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ABSTRACT

Linear Sequence Modeling (LSM) and Mixture-of-Experts (MoEs) have recently
emerged as effective architectural improvements. In this paper, we introduce Linear-
MoE, a production-level system for modeling and training large-scale models that
integrate LSM with MoEs. Linear-MoE leverages the advantages of both LSM
modules for linear-complexity sequence modeling and MoE layers for sparsely
activation, aiming to offer high performance with efficient training and deploy-
ment. The Linear-MoE system comprises two primary subsystems: Modeling
and Training. The Modeling subsystem provides a unified framework supporting
multiple types of LSM methods, including linear attention, SSM, and linear RNN.
The Training subsystem facilitates efficient training by incorporating advanced
parallelism techniques like Tensor, Pipeline, and Expert Parallelism, along with
LASP-based Sequence Parallelism for managing very-long input sequences. The
system is designed to be extensible for integrating more sequence modeling and
training abilities in the future. Additionally, we explore hybrid Linear-MoE models
that combine Linear-MoE layers with standard Transformer-MoE layers to further
enhance model flexibility and performance. Experimental evaluations on two model
series, A0.3B-2B and A1B-7B, demonstrate that Linear-MoE achieves efficiency
gains while maintaining competitive performance on various benchmarks. The code
is released at: https://github.com/OpenSparseLLMs/Linear-MoE.

1 INTRODUCTION

Most advances on Mixture-of-Experts (MoEs) studies primarily concentrate on modifying the routing
mechanism or expert layers, while typically keeping the attention layers unchanged. These attention
layers commonly rely on the softmax self-attention mechanism introduced in the Transformer
architecture (Vaswani et al., 2017). The softmax-based self-attention has proven to be highly effective
for sequence modeling tasks across various data types. However, a significant limitation of this
mechanism is its computational complexity, which grows quadratically with the input sequence length.
This complexity can lead to substantial computational costs, especially during training, making it a
challenge for models that need to handle long sequences efficiently.

Linear sequence modeling (LSM) has recently gained significant attention due to its impressive
efficiency in both training and inference. These methods function similarly to recurrent neural
networks (RNNs) with matrix-valued hidden states, allowing them to achieve linear-time training and
constant-memory inference. This efficiency is largely due to the fact that LSM techniques bypass
the computation of attention scores and eliminate the need for maintaining a key-value (KV) cache.
There are three primary approaches to linear sequence modeling: linear attention (Katharopoulos
et al., 2020), state space modeling (SSM) (Gu & Dao, 2023; Dao & Gu, 2024), and linear RNN (Peng
et al., 2023; Qin et al., 2024d). Linear attention is a variation of the traditional softmax attention
mechanism, replacing the exponential kernel with a simpler dot product between key and query
vectors, which enables the use of the right-product kernel trick to reduce computational complexity.

† Project lead. Corresponding to Weigao Sun (sunweigao@outlook.com). Work done during Disen Lan’s
internship at Shanghai AI Laboratory.
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SSM approaches, such as Mamba and Mamba2, stem from control theory and represent sequence
modeling as dynamic systems. Meanwhile, linear RNN methods address the limitations of traditional
RNNs in modeling long contexts by enabling parallel training of RNN models. These different
methods, linear attention, SSM, and linear RNN, share a common mathematical foundation and
exhibit similar performance on sequence modeling tasks Dao & Gu (2024); Peng et al. (2024); Qin
et al. (2024b); Yang et al. (2024b). In fact, they all employ a unified recurrence framework expressed
as Ms = Ms−1 + M̂s, where Ms denotes the memory state and M̂s represents the incremental
memory update at the s-th token.

In this paper, we introduce Linear-MoE, a production-level system designed for modeling and training
of large-scale MoE models with LSM modules integrated. The Linear-MoE system is composed of
two key subsystems: Modeling and Training. The Modeling subsystem provides a unified modeling
framework for Linear-MoE models, which combine LSM modules with MoE layers. It supports three
main types of LSM methods: linear attention, SSM, and linear RNN. For each type, multiple method
instances are implemented under a unified formulation. While the Training subsystem is designed to
achieve efficient training of Linear-MoE models on modern accelerators. In addition to supporting
state-of-the-art training techniques such as Tensor Parallelism (TP), Pipeline Parallelism (PP), and
Expert Parallelism (EP), we incorporate a specialized Sequence Parallelism (SP) technique for LSM
modules, which is particularly effective for handling extremely long input sequences on Linear-MoE
architecture. Importantly, the system is designed to be extensible, enables more advanced sequence
modeling methods or training techniques integrated in the future.

Furthermore, the system is not limited to pure Linear-MoE models, where every layer utilizes LSM
modules. We also explore efficient modeling and training for hybrid Linear-MoE models, which
combine Linear-MoE layers with standard Transformer-MoE layers. For these hybrid models, we
introduce an SP method that employs distinct computational and communication strategies tailored
to the different types of layers. In the experiments, we introduce two series of Linear-MoE models:
A0.3B-2B (with a total of 2 billion parameters and 0.3 billion activated) and A1B-7B (with a total
of 7 billion parameters and 1 billion activated). Each series includes multiple model instances
incorporating different LSM modules. We pretrain these models on the public SlimPajama corpus
and evaluate their efficiency and performance across several mainstream benchmarks to assess the
effectiveness of proposed Linear-MoE architecture.

2 LINEAR-MOE SYSTEM

2.1 MODELING

2.1.1 UNIFIED LINEAR SEQUENCE MODELING

The standard softmax attention (Vaswani et al., 2017), commonly used in transformer models, whose
parallel computation form during training can typically be expressed as: O = softmax(QK⊤)V.
Here, the matrices Q,K,V,O ∈ RN×d correspond to the query, key, value, and output matrices,
respectively. The matrices Q,K, and V are linear projections of the input matrix X ∈ RN×d,
defined as Q = XWQ, K = XWK , and V = XWV , where WQ,WK ,WV ∈ Rd×d are
learnable weight matrices. Here, N and d represent the sequence length and hidden dimension.

Linear Attention (Katharopoulos et al., 2020) as one of the representative LSM methods, has emerged
as a viable alternative to traditional softmax attention by implementing two primary modifications.
First, it eliminates the Softmax(·) operation, instead embedding it within a kernel feature map.
Second, it leverages the associative property of matrix multiplication, reconfiguring (QK⊤)V into
Q(K⊤V). These changes reduce both the computational and memory complexity from O(N2d) to
O(Nd2). This approach is frequently referred to as the right-product kernel trick, as it prioritizes
matrix multiplication on the right side.

While during inference, both softmax self-attention and linear attention handle a single token at each
iteration. Given the s-th token xs ∈ R1×d, softmax self-attention computes requiring the storage of
an expanding set of keys {k1, · · · , ks} and values {v1, · · · , vs} i.e., the KV cache, which leads to a
significant memory burden when dealing with long input sequences:

qs,ks,vs = xsWQ,xsWK ,xsWV , os =

∑s
i=1 exp(qski

⊤)vi∑s
i=1 exp(qsk⊤

i )
. (1)
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Table 1: Instances of Linear Sequence Modeling Methods. All instances listed follow the unified
formulation in Eq. (4). Here, a ∈ R, as ∈ R, as ∈ Rd, A ∈ Rd×d, As ∈ Rd×d represents a
fixed constant, a time-dependent scalar, a time-dependent vector, a time-independent matrix, and a
time-dependent matrix, respectively. Note that the same notation may denote different variables in
different instances.

LSM Method Instance Recurrent Update Rule Parameter

Linear Attention BLA Ms = Ms−1 + k⊤
s vs \

Lightning Attn Ms = aMs−1 + k⊤
s vs a ∈ R

RetNet Ms = aMs−1 + k⊤
s vs a ∈ R

GLA Ms = diag{as}Ms−1 + k⊤
s vs as ∈ Rd

DeltaNet Ms = (I− ask
⊤
s ks)Ms−1 + bsk

⊤
s vs as, bs ∈ R

Rebased Ms = Ms−1 + ϕ(ks)
⊤vs \

GFW Ms = As ⊙Ms−1 + k⊤
s vs As ∈ Rd×d

GateLoop Ms = As ⊙Ms−1 + k⊤
s vs As ∈ Rd×d

Gated DeltaNet Ms = as(I− k⊤
s ks)Ms−1 + bsk

⊤
s vs as, bs ∈ R

TTT Ms = Ms−1 + bs∇l(Ms−1;ks,vs) bs ∈ R
Titans Ms = asMs−1 + bs∇l(Ms−1;ks,vs) as, bs ∈ R

SSM * S4 Ms = exp(−(a1⊤)A)⊙Ms−1

+(a1⊤)b⊤vs
a,b ∈ Rd,A ∈ Rd×d

Mamba Ms = exp(−(as1
⊤)As)⊙Ms−1

+(as1
⊤)k⊤

s vs
as ∈ Rd,As ∈ Rd×d

Mamba2 Ms = exp(−abs)⊙Ms−1 + bsk
⊤
s vs a, bs ∈ R

HGRN2 Ms = diag{as}Ms−1 + (1− as)
⊤vs as ∈ Rd

Linear RNN RWKV6 Ms = diag{as}Ms−1 + k⊤
s vs as ∈ Rd

RWKV7 Ms = diag{as}Ms−1 +∇l(Ms−1;ks,vs) as ∈ Rd

* For both S4 and Mamba, the Euler Discretization (Gu et al., 2020) is applied, such that B̄ = ∆B, and
the unprojected xs is denoted as vs for consistency with other formulas.

Linear attention replaces the term exp(qsk
⊤
i ) with a kernel k(x,y) with an associated feature map

ϕ, i.e., k(x,y) = ⟨ϕ(x), ϕ(y)⟩. This simplifies the calculation of os as

os =

∑s
i=1 ϕ(qs)ϕ(ki)

⊤vi∑s
i=1 ϕ(qs)ϕ(ki)⊤

. (2)

Letting Ms =
∑s

i=1 ϕ(ki)
⊤vi and zs =

∑s
i=1 ϕ(ki)

⊤ where Ms ∈ Rd×d, zs ∈ Rd×1, we can
rewrite Eq. (2) as an RNN:

Ms = Ms−1 + ϕ(ks)
⊤vs, zs = zs−1 + ϕ(ks)

⊤,os =
ϕ(qs)Ms

ϕ(qs)zs
. (3)

Follow-up studies on SSM (e.g., Mamba2) and linear RNNs (e.g., RWKV6, HGRN2), have demon-
strated their similarity with linear attention Dao & Gu (2024); Peng et al. (2024). In fact, recent
studies (Qin et al., 2024b; Yang et al., 2024b) have suggested that linear attention, state space, and
linear RNN sequence modeling methods can be expressed within a unified recurrence framework as:

M̂s = f(K⊤
s ,Vs),Ms = Θs ⋄Ms−1 + M̂s. (4)

In this formulation, M̂s ∈ Rd×d represents the memory state corresponding to the s-th input, which
is a function of K⊤

s and Vs. And Θs denotes a coefficient matrix that may be time-varying or
constant (and also can be a vector or scalar). The operator "⋄" can denote either standard matrix
multiplication or a Hadamard product. We collect recent LSM method instances which follow the
unified formulation in Eq. (4) and list them in Table 1.

2.1.2 LINEAR-MOE ARCHITECTURE

The Linear-MoE architecture is relatively straightforward, consisting of N× stacked Linear-MoE
blocks, as depicted in Fig. 1. Each Linear-MoE block includes an LSM layer and an MoE layer,
with a normalization layer preceding each. The LSM layer serves as a generalized structure that
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Figure 1: Linear-MoE Architecture. In each Linear-MoE block, there is both an LSM layer and an
MoE layer, with each layer preceded by its own normalization layer. The LSM layer is designed as a
flexible abstraction that integrates three types of methods: linear attention, SSM, and linear RNN,
which follows a unified recurrence framework.

supports various LSM methods, specifically, linear attention, SSM, and linear RNN, each encom-
passing multiple instance methods. Table 1 provides an overview of these LSM method instances,
unified under a common recurrence framework. This framework highlights key distinctions between
instances, primarily in their handling of the prior-step memory state Ms−1 and the computation of
the incremental memory state M̂s. For the MoE layers, we retain the standard mechanisms of sparse
expert activation and routing, as employed in SOTA MoE models. These mechanisms are essential
for maintaining an optimal balance between model performance and computational efficiency.

Based on this prior, we propose a hybrid Linear-MoE architecture that combines Linear-MoE layers
with standard (MoE) transformer layers. A practical approach for constructing these hybrid models is
to periodically substitute certain Linear-MoE layers with standard MoE transformer layers within
the model. For instance, in an 4-layer hybrid Linear-MoE model, denoted by "L" for Linear-MoE
layers and "N" for normal transformer layers, configurations such as "LLLL" or "LNLN" may be
used, depending on the desired ratio of normal transformer layers, which can be adjusted manually.

2.2 TRAINING

2.2.1 SEQUENCE PARALLELISM ON LINEAR-MOES

The existing methods, LASP (Sun et al., 2024b) and its modified variant LASP-2 (Sun et al., 2024a),
are designed specifically to leverage the right-product-first property of LSM techniques by introducing
specialized algorithms for efficient SP within LSM modules. LASP employs a point-to-point ring-
style communication pattern, facilitating the exchange of incremental memory states across devices.
This communication pattern is particularly effective for managing dependencies while minimizing
the data transferred between devices, enhancing the scalability of SP. LASP-2 further refines this
approach by replacing the ring-style communication with an all-gather collective communication
operation, streamlining the entire communication process. This modification not only simplifies the
communication structure but also improves the parallelism of computation and communication. By
reorganizing the computation and communication flows, LASP-2 enables greater overlap between
these processes, thereby boosting efficiency during both training and inference. A detailed breakdown
of the LASP-2 algorithm, with and without masking, is provided in Appendix A.2.1.

In this work, we extend the capabilities of LASP-2 to the Linear-MoE system, allowing for the
efficient SP training on Linear-MoE architecture, particularly when dealing with extremely long
sequences across large-scale distributed clusters. This extension significantly enhances the scalability
and efficiency of training Linear-MoE models with long sequences on extensive compute resources.
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Figure 2: Linear-MoE System Implementation.
The Linear-MoE system is composed of two main
subsystems: Modeling and Training. It is devel-
oped in a non-intrusive manner on Megatron-Core.
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quence length increases, the throughput of
Baseline declines significantly, whereas LSM
models maintain stable training efficiency.

2.2.2 HYBRID MODEL SEQUENCE PARALLELISM

Applying LASP-2 sequence parallelism to pure Linear-MoE models is straightforward, as this form
of SP operates exclusively on the LSM modules, leaving the MoE layers unaffected. In hybrid
Linear-MoE models, however, implementing SP becomes more complex due to the interleaving of
distinct sequence modeling layers. To effectively optimize SP for these hybrid models, we introduce
an integrated approach that incorporates SP across both the linear-MoE and standard transformer
layers, thus enhancing overall efficiency. We illustrate the approach in Fig. 5 in Appendix A.2.1, and
explain it as below:

On LSM Module. Similar to LASP-2, the SP for LSM modules is implemented via a single
collective communication operation on the memory state Ms ∈ Rd×d. This approach ensures that
the communication complexity does not depend on either the sequence or sub-sequence length; rather,
it scales only linearly with the SP size T , thereby maintaining efficiency in distributed setups.

On Standard Attention Module. Context parallelism (CP) is a SP technique used in Megatron-
LM that divides input data and activations along the sequence dimension, specifically designed
for standard softmax attention. Traditional CP implementations in Megatron-LM rely on a ring-
like communication-computation overlap (Liu et al., 2023). In contrast, our approach for standard
attention modules adopts the all-gather-based strategy used in the pretraining of Llama3 (Dubey et al.,
2024). Rather than utilizing a ring strategy, we perform all-gather communication for Kst and Vs

tensors across devices, followed by local computation of attention output on each device’s chunk of
Qs. While all-gather communication theoretically has higher latency than ring-based methods, it
offers greater flexibility and adaptability for handling different attention masks, such as document-
level masks, making it ideal for varying attention patterns. Moreover, the latency of all-gather is
minimized since the Ks and Vs tensors are notably smaller than the Qs tensor, especially with
grouped query attention (Ainslie et al., 2023). Consequently, the computational time for generating
attention output significantly outweighs the cost of all-gather communication.

The Linear-MoE system also provides more training techniques like Tensor Parallelism, Hybrid
Parallelism and Variable Length handling capacities, which are detailed in Appendix A.2. The
concrete implementations of Linear-MoE system, including Modeling subsystem, Training subsystem
and Evaluation module are described in Appendix A.3, due to space limitations.

3 EMPIRICAL STUDY

We perform experiments to evaluate the training efficiency of the Linear-MoE system, focusing on
throughput and GPU memory requirements using eight A100 GPUs. For training the sparse MoE
models, we set the EP size as 8. During the experiments, we maintain a total of 16K input tokens per
iteration, while varying the input sequence lengths across {2K, 4K, 8K, 16K} with corresponding
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Figure 4: Max Allocated GPU Memory (GB). Legend presents Seq length × Batch Size. With the
increasing of sequence length, the GPU memory requirements of Baseline and FlashAttention models
grow quickly, while the LSM-based models keep almost consistent GPU memory consumption.

batch sizes of {8, 4, 2, 1}. As illustrated in Fig. 3 and Fig. 4, we observe that the standard attention
Baseline shows a significant quadratic increase in memory usage and a decline in throughput as the
input sequence lengths grow. FlashAttention-2 also demonstrates notable variations in both memory
footprint and throughput, when the sequence length reaches 16K. In contrast, the Linear-MoE models,
which incorporate LSM, exhibit relatively stable memory consumption and consistent throughput
when sequence length increases, but number of input tokens remains fixed.

Furthermore, to highlight the efficiency benefits of the Linear-MoE training subsystem, we conduct
ablation studies on MoE optimization techniques and parallelism training methods. The results of
these experiments are presented in Table 5. It is evident that the implementation of MoE optimization
techniques, specifically Grouped GEMM and MegaBlocks, significantly reduces the elapsed time for
each iteration. Additionally, the various parallelism training techniques each demonstrate their own
advantages in terms of memory footprint and overall training efficiency.

We provide detailed experiment setups and supplementary experiment results in Appendix A.4.

4 CONCLUSION

In this paper, we introduced Linear-MoE, a novel product-level system designed to integrate LSM with
MoEs, aiming to advance both the efficiency and scalability of existing large models. By combining
linear-complexity sequence modeling capabilities of LSM with sparsely activated MoE layers, Linear-
MoE achieves high performance while addressing computational and memory constraints common
in large model training and deployment. The dual subsystems: Modeling and Training, provide a
flexible and extensible framework that supports diverse LSM methods and advanced parallelism
techniques, including LASP-based sequence parallelism for handling long input sequences efficiently.
Additionally, we explored hybrid models that further enhance adaptability by incorporating standard
MoE Transformer layers. Our experimental results demonstrate that Linear-MoE achieves significant
efficiency gains while maintaining strong performance across various benchmarks. These findings
highlight the potential of Linear-MoE as the next generation of foundation model architecture.
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A APPENDIX

A.1 RELATED WORK

A.1.1 MIXTURE-OF-EXPERTS

MoE (Cai et al., 2024; Zhu et al., 2024) is gaining increasing attention in the development of large
language models (LLMs) due to its ability to scale model size while maintaining computational
efficiency. Its key strength lies in the sparse activation of experts and routing mechanisms, enabling a
better balance between model performance and training cost. The effectiveness of MoE in modern
deep learning was first demonstrated in Shazeer et al. (2017), where an MoE layer was introduced
between LSTM layers, resulting in state-of-the-art performance on language modeling and machine
translation benchmarks. Following this, the MoE layer was incorporated into the Transformer
architecture, replacing the feed-forward network (FFN) layers. GShard (Lepikhin et al., 2020)
applied MoE to Transformers, significantly improving machine translation across 100 languages.
Switch Transformers (Fedus et al., 2022) further scaled model size to trillions of parameters, using
a simplified and efficient MoE layer design. However, training MoE models often leads to load
imbalance, where only a few experts are heavily utilized, leaving others underutilized. To address
this, several strategies have been developed to optimize MoE training. These include the BASE
layer (Lewis et al., 2021), the HASH layer (Roller et al., 2021), and Expert Choice (Zhou et al., 2022),
all of which aim to maximize model capacity utilization. MoE architectures have been widely adopted
in industry-leading models, such as Gemini-1.5 (Reid et al., 2024) and reportedly GPT-4 (Chintala,
2023). Other notable examples of LLMs incorporating MoE techniques include Mixtral (Jiang et al.,
2024), DeepSeek V2 (Liu et al., 2024), Qwen2 (Yang et al., 2024a), JetMoE (Shen et al., 2024),
Jamba (Team et al., 2024), and OLMoE (Muennighoff et al., 2024). Despite the advances in MoE,
most research has focused on improving FFN layers and routers, while attention mechanisms have
remained largely unchanged. There is still much room for exploring how to enhance the efficiency of
MoE models by evolving their attention layers.

A.1.2 LINEAR SEQUENCE MODELING

Linear Attention. Linear attention encompasses a set of techniques aimed at calculating attention
outputs using the "right-product kernel trick," which first computes key-value products, thereby
avoiding the quadratic complexity associated with query-key computations. Vanilla linear atten-
tion (Katharopoulos et al., 2020) replaces the Softmax attention (Vaswani et al., 2017) with kernel
methods, reducing the computational complexity to linear in relation to sequence length. Building on
this, various extensions of linear attention have emerged. For example, TransNormerLLM (Qin et al.,
2024a) introduces Lightning Attention, an optimized linear attention mechanism that speeds up pro-
cessing by enhancing IO operations. Lightning Attention-2 (Qin et al., 2024c) further improves this by
separately handling inter- and intra-block computations to fully exploit the advantages of linear atten-
tion on autoregressive tasks. RetNet (Sun et al., 2023) combines a retention mechanism with attention,
offering both parallel training and linear-time inference. Gated Linear Attention (GLA) (Yang et al.,
2023) introduces a data-independent gating mechanism and presents a hardware-efficient algorithm
for training. DeltaNet (Schlag et al., 2021), along with its parallelized version (Yang et al., 2024b),
applies a delta-rule-like update to improve performance in long-context scenarios. More recently,
Gated Slot Attention (GSA) (Zhang et al., 2024), inspired by GLA, introduces a bounded-memory
slot control mechanism within the gated linear attention framework, further boosting performance in
tasks requiring strong recall abilities.

State Space Modeling. SSM provides a robust framework for capturing the behavior of sequence
modeling within dynamic systems, and has demonstrated itself in the field of linear sequence modeling.
Models such as S4 (Gu et al., 2022b) and its subsequent variants (Gu et al., 2022a; Gupta et al.,
2022) have achieved notable success, particularly in long-range synthetic tasks. A recent example is
Mamba (Gu & Dao, 2023), a representative SSM model that introduces a state selection mechanism.
Mamba addresses the limitation of static dynamics in previous methods, arguing that they do not
account for input-specific context selection within the hidden state, which is critical for tasks like
language modeling. Mamba has shown superior performance compared to Transformers across
various model sizes and scales. Mamba has been further refined in its successor, Mamba2 (Dao & Gu,
2024), which integrates a linear attention-like mechanism that improves hardware efficiency during
training. Similar to how linear attention uses outer products to expand the state, Mamba2 leverages
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a state-space duality that enables parallel attention-style computation while maintaining recurrent
inference capabilities.

Linear RNN. Traditional RNNs struggle with long-context sequence modeling, largely due to their
sequential nature during training, which limits their ability to benefit from scaling laws (Sun et al.,
2023). To mitigate these issues, Linear RNNs introduce parallel training capabilities, achieving
competitive performance with Transformers of comparable size. RWKV (Peng et al., 2023; 2024)
is an example of a large language model based on linear RNNs, designed to effectively manage
long-term dependencies. Furthermore, HGRN (Qin et al., 2024e) emphasizes the importance of
data-dependent decay mechanisms in enhancing linear RNN performance, showing how tuning decay
parameters can improve learning in long-context scenarios. The upgraded HGRN2 (Qin et al., 2024d)
builds on this by introducing a state expansion mechanism that leverages outer product operations,
allowing for better scalability and improved sequence modeling over extended inputs. Both RWKV
and HGRN models aim to address the limitations of traditional RNNs for efficient long-sequence
modeling.

A.2 MORE TRAINING TECHNIQUES

A.2.1 SEQUENCE PARALLELISM ALGORITHMS

Algorithm 1 LASP-2 w/o Masking

1: Input: input sequence X, distributed world size W , sequence parallel size T = W .
2: Distribute X = [Xt]

T
1 .

3: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in parallel do
4: Calculate Qt = XtWQ, Kt = XtWK , Vt = XtWV .
5: Compute Mt = K⊤

t Vt.
6: Communicate [Mt]

T
1 = AllGather([Mt]

T
1 ).

7: Compute M1:T = Sum([Mt]
T
1 ).

8: Compute Ot = QtM1:T .
9: end for

10: return O = [Ot]
T
1 .

Algorithm 2 LASP-2 w/ Masking

1: Input: input sequence X, distributed world size W , sequence parallel size T = W .
2: Distribute X = [Xt]

T
1 .

3: Initialize mask matrix Ψ, where Ψij = 1 if i ≥ j and Ψij = −∞ if i < j.
4: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in parallel do
5: Calculate Qt = XtWQ, Kt = XtWK , Vt = XtWV .
6: Compute Mt = (Kt)

⊤Vt.
7: Communicate [Mt]

T
1 = AllGather([Mt]

T
1 ).

8: Compute Ot,intra = [(QtK
⊤
t )⊙Ψ]Vt.

9: Compute prefix sum
M1:t−1 = PrefixSum([Mt]

t−1
1 ).

10: Compute Ot,inter = QtM1:t−1.
11: Compute Ot = Ot,intra +Ot,inter.
12: end for
13: return O = [Ot]

T
1 .

A.2.2 TENSOR PARALLELISM

The core computation mechanism of LSM modules can be abstracted in the following general form:

O = ϕ(Q)(ϕ(K)⊤V), Q = XWq,K = XWk,V = XWv, (5)
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Figure 5: Sequence Parallelism Approach on Hybrid Linear-MoE models. We exemplify the
parallelism on the hybrid layers of LSM and standard attention with both TP and SP (both have a
dimension of 2). The communication operations colored in yellow and green are for TP and SP,
respectively. AG/RS: all-gather in forward and reduce-scatter in backward, and vice versa. AG/No:
all-gather in forward and no-op in backward, and vice versa. Note that the SP communication
operations for linear attention operate on the single memory state Ms ∈ Rd×d, while for standard
attention, they operate on two states Ks,Vs ∈ RC×d.

where TP is applied by splitting the matrix multiplications as follows:

Q = [ϕ(XW1
q), ϕ(XW2

q)],K = [ϕ(XW1
k), ϕ(XW2

k)],

V = X[W1
v,W

2
v],O = [O1,O2],

(6)

where the weight matrices Wq , Wk, and Wv are divided along their columns, producing an output
matrix O that is also split along columns.

The split output [O1,O2] is then multiplied by an output linear weight matrix that is split along its
rows, resulting in:

O = [O1,O2][W
1
o,W

2
o]

⊤ = O1W
1
o +O2W

2
o, (7)

which produces a unified output.

As with TP in standard attention, TP for LSM modules introduces an all-reduce collective commu-
nication operation during both the forward and backward passes. In practical terms, this all-reduce
operation is implemented via two separate steps: all-gather and reduce-scatter, which together
functionally achieve the same result as a single all-reduce.

A.2.3 HYBRID PARALLELISM

SP in Linear-MoE allows for a flexible choice of sequence parallel size that can be set to any
factor smaller than or divisible by the total number of distributed nodes (i.e., the world size). This
flexibility enables splitting input data across both batch and sequence dimensions, creating a combined
approach known as data-sequence hybrid parallelism. Standard data parallelism techniques, such as
Distributed Data Parallel (DDP) (Li et al., 2020), can integrate seamlessly with SP in Linear-MoE.
Additionally, the sharded data parallelism method, like Distributed Optimizer (Korthikanti et al.,
2022) in Megatron-Core, is also compatible.

Furthermore, the system provides support for TP, PP, and EP specifically tailored for Linear-MoE
models. In the case of TP, its application to Linear-MoE models is direct and efficient, as detailed
in §A.2.2. Regarding PP and EP, these parallelism techniques operate on Linear-MoE in much the
same way as their original versions since they are not involved in the inner computations of the
LSM modules but rather work at the level of complete Linear-MoE blocks or MoE layers. Moreover,
TP, PP, and EP can be combined with DP and SP as introduced earlier, enhancing flexibility and
scalability for large distributed setups.

A.2.4 VARIABLE LENGTH

During pretraining, batches generally consist of sequences with a uniform length. However, in the
finetuning phase or during inference, the model often encounters batches containing sequences of
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different lengths. A common approach to handle this variation is to right-pad each sequence in
the batch so that all match the length of the longest sequence in that batch. While straightforward,
this padding strategy can lead to inefficiencies, particularly when sequence lengths vary greatly
within a batch. For standard transformers, more advanced methods have been introduced to address
this issue. These methods include techniques like distributing workloads across GPUs to avoid
padding altogether (Zeng et al., 2022; Zhai et al., 2023), or packing multiple sequences into a single
batch while adjusting the attention mask as needed (Ding et al., 2024; Pouransari et al., 2024). In
Linear-MoE, handling variable-length sequences is simplified by processing the entire batch as one
continuous long sequence, effectively managing varying sequence lengths without padding.

A.3 IMPLEMENTATION

The implementation of the Linear-MoE system is based on Megatron-Core, an open-source library
developed on PyTorch that incorporates optimized GPU techniques and advanced system-level
enhancements. As depicted in Fig. 2, the Linear-MoE system consists of both modeling and training
subsystems, facilitating adaptable model building and efficient training specifically for Linear-MoE
models. Leveraging the capabilities of Megatron-Core, the Linear-MoE library is fully compatible
with all NVIDIA Tensor Core GPUs, including support for FP8 acceleration on NVIDIA Hopper
architectures.

The Linear-MoE design approach aims to minimize any invasive changes to Megatron-Core’s source
code. Rather than adding new modules directly, Linear-MoE operates independently, allowing
users to benefit from the latest LLM practices without disruptions due to updates or changes within
Megatron-Core.

A.3.1 MODELING SUBSYSTEM

Linear-MoE abstracts its LSM modules into modular and composable APIs, providing model devel-
opers and researchers with extensive flexibility to design and train large-scale custom Linear-MoE
models on accelerated computing platforms. The system includes essential building blocks, such as
core components for LSM mechanisms, MoE layers and Linear-MoE blocks, normalization tech-
niques, and embedding methods. To enhance adaptability, LSM mechanisms are organized into three
main categories: linear attention, SSM, and linear RNN, with multiple instances available in each.
For linear attention, options include basic linear attention (BLA), Lightning Attention, Retention,
GLA, DeltaNet, Based, and Rebased; for SSM, we provide Mamba2, the leading SSM model at
present; and for linear RNN, options include HGRN2 and RWKV6. As LSM techniques evolve,
Linear-MoE will continue to incorporate more LSM methods to ensure users have access to the latest
advancements.

Additionally, Linear-MoE offers vital components such as a model library, tokenizers, model con-
verters, usage examples, and a set of supportive toolkits. The model library includes instances of
Linear-MoE models that are adapted from state-of-the-art open-source MoE architectures, includ-
ing Qwen2 MoE, DeepSeekV2 MoE, and Mixtral MoE. These adapted instances are designated
as Linear-MoE-Qwen2, Linear-MoE-DeepSeekV2, and Linear-MoE-Mixtral, respectively. These
models are implemented following Megatron-Core format, with the standard attention layers replaced
by LSM-based token mixing layers, while maintaining the original embedding, normalization, and
expert layers unchanged.

A.3.2 TRAINING SUBSYSTEM

Advanced parallelism techniques, encompassing tensor, sequence, pipeline, context, and MoE expert
parallelism, are seamlessly incorporated into the Linear-MoE system through its design on top of
the Megatron-Core library. This non-intrusive integration allows Linear-MoE to leverage the robust
training capabilities of Megatron-Core, supporting large-scale model training across both standard
attention layers and MoE expert layers. However, the inherent parallelism mechanisms, such as TP
and SP, were not originally optimized for LSM modules. Additionally, Megatron-Core does not fully
support efficient SP for hybrid models containing both LSM modules and standard attention layers.
To address these gaps, we elaborate on our TP and SP approaches specifically designed for LSM
modules and hybrid models, as discussed in §2.2.
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Further capabilities, including mixed precision, activation recomputation, distributed optimizer,
distributed checkpointing, and CPU offloading, are also inherited from Megatron-Core, enhancing
model training flexibility and efficiency. And Linear-MoE supports 8-bit floating point (FP8) precision
on Hopper GPUs, benefiting from the integration of NVIDIA’s Transformer Engine (Micikevicius
et al., 2022). This feature optimizes memory usage and accelerates performance during both training
and inference stages.

To enhance the training speed of MoE layers, we incorporate MegaBlocks (Gale et al., 2023) into our
Linear-MoE system. MegaBlocks is designed to optimize MoE training on GPUs by reconfiguring
MoE computations using block-sparse operations and developing new block-sparse GPU kernels
that effectively manage the inherent dynamism of MoEs. In addition, we also integrate the Grouped
GEMM library into Linear-MoE, which introduces grouped GEMM kernels in PyTorch, thereby
accelerating the computational processes involved in training MoE models.

A.3.3 EVALUATION MODULE

In order to facilitate the evaluation on mainstream benchmarks, we have developed offline text
generation of Linear-MoE models within the system. Based on this, mature evaluation frameworks
such as OpenCompass (Contributors, 2023) and LM-Evaluation-Harness (Gao et al., 2023), are readily
available for conducting evaluation tasks on Linear-MoE models. Furthermore, the system facilitates
seamless bidirectional conversion between model weights from HuggingFace and Megatron-Core.
This functionality enables users to easily leverage pretrained models from HuggingFace for continued
pretraining or fine-tuning within the Megatron-Core environment. Additionally, it allows for the
assessment of model performance by using HuggingFace’s evaluation and inference pipelines on
models trained within the Megatron-Core framework.

A.4 SUPPLEMENTARY EXPERIMENTS

A.4.1 EXPERIMENT SETUPS

Models and Dataset. We conduct experiments on two Linear-MoE model series: A0.3B-2B and
A1B-7B. A0.3B-2B denotes a Linear-MoE model containing a total of 2 billion parameters, with
0.3 billion parameters activated. The same applies for the A1B-7B model. Each series consists of
several model instances, each incorporating a distinct instance of the LSM module. The specific LSM
module instances used in our experiments include: basic linear attention (BLA) (Katharopoulos et al.,
2020), Retentive Network (Retention) (Sun et al., 2023), Gated Linear Attention (GLA) (Yang et al.,
2023), DeltaNet (Schlag et al., 2021), Mamba2 (Dao & Gu, 2024), HGRN2 (Qin et al., 2024d), and
RWKV6 (Peng et al., 2023; 2024), all implemented in Triton. These model instances are evaluated
against models with standard attention implementation in Megatron-Core (referred to as Baseline)
and the FlashAttention-2 (Dao, 2023) implemented in Transformer Engine (in CUDA).

To implement the Linear-MoE model instances, we utilize the Qwen2 MoE architecture (Yang et al.,
2024a) as the base model. All models are pretrained from scratch on a portion of the SlimPajama
dataset (Soboleva et al., 2023). This dataset originally contains 627 billion tokens, we restrict our
experiments to the first two chunks of the dataset, totaling approximately 100 billion tokens. The
Qwen2 tokenizer is employed throughout the training processes.

Training Configurations. Table 2 details the training configurations for both Linear-MoE model
series. We employ the Adam optimizer (Kingma & Ba, 2014) along with parallelism techniques,
including TP and EP. Each pretraining run is performed on a node with eight A100 80G GPUs.

A.4.2 TRAINING LOSS RESULTS

To evaluate the overall training performance of the Linear-MoE models, we pretrain the A0.3B-2B
and A1B-7B model instances using 15B and 100B tokens, respectively. We test both pure and hybrid
model configurations; for the hybrid models, we incorporate one quarter of standard transformer
MoE layers throughout the architecture. For instance, in the 12-layer A0.3B-2B model, the hybrid
configuration follows the pattern "LLLNLLLNLLLN", while the 16-layer A1B-7B model adopts the
pattern "LLLNLLLNLLLNLLLN".
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Models A0.3B-2B A1B-7B

Hidden Dimension 1024 2048
FFN Dimension 896 1024
Num of Heads 8 16
Num of Layers 12 16

Num of Act Experts 8 8
Num of Experts 64 64

LR 1e-4 1e-5
Minimum LR 1e-5 1e-6
LR Scheduler Cosine Cosine
Seq Length 2048 2048

Training Tokens 15B 100B

Table 2: Linear-MoE Family Models and Training Configurations. A0.3B-2B indicates that the
Linear-MoE model has a total of 2 billion parameters, with 0.3 billion parameters activated. The
same for A1B-7B.
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Figure 6: Training Loss Curves of A0.3B-2B Model Instances. Left: pure Linear-MoE models;
Right: hybrid Linear-MoE models. Linear-MoE shows competitive training convergence performance
compared to the standard attention Baseline.

The training loss curves for the A0.3B-2B model instances, which include both pure and hybrid
Linear-MoE models, are presented in Fig. 6. The results demonstrate that the pure Linear-MoE
architecture achieves competitive convergence performance compared to the standard attention
Baseline. Moreover, the hybrid models exhibit more stable convergence and consistent performance
when compared with the Baseline. Additional experiment results such as benchmark evaluations on
A0.3B-2B models and training loss curves of A1B-7B models can be found in Appendix A.4.

A.4.3 EVALUATION RESULTS

To investigate the performance of the Linear-MoE system in the context of language modeling, we
assess the accuracy on several benchmark datasets: PiQA (Bisk et al., 2019), HellaSwag (Hella.)
(Zellers et al., 2019), WinoGrande (Wino.) (Sakaguchi et al., 2019), ARC-easy (ARC-e) and ARC-
challenge (ARC-c) (Clark et al., 2018) under a zero-shot setting using OpenCompass (Contributors,
2023) framework. It is noteworthy that all models are trained from scratch without any data corruption.

The evaluation included both pure and hybrid versions of Linear-MoE A0.3B-2B model. Pure version
contains exclusively LSM modules, while the hybrid version is stacked with a standard softmax
attention layer follows three LSM layers for every four layers. As shown in Table 3 and 4, the
trained Linear-MoE demonstrates competitive performance on language modeling tasks compared to
the baseline (standard softmax attention). Both the pure and hybrid models, which integrate linear
sequence modeling modules with the MoE architecture, achieve performance comparable to the
baseline, demonstrating the effectiveness of the Linear-MoE system design.
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Figure 7: Training Loss Curves of A1B-7B Model Instances.

Scale Model LSM
Instance

PIQA Hella. Wino. ARC-e ARC-c MMLU Avg. Avg.

acc ↑ acc_norm ↑ acc ↑ acc ↑ acc_norm ↑ acc(5-shot) ↑ ↑ (no MMLU)↑
Baseline Attention 55.77 27.10 50.83 33.04 23.21 23.24 35.53 37.99

A0.3B-2B
15B Tokens

Pure

BLA 64.42 33.41 49.01 48.15 24.32 26.32 40.94 43.86
Retention 62.08 29.14 50.75 42.72 21.50 23.12 39.60 43.39
GLA 65.56 35.29 50.67 47.81 23.04 24.85 41.20 44.47
Mamba2 66.97 37.79 50.20 49.12 24.74 25.85 42.45 45.76
HGRN2 52.50 26.37 49.01 24.83 27.65 25.10 34.24 36.07

Hybrid

BLA 66.76 37.16 49.96 49.62 24.74 25.64 42.31 45.65
Retention 66.21 36.06 51.54 47.18 24.91 23.71 41.60 45.18
GLA 67.71 38.62 49.72 50.51 26.02 25.05 42.94 46.52
Mamba2 66.38 38.81 51.30 50.17 24.91 24.61 42.70 46.31
HGRN2 66.27 36.79 51.46 48.82 25.43 23.19 41.99 45.75

Table 3: A0.3B-2B Evaluation Results on Language Modeling Benchmarks (No Data Corrup-
tion). All models are pretrained from scratch on the same 15B subset of the SlimPajama dataset with
the Qwen2 tokenizer. No benchmark data corruption in the pretraining dataset. The A0.3B-2B hybrid
models have a stack as "LLLNLLLNLLLN", where "L" represents the Linear-MoE layer, and "N"
represents the normal MoE transformer layer.

A.4.4 MORE EFFICIENCY RESULTS
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Scale Model LSM
Instance

PIQA Hella. Wino. ARC-e ARC-c MMLU Avg. Avg.

acc ↑ acc_norm ↑ acc ↑ acc ↑ acc_norm ↑ acc(5-shot) ↑ ↑ (no MMLU)↑

A1B-7B
100B Tokens Pure

BLA 66.65 37.74 50.12 50.80 24.23 23.71 42.21 45.91
GLA 68.17 43.51 51.22 52.48 25.09 24.83 44.22 48.09
Mamba2 69.21 41.86 51.46 52.86 25.17 23.66 44.04 48.11

Table 4: A1B-7B Evaluation Results on Language Modeling Benchmarks (No Data Corruption).
All models are pretrained from scratch on the same 15B subset of the SlimPajama dataset with the
Qwen2 tokenizer. No benchmark data corruption in the pretraining dataset.

MoE Optimization Memory (GB) Time/Iter (ms)

Baseline 35.28 1565.6
Grouped GEMM 35.01 455.4

MegaBlocks 36.90 348.8

EP TP PP Memory (GB) Time/Iter (ms)

1 1 1 35.28 1565.6
8 1 1 22.98 739.4
1 8 1 10.04 6879.0
1 1 8 8.89 1820.2
2 2 2 12.90 1684.9

Table 5: Above: MoE Optimization. Below: Distributed training efficiency under different
parallelism settings. We report the memory usage per GPU (GB) and elapsed time per iteration (ms)
while training the A0.3B-2B model with a sequence length of 2048 and a batch size of 4, using a node
equipped with 8 A100 GPUs. The Baseline refers to the MoE implementation in Megatron-Core,
which is used without any optimizations.

Seq Length × Batch Size 2K × 8 4K × 4 8K × 2 16K × 1

Mem. Thpt. Mem. Thpt. Mem. Thpt. Mem. Thpt.

Baseline 40.74 102.14 41.42 88.60 42.93 66.17 47.08 49.39
Flash Attn 38.96 103.91 39.10 101.78 39.57 105.08 41.51 96.16
Basic LA 42.69 115.16 43.85 119.72 42.71 112.66 43.00 114.67
Retention 42.71 117.85 42.66 119.11 42.73 119.16 42.65 118.19

GLA 43.87 113.29 43.73 118.77 43.63 116.34 43.60 110.87
DeltaNet 43.33 116.95 43.34 120.27 43.31 117.43 43.32 109.72
Mamba2 45.63 105.99 45.94 108.13 47.16 102.51 44.97 106.84
HGRN2 46.03 92.58 46.14 95.74 45.56 97.98 44.97 96.02
RWKV6 47.11 137.62 47.12 136.73 47.11 135.60 47.12 134.51

Table 6: Quantitative Efficiency Results. We experiment on 8 A100 GPUs and report the max
allocated GPU memory (GB) and throughput (×103 tokens/s) of A0.3B-2B model instances with
varying input sequence lengthes and batch sizes.
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