion model training—completely
sidestepping the need for architectural modifications [55, 53, 45, 30]. A representative method,
Representation Alignment (REPA) [55], projects an intermediate DiT feature map onto the embedding
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space of a powerful non-generative vision encoder such as DINOv2 [36], enforcing a cosine-
similarity loss that bootstraps useful semantics during training. The gain is immediate: the student
DiT latches onto global object structure and converges several times faster than a vanilla run. Yet
REPA’s help is not unconditional. Figure 1 removes the alignment loss after either 100K or 400K
iterations. Stopping late (400K) improves FID over the always-on baseline; stopping early (100K)
hurts—evidence that REPA works until it doesn’t. Why?
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Figure 1: Training SiT-XL/2 on ImageNet
256×256. Adding REPA slashes FID early
on, but its benefit fades and ultimately re-
verses; dropping the alignment loss mid-
training restores progress.

Our Conjecture: Capacity mismatch incurs the
hidden turning point. Diffusion models eventu-
ally model the joint data distribution, a harder ob-
jective than the marginal/conditional targets implicit
in a frozen, non-generative encoder. Consequently,
once the student has burned in, its own capacity over-
takes the teacher’s. Our gradient-angle analysis (Sec-
tion 2.2) shows alignment and denoising objectives
start aligned (acute angles), drift to orthogonality,
then turn obtuse—signalling that continued align-
ment may become a harmful constraint.

Simple Remedy: Holistic alignment, then release.
Two observations motivate our remedy. First, the
teacher’s attention maps encode relational priors that
are as valuable as its embeddings [31, 20]; guiding
only features leaves this structural knowledge untapped. Second, the alignment needs a stage-wise
schedule: thick guidance early, zero guidance once gradients diverge. We therefore introduce HASTE
(Holistic Alignment with Stage-wise Termination for Efficient training). During Phase I we distill
both projected features and mid-layer attention maps from DINOv2 into the DiT, giving the student
relational and semantic shortcuts. Once a simple trigger (e.g., fixed iteration) is hit, we enter Phase II:
the alignment loss is disabled and training proceeds with the vanilla denoising objective. The recipe
is two lines of code, no kernel changes.

Contribution Summary. Our findings refine the community’s understanding of external representa-
tion guidance: it is immensely helpful early, but must be let go for the generative model to focus on
specific tasks. We outline our contributions as follows.

• Diagnosis. We identify a capacity mismatch that flips REPA from accelerator to brake and
quantify it via gradient-direction similarity.

• Method. We propose holistic (attention + feature) alignment combined with a stage-wise
termination switch that deactivates alignment when it starts to impede learning.

• Results. On ImageNet 256×256 our schedule matches vanilla SiT-XL/2 in 50 epochs,
amounting to a 28× speed-up, and reaches REPA’s best score in 500 epochs. Gains replicate
on COCO text-to-image generation task.
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Figure 2: Overview of our framework. Phase
I (left) distills both feature embeddings and
attention maps from a frozen, non-generative
teacher (DINOv2) into mid-level layers of the
student DiT. When a simple trigger τ fires, the
alignment loss is disabled; Phase II (right)
then continues training with pure denoising.

Our framework, HASTE, couples two ingredients
(see Figure 2): (i) Holistic alignment: a dual-
channel distillation that supervises both projected
features and attention maps; (ii) Stage-wise termi-
nation: a single switch that turns the alignment loss
off once it ceases to help. We first recap REPA and
attention alignment, then describe how we marry
them and when we shut them off.
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2.1 Preliminaries

Notation. Let x be a clean image, x̃t its noised version at timestep t, and ht the hidden state of a
Diffusion Transformer Gθ. A frozen, non-generative vision encoder E (DINOv2) produces patch
embeddings y = E(x) and self-attention matrices AE .

Representation alignment (REPA). A small MLP gϕ projects ht into the encoder space. REPA [55]
then aligns the projected state gϕ(ht) with y by maximizing token-wise cosine similarities:

LREPA(θ, ϕ) = −Ex,ϵ,t

[
1

N

N∑
n=1

sim
(
y[n], gϕ

(
h
[n]
t

))]
(1)

This regularization is jointly optimized with the original denoising objective, to guide the more
efficient training of diffusion transformers.

Attention alignment (ATTA). ATTA aims to transfer attention patterns from a pre-trained teacher
model to a student model to guide the latter’s training process [31]. For selected layers/heads (i, j)
we minimize token-wise cross-entropy between teacher and student attention.

2.2 Early Stop of Representation Alignment

Gradient–based autopsy reveals state evolution. Figure 1 already hinted that REPA’s benefit peaks
early and tapers off. To pinpoint when the auxiliary loss flips from help to hindrance, we inspect the
cosine similarity

ρt = cos
(
∇θLdiff, ∇θLREPA

)
∈ [−1, 1],

computed on the 8th block of SiT–XL/2 (the alignment depth used by REPA) over 960 ImageNet
images (see details in Appendix A.1). A positive ρt means the teacher pushes the student in roughly
the same direction as denoising; negative one means the two losses actively fight.

Taking t ≤ 0.1 for example, Figure 3 shows three distinct regimes:

1. Ignition (0–200 K iterations): ρt starts with a relatively high level — REPA adds power;
diffusion transformer profits from the teacher’s guidance on representation learning.

2. Plateau (200 K–400 K iterations): ρt decreases to nearly orthogonal level — objectives
decouple; further REPA updates neither help nor hurt.

3. Conflict (>400 K iterations): ρt exhibits negative values — gradients oppose; REPA now
erases detail the student tries to learn.

acute orthogonal obtuse

early stage intermediate stage late stage

dir(REPA) dir(denoising)

Figure 3: Cosine similarity between REPA and de-
noising gradients. Acute→ orthogonal→ obtuse:
the auxiliary signal turns from booster to brake.

The cross–over coincides with the iteration
where Figure 1 shows FID curves diverging,
confirming that gradient geometry is a faithful
early-warning signal.

Why does conflict arise? Capacity–mismatch
view. Once the student starts modeling the joint
data distribution, it seeks high-frequency detail
absent from the teacher’s embeddings. A frozen
encoder trained for invariant recognition discards such minutiae by design; forcing the student back
into that lower-dimensional manifold yields destructive gradients. We see the same mismatch at the
level of diffusion timesteps.

early stage intermediate stage late stage

dir(REPA) across SiT timesteps dir(denoising)

Figure 4: Gradient similarity as function of diffu-
sion timestep t. At t=0.1 (high-detail phase) the
two losses already conflict even early in training.

Figure 4 plots ρt versus the diffusion time index.
For mid-noise steps (e.g., t = 0.5) where the
image is still blurry, gradients align. For late
steps (t ≤ 0.1)—responsible for textures and
fine grain [23]—they are near-orthogonal from
the start. This indicates that teacher guidance
is intrinsically global; when the denoiser must
polish pixels, the encoder has little to teach.
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We sharpen this claim by feeding the teacher low-frequency only versions of each image (Figure 5).
Early FID improves almost identically to vanilla REPA, proving that the speed-up stems from coarse
semantic scaffolding; high-frequency cues are less relevant to REPA’s benefit.
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Figure 5: Replacing teacher inputs with low-pass
images leaves REPA’s early gain intact: evidence that
the auxiliary loss transmits mainly global structure.
We train SiT-L/2 for 200K iterations.

Take-away. REPA supplies valuable global
context but obstructs local detail once the stu-
dent matures. Hence, alignment should be
transient for further improvement.

Fix: Stage-wise termination. Let τ denote
the termination iteration around which ρt ex-
hibits low similarity and the alignment pro-
vides limited benefit. We then discard the
auxiliary alignment loss:

L(θ, ϕ) =

{
Ldiff + LR, n < τ,

Ldiff, n ≥ τ,
(2)

where LR may itself be the holistic combo
of feature (Section 2.1) and attention (Sec-
tion 2.3) losses. A fixed τ works reliably well, but the gradient rule adds robustness (Appendix A.2).

100K 400K 4M DINOv2image

8th block of SiT-XL/2 12th blockselected token
high low

(a) Visualization of attention maps from DINOv2-B
and SiT-XL/2+REPA at different training iterations.
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Figure 6: Evaluating cross-effects between feature and attention alignment. (a) Attention map
visualization of selected tokens for SiT-XL/2+REPA and DINOv2-B. (b) Alignment depth at 5, we
track attention map cross-entropy between the 12th-layer of DINOv2-B and the 5th-layer of SiT-B/2.
(c) Attention maps from 3rd–5th layers of SiT-B/2 are aligned with those from 8th, 10th, and 12th
layer of DINOv2-B. Since ATTA alone does not optimize the projector, we directly compute cosine
similarity between the DINOv2-B features and the 5th-layer hidden states of SiT (without projection).

2.3 Holistic Alignment by Integration Attention

Rationale: Why attending to attention? Compared with token embeddings, self–attention matrices
reveal where a transformer routes information at each layer—its “inference pathways” in the sense of
Hoang et al. [20]. These pathways encode rich relational priors: object–part grouping, long–range
symmetry, and background–foreground segregation emerge as distinct heads in DINOv2, even though
the model was trained without labels. Critically, such routing information is orthogonal to the static
content captured by features: two models can share identical patch embeddings but attend to them in
entirely different patterns, leading to divergent downstream behavior.

Recent evidence echoes: Li et al. [31] show that distilling only attention maps from a high-capacity
teacher to a randomly initialized ViT is more effective than transferring only embeddings, in recover-
ing the teacher’s linear probe precision on ImageNet. The asymmetry suggests that attention acts as a
structural prior: once the model is taught how to look, it can relearn what to look at rapidly.

For diffusion transformers, they must integrate global spatial cues (layout, object boundaries) across
hundreds of tokens for effective representation construction. While feature alignment (REPA)
accelerates the learning process by injecting semantic anchors, the structural knowledge remains
underexploited. Attention alignment targets the complementary regime: it transfers the global routing
template to DiT, thereby enabling precise spatial and global information guidance.
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Motivational experiments. To disentangle the respective contributions of features and attention, we
probe the two signals in isolation:

(i) Feature alignment only (REPA). Figure 6a shows that REPA gradually makes SiT heads
resemble those of the teacher. However, the convergence of attention patterns is slow and
incomplete (see cross-entropy trend in Figure 6b).

(ii) Attention alignment only (ATTA). Aligning attention maps alone can also pull the student’s
hidden features toward the teacher’s embedding space (Figure 6c) and yields a training-speed
boost on par with REPA (see details in Section 3.4).

Takeaway. REPA bootstraps semantics but leaves routing under-constrained; ATTA nails routing but
still requires the conditional gates to be learned from scratch. Their complementary effects motivate
combining both. For a chosen set S of student–teacher layer pairs (ℓs, ℓt) and the M heads,

LATTA =
1

|S|M
∑

(ℓs,ℓt)∈S

M∑
m=1

H
(

softmax
(
Qℓs,m

s Kℓs,m⊤
s

)
, softmax

(
Qℓt,m

t Kℓt,m⊤
t

))
, (3)

whereH is token–wise cross-entropy.

Where and when to align attention? We distill teacher heads only into intermediate student blocks
(e.g., SiT-XL/2 blocks 4–7). Two empirical observations justify this selective schedule:

(i) Shallow mismatch. Early DiT layers ingest Gaussian-noisy latents; their representations are
dominated by variance normalization and channel folding rather than semantics. Supervising
those layers with pixel-space attention from a clean-image encoder is therefore off-manifold.
In practice, forcing attention on too many shallow layers destabilizes the loss and raises FID.

(ii) Deep freedom. The ultimate objective of DiT is denoising for high-quality generation,
rather than representation learning. The last blocks are responsible for translating high-level
structure into precise generation update. Thus, these blocks should remain dedicated to the
denoising objective, unregularized.

Aligning mid-layers strikes the sweet spot: they are late enough that latents carry discernible
semantics, yet early enough that constraining their routing gives downstream blocks a clean, well-
organized feature tensor to refine.

2.4 Final Recipe: HASTE

Where we align. Attention maps from the teacher are distilled into a range of mid-depth DiT blocks;
features follow the original REPA setting—one projection at a single mid-layer. Neither the shallow
noise processing blocks nor the final denoising blocks are regularized.

What we align. During Phase I (iterations n < τ ) we apply a hybrid auxiliary loss. λR and λA are
weight coefficients for balancing two regularizations.

LR = λR LREPA + λA LATTA. (4)

When we stop. At the single switch point τ—chosen as a fixed iteration or the gradient-angle trigger
from §2.2—both terms in (4) are dropped and training proceeds with the vanilla denoising objective.

This three-line schedule constitutes HASTE: it retains REPA’s semantic anchoring, adds ATTA’s
routing prior, and removes all auxiliary constraints once they turn counter-productive.

3 Experiments

3.1 Setup

Models and datasets. Following REPA [55], we conduct experiments on three diffusion transformers:
SiT [34], DiT [37], and MM-DiT [8]. ImageNet [4] and MS-COCO 2014 [32] datasets are used for
class-to-image and text-to-image generation tasks, respectively. Moreover, we employ a pre-trained
DINOv2-B [36] as the representation model to extract high-quality features and attention patterns.
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Implementation details. We use a training batch size of 256 and SD-VAE [40] for latent diffusion,
and set λR = 0.5 following REPA to ensure a fair comparison. Additionally, we also adopt the SDE
Euler-Maruyama sampler with NFEs = 250 for image generation on SiT and DiT. We set λA = 0.5
as the weight of attention alignment. We use NVIDIA A100 and H100 compute workers.

Evaluation metrics. For ImageNet experiments, we sample 50K images to assess the performance,
leveraging evaluation protocols provided by ADM [5] to measure FID [16], sFID [35], IS [42], and
Precision and Recall [27]. For text-to-image generation, we follow the settings defined in [1].

3.2 Experiments on ImageNet 256 × 256

Setting. In this experiment, we set the termination point τ = 100K iteration (around 20 epochs) for
SiT-B/2 and τ = 250K iteration (around 50 epochs) for large and xlarge size models. while all other
settings remain at their default values.

method epoch FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

Without Classifier-free Guidance (CFG)
MaskDiT 1600 5.69 10.34 177.9 0.74 0.60
DiT 1400 9.62 6.85 121.5 0.67 0.67
SiT 1400 8.61 6.32 131.7 0.68 0.67
DiT+REPA 170 9.60 - - - -
SiT+REPA 800 5.90 5.73 157.8 0.70 0.69
FasterDiT 400 7.91 5.45 131.3 0.67 0.69
MDT 1300 6.23 5.23 143.0 0.71 0.65
DiT+HASTE 80 9.33 5.74 114.3 0.69 0.64

50 8.39 4.90 119.6 0.70 0.65
SiT+HASTE

100 5.31 4.72 148.5 0.73 0.65
With Classifier-free Guidance (CFG)

MaskDiT 1600 2.28 5.67 276.6 0.80 0.61
DiT 1400 2.27 4.60 278.2 0.83 0.51
SiT 1400 2.06 4.50 270.3 0.82 0.59
FasterDiT 400 2.03 4.63 264.0 0.81 0.60
MDT 1300 1.79 4.57 283.0 0.81 0.61
DiT+TREAD 740 1.69 4.73 292.7 0.81 0.63
MDTv2 1080 1.58 4.52 314.7 0.79 0.65
SiT+REPA 800 1.42 4.70 305.7 0.80 0.65

100 1.74 4.74 268.7 0.80 0.62
400 1.44 4.55 293.4 0.80 0.64
500 1.42 4.49 299.5 0.80 0.65

SiT+HASTE

600 1.41 4.51 296.9 0.80 0.65

Table 1: System-level comparison on ImageNet 256 ×
256. ↑ and ↓ denote higher and lower values are better,
respectively. Bold font denotes the best performance.

Results without classifier-free guidance.
As shown in Table 1, HASTE demonstrates
significant acceleration performance, con-
sistently outperforming REPA on both SiT-
XL and DiT-XL. This validates the superi-
ority of stage-wise termination and holistic
alignment. Notably, on SiT-XL, HASTE
achieves an FID of 8.39 with only 250K
iterations (50 epochs), matching the perfor-
mance of vanilla SiT-XL with 1400 epochs,
representing a 28× acceleration. Similarly,
on DiT-XL, our approach surpasses the
original DiT-XL trained with 1400 epochs,
using only 80 epochs.

Results with classifier-free guidance. We
also evaluate the generation performance of
SiT-XL+HASTE at different epochs with
classifier-free guidance (CFG) [17] apply-
ing guidance interval [28]. As shown in
Table 1, HASTE outperforms most of the
baselines in only 400 epochs, and can
achieve a comparable FID score to REPA
with 500 epochs, which proves that in later
training stages, the denoising objective it-
self is also able to lead diffusion transform-
ers to satisfactory generation capability.

Qualitatively comparison. We also pro-
vide representative visualization results
from SiT-XL/2 with REPA and HASTE
in Figure 8, respectively. Our method
achieves better semantic information and
detail generation at early training stages.

3.3 Text-to-Image Generation Experiment

Setting. To validate our approach in text-to-image generation tasks, we apply HASTE to MM-DiT
[8], a widely used architecture, and train it on the MS-COCO 2014 dataset [32] following REPA.
In practice, we set termination point τ = 200K for HASTE. Moreover, we only perform attention
alignment with the QKT matrix generated from input image to avoid affecting the textual process.

Quantitative results. In Table 2, we compare our method with the original MM-DiT and MM-
DiT+REPA using SDE sampler with NFEs = 250. Results reflect that HASTE consistently out-
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performs its counterparts and alignment termination leads to better performance, validating the
generalizability of our holistic alignment and termination strategy in text-to-image generation tasks.

3.4 Ablation Studies
In this section, we conduct extensive experiments and comparisons across different SiT models on
ImageNet 256×256, to further support our analysis and claims in Section 2. We consistently use the
SDE Euler-Maruyama sampler (NFEs = 250) without classifier-free guidance.

model iteration term. FID↓

MM-DiT 150K - 5.26
+REPA 150K - 4.16
+REPA 250K - 4.28
+HASTE 150K - 4.09
+HASTE 250K - 4.10
+HASTE 250K 200K 4.06

Table 2: FID↓ results of text-to-image
generation on MS-COCO. HASTE con-
sistently outperforms REPA to acceler-
ate the training of MM-DiT.

Effectiveness of ATTA and termination. To validate
the effectiveness of termination and Attention Alignment,
we evaluate the performance of SiT-XL/2 with different
methods applied before and after the termination point
(50 epoch) and present the results in Table 3. Firstly, at
both 40 and 100 epochs, we observe that using only At-
tention Alignment can also obtain a similar acceleration
to REPA. Moreover, the holistic alignment leads to better
performance at 40 epoch, which is consistent with our
hypothesis in Section 2.3 that the two methods have com-
plementary potentials.

However, the acceleration of such integration gets inferior
to REPA alone at 100 epoch. We assume that consistently
applying holistic alignment leads to over-regularization in
later training stages. And the performance gets improved
eventually with the termination strategy applied at 50 epoch.

Different termination iterations τ . In this section, we analyze the impact of τ across varying model
sizes. First, we conduct experiments in Table 4 to further explore the effect of termination. The results
reflect that stage-wise termination also leads to better generation quality on SiT-B/2 and SiT-L/2. For
SiT-XL/2, interestingly, while τ = 400 K demonstrates a lower FID at 400K iteration, τ = 250 K
model ultimately delivers superior performance when evaluated at 500K iteration.

As shown in Table 3 and Table 4, although holistic alignment achieves better performance at 400K
iteration, consistently regularizing the model leads to reduced performance. While termination at
τ = 400 K alleviates such a trend, its performance at 500K iteration is still inferior to that of τ = 250
K. Therefore, we hypothesize that the acceleration effect gradually diminishes before 400K iteration,
and the stage-wise termination, such as at τ = 250 K, can help to alleviate the over-regularization.

epoch REPA ATTA term. FID↓ sFID↓ IS↑

× × × 24.3 5.08 56.1
40

◦ × × 10.7 5.02 103.9
× ◦ × 13.6 5.02 89.7

40
◦ ◦ × 9.9 5.04 108.8
× × × 14.8 5.18 84.9

100
◦ × × 7.5 5.11 130.1
× ◦ × 8.5 5.00 120.7
◦ ◦ × 8.1 5.20 126.1100

◦ ◦ ◦ 5.3 4.72 148.5

Table 3: Comparison of different methods applied
to SiT-XL/2. ◦ and × denote methods applied or
not, respectively. Results reflect that our termina-
tion and holistic alignment strategies are effective.

model iteration τ FID↓ sFID↓ IS↑

SiT-B/2
+HASTE

400K
- 21.3 6.80 69.9

100K 19.6 6.38 73.0
SiT-L/2
+HASTE

400K
- 8.9 5.18 119.0

250K 7.9 5.08 124.8
SiT-XL/2
+HASTE

400K
- 5.5 4.74 144.4

250K 7.3 5.05 128.7

SiT-XL/2
+HASTE

500K
- 8.1 5.20 126.1

250K 5.3 4.72 148.5
400K 7.4 5.10 128.8

Table 4: Comparison of applying termination or
not across different model sizes of SiT. τ denotes
termination point. We find the termination strat-
egy contributes to better performance eventually.

Taking SiT-XL/2 for example, we carefully assess the effect of different τ . We observe performance
progresses slowly after 250K iteration (see Figure 7a). And the gradient cosine similarity between
holistic alignment and denoising has shown negative values at late diffusion timesteps (see details in
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Appendix A.1). Consequently, we consider termination near this threshold: results at 400K iteration
in Figure 7b indicate that early stopping at τ = 250K yields better performance.
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Figure 8: HASTE improves visual scaling. We compare images generated by SiT-XL/2+REPA and
SiT-XL/2+HASTE (ours) at different training iterations. For both models, we use the same seed,
noise, and sampling method with a classifier-free guidance scale of 4.0.
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Figure 7: Comparison of different termination
point τ on SiT-XL/2. We observe the training os-
cillation after 250K iteration. Using τ = 250 K
leads to better performance at 400K iteration.

Different Attention Alignment loss weight λA.
We evaluate the sensitivity of model to the at-
tention alignment loss weight λA in Equation 4
with SiT-L/2 as an example.

As shown in Table 5, HASTE consistently im-
proves the performance of SiT-L/2 at 400K it-
eration across different values of λA, indicating
that attention alignment provides relatively sta-
ble benefits. We note that larger weights can
lead to reduced performance. Therefore, we
choose λA = 0.5 in our primary experiments.

Selection of alignment layers. We try differ-
ent transfer layers for HASTE on SiT-L/2 in
Table 6. For brevity, we denote layers from SiT
and DINO as layer-S and layer-D, respectively.
Additionally, we use [·]S and [·]D to specify particular layer indices (counting from 0).

Firstly, we find that enough deeper layers should get involved for optimal performance. As shown in
Table 6, when choosing only two layers of each model for alignment, namely [10, 11]D and [6, 7]S ,
the performance is inferior to choosing four layers. Additionally, results reflect that enough shallow
layers should be left for processing the noisy inputs in the latent space. We can observe that the
distillation of [8, 9, 10, 11]D to [4, 5, 6, 7]S achieves a better FID without including [6, 7]D to [2, 3]S .

model λA FID↓ sFID↓ IS↑

SiT-L/2
+HASTE

0.5 7.9 5.08 124.8
1.0 8.6 5.29 120.0
1.5 8.7 5.23 119.3
3.0 9.0 5.34 116.9

Table 5: ATTA weight λA = 0.5
leads to better performance on SiT-
L/2 at 400K iteration.

model layer-D layer-S FID↓ sFID↓ IS↑

SiT-L/2
+HASTE

[10, 11]D [6, 7]S 8.9 5.31 119.3
[8, 9, 10, 11]D [4, 5, 6, 7]S 7.9 5.08 124.8

[6, 7, 8, 9, 10, 11]D [2, 3, 4, 5, 6, 7]S 8.3 5.12 121.3

Table 6: Comparison of HASTE with different choices of layers
on SiT-L/2 at 400K iteration. While transferring attention maps
for more deep layers provides greater benefits, we need to pre-
serve enough shallow layers to process latent input.
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Our findings align with the observations of attention transfer on ViTs reported in [31]: transferring
more attention maps from deeper layers provides greater benefits, and ViTs can learn low-level
features well when guided on how to integrate these features into higher-level ones.

4 Related Work

4.1 Accelerating Training Diffusion Transformers

To accelerate the training of diffusion transformers, existing methods can be broadly classified into
two categories: architectural modifications and representation enhancements.

Architecture modification. These methods focus on directly improving the efficiency of the model
architecture. For example, SANA series [51, 52], DiG [58], and LiT [47] introduce Linear Attention
[22, 50, 3] to improve the efficiency of diffusion transformers. Additionally, methods like MaskDiT
[56] and MDT [10, 11] introduce masked image modeling [14] to reduce the cost during training.

Representation incorporation. In contrast to architecture modifications, these methods do not
require designing specialized structures and instead leverage external representations to achieve
acceleration. For instance, REPA [55] observes the difficulty in learning effective representations for
diffusion models [43, 18, 44], which hinders the training efficiency. To address this, REPA proposes
to align the internal features of diffusion transformers with the output of pre-trained representation
models, and significantly accelerates the training process.

Furthermore, recent works [53, 45, 30] have also achieved better results based on representation
methods. For example, U-REPA [45] improves REPA with a manifold alignment loss, and demon-
strates its effectiveness on U-Nets [41]. External representations can also help enhance generation
and reconstruction capabilities of VAE, such as in VA-VAE [53] and E2E-VAE [30].

Unlike these methods, our research focuses mainly on the diffusion transformer itself. We investigate
the relationship between external representation guidance and the self-improvement of diffusion
transformers, and propose to remove the regularization at an appropriate training stage.

4.2 Attention Transfer for Vision Transformers

The attention mechanism [46] has been shown to provide vision models, such as Vision Transformers
(ViTs) [6], with strong adaptability and scalability across various tasks. While prior works [15, 13]
have achieved improved downstream performance by leveraging entire pre-trained models, Li et al.
[31] demonstrates that the attention patterns learned during pre-training are sufficient for ViTs to
learn high-quality representations from scratch, achieving performance comparable to fine-tuned
models on downstream tasks. Consequently, attention distillation [31, 48, 39] has been proposed to
transfer knowledge efficiently.

The transfer of attention maps has been extensively studied in Vision Transformers (ViTs), but
remains underexplored in diffusion transformers. While recent work [57] applies attention distillation
for characteristics transfer tasks using diffusion models, its explorations remain in the sampling
process. Moreover, the relationship between attention mechanisms in ViTs and diffusion transformers
requires further investigation. In this work, we demonstrate that attention maps from a pre-trained
ViT can effectively guide the learning process of diffusion transformers.

5 Conclusion

In this paper, we have proposed HASTE, a simple but effective way to improve the training efficiency
of diffusion transformers. Specifically, we identify the capacity mismatch and reveal that represen-
tation alignment is not always beneficial throughout the training process. In addition, we analyze
the stages when feature alignment is most effective and investigate the dilemma between external
feature guidance and internal self-improvement of diffusion transformers. We prove that HASTE can
significantly accelerate the training process of mainstream diffusion transformers, such as SiT and
DiT. We hope our work will further reduce the cost for researchers to train diffusion transformers,
and broaden the application of diffusion models in downstream tasks.
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Limitations and future work. We mainly focus on diffusion transformers in latent space for image
generation. Explorations of HASTE with pixel-level diffusion [5, 24], or in video generation tasks
[19] would be exciting directions for future work. Additionally, HASTE may also be incorporated
with other methods [53, 30] on different model architectures [45].

Faster generative model training could potentially lower barriers for harmful content generation. As a
technical contribution focused on training efficiency, our work does not directly address broader AI
safety challenges, which we acknowledge as important future work.

It is meaningful to further explore attention alignment over cross-attention maps between MM-DiT
and pre-trained multi-modal encoders. The development of more robust and efficient automatic
termination triggers—possibly guided by gradient-based signals—remains an open direction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have clearly stated our contributions, including
the motivation and our acceleration strategy, which are consistent with the scope presented
in the main body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper mainly focuses on empirical studies.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Method and Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: ImageNet and MS-COCO 2014 are public datasets. We will release our code
after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In practice, we find error bars of evaluation with 40K or 50K samples are small
and omitted for simplification.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, our research conforms in every respect to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all related papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Results

A.1 Gradient Angle Diagnosis

We provide detailed results of cosine similarity between REPA [55] and denoising gradients. In
Figure 9, we separately compute gradients of the feature alignment and the denoising objective for
SiT-XL/2 [34] and compare the cosine similarity of their directions at different training iterations.
Specifically, we randomly sample 960 images from the training dataset of ImageNet [4] for the
comparison and take gradients of parameters in the eighth block of SiT-XL/2 for example (REPA sets
the default alignment depth as 8).

0

0.20
0.25

-0.27
-0.29

-0.49

100K 200K 400K 4M

iteration

cosine similarity

t=0.1
t=0.5
t=0.9

0.10

 

Figure 9: Gradient cosine similarity between
REPA and the denoising objective.

iteration t = 0.02 t = 0.04 t = 0.06 t = 0.08 t = 0.10

100K 0.0070 0.0064 0.0327 0.0525 0.0692
200K 0.0350 0.0476 0.0434 0.0568 0.0628
300K -0.0235 -0.0324 -0.0316 -0.0044 -0.0116
400K -0.1236 -0.1056 -0.1133 0.0232 0.0130
500K 0.0346 -0.0368 -0.0246 -0.0063 -0.0409
600K -0.1185 -0.0546 0.0645 -0.0039 0.0372
4M -0.2065 -0.1279 -0.1928 -0.3621 -0.4942

Table 7: Detailed cosine similarity results of the
8th block in SiT-XL/2 at t ≤ 0.10.

We first observe a relatively high cosine similarity, representing an acute angle between gradients of
the two objectives. However, the similarity shows a decreasing trend as the training progresses, and
the angle becomes nearly orthogonal at the intermediate stage (around 400K iteration). Furthermore,
we find that the similarity becomes obviously negative at the final training stage, such as at 4M
iteration, indicating that there might be some potential conflict between REPA and diffusion loss.

In addition to training iterations, we also find a feature alignment gap over different diffusion
timesteps: As reported in [55], a well-trained DiT [37] or SiT exhibits a higher feature alignment at
the intermediate diffusion timesteps, while the alignment is notably weaker at those closer to the data
distribution, i.e., nearby the sampling results, such as t = 0.1 for SiT. We observe a similar trend
in our gradient similarity comparison. According to diffusion sampling properties, the initial steps
starting from noise mainly contribute to global fidelity, namely the basic outline of images, while
the steps closer to the data are to refine microscopic details such as textures [23]. We hypothesize
that the diffusion transformer eventually needs to refine its own representations for detail generation
beyond learning directly from external features.

iteration t = 0.02 t = 0.05 t = 0.07 t = 0.1 t = 0.2 t = 0.5 t = 0.9

100K -0.0138 -0.0131 -0.0068 0.0129 0.0488 0.0541 -0.0093
200K -0.0423 -0.0674 -0.0719 -0.0491 0.0068 0.0801 0.0099
250K -0.0323 -0.0597 -0.0598 -0.0599 -0.0264 0.0354 0.0419
260K -0.0232 -0.0331 -0.0243 -0.0034 0.0436 0.0729 0.0065
270K 0.0029 0.0152 0.0113 0.0097 0.0419 0.0554 0.0233
280K -0.0263 -0.0131 -0.0031 0.0011 0.0217 0.0455 -0.0176
290K -0.0524 0.0199 0.0308 0.0532 0.0832 0.0550 0.0111

Table 8: Detailed gradient cosine similarity results between holistic alignment and denoising objec-
tives on the 8th block of SiT-XL/2 at different training iterations.

For our method, HASTE, we also examine the gradient cosine similarity between holistic alignment
and denoising. The similarity trend serves as a kind of reference for our termination strategy.
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A.2 Gradient Angle Trigger

In Section 2.2, we introduce the gradient-angle rule for robustness and theoretical insight of HASTE.
In this section, we further explain the role of gradient signals, and then provide a plain example of
HASTE with automatic gradient-angle trigger.

Hybrid termination strategy. In practice, we find setting a fixed termination iteration τ for HASTE
actually performs reliably well in ImageNet and MS-COCO experiments. Gradient threshold serves
as a supplemental alternative, adding adaptability to different situations. Moreover, gradient analysis
helps us to locate the termination point. As we state in Section 3.4, we choose to stop around 250K
iteration when we observe limited alignment benefits and relatively low gradient cosine similarities.

Gradient-angle trigger (plain implementation). We train SiT-B/2 on ImageNet 256× 256 following
the original settings of HASTE. We start evaluating the gradient cosine similarity between holistic
alignment and denoising objectives every 10K iterations after 50K iteration, when the training process
has been relatively stable. At each evaluation, we use selected timesteps t at various noise levels
with 2048 images randomly sampled from ImageNet, and average the similarities. When the average
similarity falls below a threshold δ, we terminate the holistic alignment. In the plain example, we
perform gradient evaluation on the 5th SiT block (counting from 1). We select t = 0.02, t = 0.1,
t = 0.5 and t = 0.8, and set δ = −0.05. As shown in Tables 9 and 10, our automatic trigger
terminates the holistic alignment at 80K iteration, and achieves better performance at 100K iteration.

Limitations. In practice, we find it challenging to design such trigger for precise termination because
of: (i) Additional overhead: gradient evaluation introduces extra computational costs, limiting the
practical evaluation frequency. (ii) Hyperparameter setting: the automatic trigger is sensitive to
hyperparameters, such as block choice, timestep selection, and the threshold.

Therefore, since monitoring model performance during training is a standard practice in modern
deep learning workflows, it’s more practical to integrate the periodic evaluation of both metrics and
gradient cosine similarity to determine the optimal termination point.

iteration
timestep

50K 60K 70K 80K

0.02 -0.0174 0.0418 0.0872 -0.0032
0.1 0.0126 -0.0767 -0.0148 -0.1155
0.5 0.0134 0.0106 -0.0848 -0.1272
0.8 0.0034 0.0406 0.1025 -0.0212
average 0.0030 0.0041 0.0225 -0.0668

Table 9: Gradient cosine similarity between
alignment and denoising objectives. Bold
font denotes the average value below thresh-
old. We remove alignment at 80K iteration.
method iteration term. FID↓ sFID↓ IS↑

SiT-B/2 100K - 63.46 7.31 20.6
+HASTE 100K - 39.86 7.16 35.8
+HASTE 100K 80K 38.69 6.88 36.4

Table 10: Results of SiT-B/2+HASTE with
gradient angle trigger. Alignment termination
at 80K iteration leads to better performance.

method iteration encoder FID↓ sFID↓ IS↑

SiT-B/2 100K - 63.46 7.31 20.6

+REPA 100K DINOv2-B 49.50 7.00 27.5

+REPA 100K CLIP-ViT-B 54.92 7.63 24.7

+HASTE 100K DINOv2-B 39.86 7.16 35.8
+HASTE 100K CLIP-ViT-B 48.74 7.92 28.7

Table 11: Results of holistic alignment on SiT-B/2 with
CLIP-ViT-B/16 as external encoder. While HASTE
with CLIP consistently accelerates training, using
DINOv2-B achieves better performance.

method iteration term. FID↓ sFID↓ IS↑

SiT-B/2 150K - 52.71 7.06 26.2
+HASTE 150K - 38.36 7.23 38.2
+HASTE 150K 100K 36.13 6.95 40.6

Table 12: Validation of termination strategy on HASTE
with CLIP-ViT-B/16. Alignment termination at 100K
iteration achieves better performance.
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A.3 Experiments with CLIP

In this section, we take CLIP-ViT-B/16 [38] as an example to investigate the impact of different
pre-trained encoders on ImageNet 256 × 256. Additionally, we propose a solution for performing
alignment when there is a mismatch in patch numbers between SiT and the external encoder.

Setting. We use SiT-B/2 for fast validation following the original settings of HASTE. Since SiT-
B/2 and CLIP-ViT-B/16 possess different patch numbers (i.e., 16 × 16 and 14 × 14), we perform
additional spatial interpolations to align the dimensions:

(i) Feature map interpolation. Given SiT-B/2 block hidden states of shape [16 × 16, 768],
instead of directly merging channels from 256 into 196, we first reshape the sequence to
[16, 16, 768] to preserve the 2D spatial topology of image patches. Subsequently, we apply
bilinear interpolation to downsample the feature from spatial dimensions [16, 16] to [14, 14].

(ii) Attention map interpolation. Similarly, given SiT-B/2 block attention map of shape
[h, 16 × 16, 16 × 16], we reshape it into a spatial tensor [h, 16, 16, 16, 16], where the
dimensions represent head number, query height, query width, key height and key width
respectively. Subsequently, we sequentially apply bilinear interpolation to key and query
spaces to downsample the attention map from dimensions [16, 16, 16, 16] to [14, 14, 14, 14].

Results (w/o cfg). As shown in Tables 11 and 12, our implementations of both REPA and HASTE with
CLIP-ViT-B/16 can accelerate the training process of SiT-B/2. However, using DINOv2-B achieves
better acceleration performance, which aligns with the findings in [55]: when the diffusion transformer
is aligned with a pre-trained encoder that offers more semantically meaningful representations, the
model exhibits enhanced generation performance. At 150K iteration, the holistic alignment early-
stopped at 100K iteration achieves better performance, validating our termination strategy.

Consequently, we validate the generalizability of HASTE over different pre-trained encoders. More-
over, apart from directly varying the size of input image to the external encoder, we provide an
interpolation solution to address the patch number mismatch between SiT and the encoder.

A.4 ImageNet 512 × 512 Experiment

We conduct an additional experiment on ImageNet 512 × 512 to validate the scalability of HASTE to
image resolution. We follow the original settings of HASTE except τ = 300K iteration. Specifically,
we resize the input image to DINOv2 from 512 × 512 to 448 × 448 resolution following REPA.
In practice, we use stable diffusion VAE [40] to compress the input image to SiT during training
process, instead of pre-computing the latent vectors due to storage limitations.

method epoch termination FID↓ sFID↓ IS↑

SiT-XL/2 600 - 2.62 4.18 252.2
+REPA 80 - 2.55 4.16 241.2
+REPA 100 - 2.36 4.16 254.2
+HASTE 80 - 2.78 4.34 209.5
+HASTE 80 60 2.49 4.20 231.4
+HASTE 100 60 2.34 4.23 253.4

Table 13: Evaluation results on ImageNet 512 × 512. ↑ and ↓ denote higher and lower values are
better, respectively. Bold font denotes the best performance.

We report the quantitative results in Table 13, which reflects that HASTE can effectively accelerates
the training process with various image resolutions, also validating our alignment and termination
strategy. We evaluate the performance of SiT-XL/2+HASTE with SDE sampler (NFEs = 250,
cfg scale w = 1.25) and do not apply guidance interval [28].
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A.5 Detailed Quantitative Results

We provide detailed evaluation results of HASTE on different SiT models in Table 14. All results are
reported with the SDE Euler-Maruyama sampler (NFEs = 250) and without classifier-free guidance.

model #params iteration FID↓ [16] sFID↓ [35] IS↑ [42] Prec.↑ [27] Rec.↑ [27]

SiT-B/2 [34] 130M 400K 33.0 6.46 43.7 0.53 0.63
+HASTE 130M 100K 39.9 7.16 35.8 0.52 0.61
+HASTE 130M 200K 25.7 6.66 57.0 0.59 0.62
+HASTE 130M 400K 19.6 6.38 73.0 0.62 0.64
SiT-L/2 [34] 458M 400K 18.8 5.29 72.0 0.64 0.64
+HASTE 458M 100K 19.6 5.70 67.9 0.64 0.63
+HASTE 458M 200K 12.1 5.28 96.1 0.68 0.64
+HASTE 458M 400K 8.9 5.18 118.9 0.69 0.66
SiT-XL/2 [34] 675M 7M 8.6 6.32 131.7 0.68 0.67
+HASTE 675M 100K 15.9 5.64 78.1 0.67 0.62
+HASTE 675M 200K 9.9 5.04 108.8 0.69 0.64
+HASTE 675M 250K 8.4 4.90 119.6 0.70 0.65
+HASTE 675M 400K 7.3 5.05 128.7 0.72 0.64
+HASTE 675M 500K 5.3 4.72 148.5 0.73 0.65

Table 14: Additional evaluation results on ImageNet 256 × 256. ↑ and ↓ denote higher and lower
values are better, respectively. Bold font denotes the best performance.

Additionally, we provide the results of SiT-XL/2+HASTE with different classifier-free guidance [17]
scales and intervals [28].

model #params iteration interval CFG scale FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

SiT-XL/2 675M 7M [0, 1] 1.50 2.06 4.50 270.3 0.82 0.59
+HASTE 675M 500K [0, 1] 1.25 2.18 4.67 240.4 0.81 0.60
+HASTE 675M 500K [0, 0.7] 1.50 1.80 4.58 252.1 0.80 0.61
+HASTE 675M 500K [0, 0.6] 1.825 1.74 4.74 268.7 0.80 0.62
+HASTE 675M 2M [0, 0.7] 1.7 1.45 4.55 297.3 0.80 0.64
+HASTE 675M 2M [0, 0.7] 1.65 1.44 4.56 289.4 0.79 0.64
+HASTE 675M 2M [0, 0.7] 1.675 1.44 4.55 293.7 0.80 0.64
+HASTE 675M 2.5M [0, 0.7] 1.7 1.43 4.56 298.8 0.80 0.64
+HASTE 675M 2.5M [0, 0.7] 1.65 1.43 4.57 290.7 0.80 0.64
+HASTE 675M 2.5M [0, 0.72] 1.65 1.42 4.49 299.5 0.80 0.65
+HASTE 675M 3M [0, 0.7] 1.67 1.41 4.51 296.9 0.80 0.65

Table 15: Evaluation results on ImageNet 256 × 256 with different classifier-free guidance settings.
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B Additional Implementation Details.

SiT-B SiT-L SiT-XL DiT-XL

Architecture
input dim. 32×32×4 32×32×4 32×32×4 32×32×4
num. layers 12 24 28 28
hidden dim. 768 1024 1152 1152
num. heads 12 16 16 16
HASTE
λR 0.5 0.5 0.5 0.5
λA 0.5 0.5 0.5 0.5
alignment depth 5 8 8 8
student layers [2, 3, 4] [4, 5, 6, 7] [4, 5, 6, 7] [4, 5, 6, 7]
teacher model DINOv2-B [36] DINOv2-B [36] DINOv2-B [36] DINOv2-B [36]
teacher layers [7, 9, 11] [8, 9, 10, 11] [8, 9, 10, 11] [8, 9, 10, 11]
termination iter. 100 K 250 K 250 K 250 K
alignment heads 0-11 0-11 0-11 0-11
Optimization
batch size 256 256 256 256
optimizer AdamW [25, 33] AdamW [25, 33] AdamW [25, 33] AdamW [25, 33]
lr 0.0001 0.0001 0.0001 0.0001
(β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
weight decay 0 0 0 0
Diffusion
objective linear interpolants linear interpolants linear interpolants improved DDPM
prediction velocity velocity velocity noise and variance
sampler Euler-Maruyama Euler-Maruyama Euler-Maruyama Euler-Maruyama
sampling steps 250 250 250 250

Table 16: Detailed training settings.

Further implementation details. For XL and L-sized models, we set the feature alignment depth
to 8 following REPA, and extract the attention maps from layer [4, 5, 6, 7] (counting from 0) of
diffusion transformers, to align with those from layer [8, 9, 10, 11] of DINOv2-B. According to
[31], the performance almost saturates when transferring 12 out of 16 heads, and the student can
also develop its own attention patterns for unused heads. Specifically, since the number of heads
for DINOv2-B layer is only 12, we conduct attention alignment partially over the first 12 heads of
diffusion transformer layer. For B-sized models, the feature alignment depth is adjusted to 5, and we
extract the attention maps from layer [2, 3, 4] to align with those from layer [7, 9, 11] of DINOv2-B.

We enable mixed-precision (fp16) for efficient training. For data pre-processing, we leverage the
protocols provided in EDM2 [21] to pre-compute latent vectors from images with stable diffusion
VAE [40]. Specifically, we use stabilityai/sd-vae-ft-ema decoder to translate generated latent
vectors into images. Following REPA [55], we also use three-layer MLP with SiLU activations [7] as
the projector of hidden states. For MM-DiT, we use CLIP [38] text model to encode captions.
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C HASTE Training Loop

For clarity, we provide pseudocode in Algorithm 1 for the HASTE training loop with a fixed iteration
as the trigger to further illustrate our two-phase schedule in addition to Figure 2.

Algorithm 1 HASTE Training Loop

Require: Diffusion model Gθ, Pre-trained encoder E
Require: Training dataset D, Termination point τ
Require: Loss weights λR, λA, Maximum iterations N
Ensure: Trained diffusion model Gθ

1: for i = 1 to τ do ▷ Phase I: Holistic Alignment
2: Sample x, t, ϵ from D, U(0, 1), N (0, I) ▷ Sample training batch
3: xt ← αtx+ βtϵ
4: ht ← Hidden(Gθ, xt, t) ▷ DiT hidden states
5: AG ← Attn(Gθ, xt, t) ▷ DiT attention maps
6: y ← E(x) ▷ Encoder features
7: AE ← Attn(E, x) ▷ Encoder attention maps
8: Ldiff ← MSE(Gθ(xt, t), target)
9: LREPA ← −CosSim(y,Proj(ht))

10: LATTA ← CrossEntropy(AG, AE)
11: L ← Ldiff + λRLREPA + λALATTA ▷ Alignment and denoising
12: θ ← θ − η∇θL ▷ Update parameters
13: end for

14: for i = τ + 1 to N do ▷ Phase II: Pure Denoising
15: Sample x, t, ϵ from D, U(0, 1), N (0, I) ▷ Sample training batch
16: xt ← αtx+ βtϵ
17: L ← MSE(Gθ(xt, t), target) ▷ Denoising only
18: θ ← θ − η∇θL ▷ Update parameters
19: end for

D Additional Visualizations

Figure 10: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “loggerhead sea turtle” (33).
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Figure 11: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “macaw” (88).

Figure 12: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “golden retriever” (207).
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Figure 13: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “arctic wolf” (270).

Figure 14: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “red panda” (387).
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Figure 15: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “panda” (388).

Figure 16: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “acoustic guitar” (402).
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Figure 17: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “balloon” (417).

Figure 18: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “baseball” (429).
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Figure 19: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “dog sled” (537).

Figure 20: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “fire truck” (555).

31



Figure 21: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “laptop” (620).

Figure 22: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “space shuttle” (812).
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Figure 23: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “cheeseburger” (933).

Figure 24: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “cliff drop-off” (972).
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Figure 25: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “coral reef” (973).

Figure 26: Uncurated generation results of SiT-XL/2+HASTE. We use classifier-free guidance
with w = 4.0. Class label = “volcano” (980).
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